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Abstract

Proactive and reactive cognitive control are often associated with anterior cingulate cortex
(ACC). How ACC affects processing in other brain areas, however, is often not explicitly
delineated. In this work, we describe a model of how ACC computes measures of conflict
and surprise that are in turn relayed to the basal forebrain (BF) and locus coeruleus (LC) in that
order. BF and LC signals then respectively sharpen posterior cortical processing and trigger the
reframing of prefrontal cortical decision-making frames. We implemented this theory in a
large-scale neurocognitive model that performs simulated geospatial intelligence tasks.
Experiments demonstrate improved performance while minimizing additional processing.
Alternate interpretations of neuromodulatory signals are also discussed.
ª 2014 Published by Elsevier B.V.
Introduction

Anterior cingulate cortex (ACC) is implicated in a number of
functions including proactive and reactive cognitive control
(see Alexander & Brown, 2010 for a review). Proactive
control is applied before feedback is given while reactive
control is applied after feedback. For example, in taking a
test, checking a calculation before submitting an answer
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and then after receiving results, changing the amount of
studying one does for the next test are examples of proac-
tive and reactive control in that order.

ACC models of cognitive control (e.g., Alexander &
Brown, 2011; Shenhav, Botvinick, & Cohen, 2013) often do
not explicitly state how control is exerted on other brain
areas in terms of neuronal dynamics. One appealing candi-
date for the agent of this control is the neuromodulatory
system. The neuromodulatory system is bidirectionally con-
nected with ACC, prefrontal cortex and posterior cortical
areas (Krichmar, 2008). Within the neuromodulatory sys-
tem, the basal forebrain and locus coeruleus are of particu-
lar interest. The basal forebrain (BF) is the source of
acetylcholine, and appears to modulate attention. For
example, BF activity has been shown to increase attentional
modulation in downstream cortical targets (Disney, Aoki, &
Hawken, 2007; Goard & Dan, 2009; Herrero et al., 2008). BF
inputs to posterior cortical neurons amplify cue detection
and may also act to suppress irrelevant distractors
(Broussard, Karelina, Sarter, & Givens, 2009). BF activity
may be regulated by prefrontal cortex (PFC) to enable
top-down control of attention (Nelson, Sarter, & Bruno,
2005). The locus coeruleus (LC) is the source of noradrena-
line. Its effects are prevalent in cortical regions when there
are dramatic environmental changes which cause large
shifts in attention (Dalley et al., 2001) as opposed to the
more gradual shifts in attention encoded by the BF. Thus,
it has been proposed that the LC functions as a ‘‘network
reset’’ to detect large changes, reject prior expectations,
and enable the formation of new models of the environment
(Bouret & Sara, 2005; Sara, 2009). Models of neuromodula-
tory control, however, often focus on perceptual or atten-
tional processing (e.g., Avery, Dutt, & Krichmar, 2014;
Avery, Nitz, Chiba, & Krichmar, 2012).

In this work, we present a model of cognitive control
over more deliberate processing such as probability infer-
ence calculations and assessing the utility of various fac-
tors in spatial reasoning tasks. We embed our model in a
large-scale neurocognitive model implemented in Emer-
gent (Aisa, Mingus, & O’Reilly, 2008) that includes nine
brain areas (parietal cortex, temporal cortex, hippocam-
pus, prefrontal cortex, basal ganglia, anterior cingulate
cortex, orbitofrontal cortex, neuromodulatory system,
and thalamus). The multi-region model performs several
simulated geospatial tasks each with multiple steps for
inference and decision making. For proactive control, we
use a measure of conflict to consider a ‘‘look–relook’’
decision. For reactive control, we use a measure of sur-
prise, derived from error, to control the use or disuse of
features in a spatial reasoning task. Proactive and reactive
control increased our ability to model human performance
on the simulated intelligence tasks while minimizing extra-
neous processing.
Materials and methods

Tasks

In this work, we consider two tasks––tasks 2 and 3––that
are a subset of six simulated geospatial intelligence tasks
more fully described in Lebiere et al. (2013). (We do
consider task 1 because it was an introductory task with lim-
ited complexity to introduce humans to subsequent tasks.
Tasks 4–6, on the other hand, emphasized updating proba-
bility estimates as opposed to spatial processing.) One hun-
dred-three subjects were recruited from intelligence
analysis graduate studies programs to complete the tasks
and we modeled their inference and decision making using
a large-scale neurocognitive model. Our goal was to pro-
duce quantitatively similar distributions of responses to
human response. Tasks were not specifically designed to eli-
cit conflict or surprise, but we found modeling these mech-
anisms increased our fidelity in modeling human behavior.

Tasks 2 and 3 are very similar: given a map that displays a
history of previous attacks from four groups, subjects attempt
to assess which group is most likely to attack at a new probe
location. Subjectswere told to judge the probability of a group
attacking based on three features: (1) distance from each
group’s center to theprobe location (thecloser theprobe loca-
tion is to a group’s centroid, the more likely that group is to
attack), (2) the radius associated with each group’s attacks
(if a probe location is equidistant from two groups’ centroids,
the group with a larger radius is more likely to attack––that
group’s region of interest is larger than the other group), and
(3) the base rate of each group’s activity (with equal distance
and radius, the groupwith the higher base rate ismore likely to
attack––that group attacks more frequently). In task 2, sub-
jects were asked to consider distances ‘‘as the crow flies’’
(Fig. 1a) while in task 3, a network of roads meant subjects
had to consider distances ‘‘as the cow walks’’ (Fig. 1b). Each
subject performs five trials where each trial consists of a set
of twenty attack histories that appear sequentially as icons
on the screen. Each trial builds on the last and events are
not erased. Each attack location is determined by a 2D Gauss-
ian distribution withmean (or center) and variance (or spread)
that does not change for the duration of the five trials. Neither
the process to generate attack locations nor its parameters
were known to the subjects.
Model

Our model is composed of posterior cortical areas, frontal
cortical areas, and neuromodulatory areas as illustrated in
Fig. 2. Proactive and reactive control emerges through the
interaction of these brain areas.

Posterior cortex: probability calculations

Within posterior cortex, Parietal Cortex (PC) was responsi-
ble for calculating the probability that each group was likely
to attack at the target location; full details can be found in
Sun and Wang (2013). This calculation took place using
either a subset or all of the possible features––distance,
radius, and base rate––provided. If a single feature
was used, the marginal attack probability estimate was
used (e.g., P(attack|distance)). If more than one feature
was used, an average across marginal attack probability
estimates was performed (e.g., 0.5 * P(attack|distance) +
0.5 * P(attack|base rate)). This simulates the blending
mechanism that approximates average human behavior
when combing two or more sources of information
(Lebiere, 1999). Attack probability estimates were
computed sequentially for all four groups and then held in



Fig. 1 Screenshots of (a) task 2 and (b) 3 performed by human subjects. In both cases, subjects had to determine the likelihood of
a group attacking at a probe location based on distance, radius, and base rate.

Fig. 2 (a) Block diagram of our model which includes frontal cortical areas (blue), neuromodulatory areas (pink) and posterior
cortical areas (yellow). (b) Emergent implementation of our model focusing on frontal cortical areas and neuromodulatory areas.
The Primary Value, Learned Value (PVLV) subsystem of the Prefrontal cortex, Basal Ganglia Decision Making (PBDM) model with
layers such as PVe and LVe is also shown (Herd, Krueger, Kriete, Huang, & O’Reilly, 2013).
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prefrontal cortex, an area known to be involved in working
memory since the 1930s (e.g., Jacobsen, 1935). Control of
which features were used in assessing a group’s probability
of attack was dictated by other regions of prefrontal cortex
described in the next section.

Prefrontal cortex: decision making for proactive and
reactive control

Within prefrontal cortex (PFC), we consider orbitofrontal
cortex (OFC), anterior cingulate (ACC), and dorsolateral
prefrontal cortex (DLPFC) to represent respectively the
reward, effort and utility (reward – effort) of strategies
in a Prefrontal cortex, Basal ganglia Decision Making or
PBDM network (Herd, Krueger, Kriete, Huang, & O’Reilly,
2013) and a program code abstraction of its dynamics. In
the programmatic encapsulation of PBDM, the effort of
strategies in ACCTaskOpts of Fig. 2b is subtracted from
the reward of strategies in OFCTaskOpts of Fig. 2b. This
competition is believed to be carried out by indirect (or
No Go) and direct (or Go) pathways in the striatum with
the winner––i.e., the option with the highest utility––
being selected in the basal ganglia, which is BGTaskOpts
in Fig. 2b. PBDM and its program code approximation try
to balance between strategies with higher reward but often
higher effort.

Proactive and reactive control from the other regions of
ACC triggered utility computations in PBDM-like dynamics as
listed in Table 1. In the case of proactive control, PFC had
two options. The first option is ‘‘Look’’ and output the first
pass of group attack probability estimates. The second
option is to ‘‘Relook’’ by increasing attention in PC
computation, reconsider each group in turn, and then



Table 1 PFC options for proactive and reactive control.

Option 1 Option 2 Option 3 Utility computations

Proactive
control

‘‘Look’’: output
group attack
probability
estimates after
1st pass

‘‘Relook’’: increase
attention in PC
computation,
redo calculations,
then output updated
group attack
probability
estimates

– Reward is constant across
the options. Effort is proportional to conflict for
option 1 and fixed for the 2nd strategy
As conflict increases, the utility of the ‘‘Look’’
option decreases and the ‘‘Relook’’ option is more
likely to be chosen

Reactive
control

‘‘Maintain’’:
Maintain
current
level of
PC engagement

‘‘Increase’’: Increase
level of PC
engagement

‘‘Randomize’’:
Randomize
factors used in
PC computation

Reward is constant across the
options. Effort is
proportional to surprise for
option 1 and fixed for the
2nd and 3rd options
As surprise increases, the utility of the
‘‘Maintain’’ option decreases and the ‘‘Increase’’
option is more likely to be chosen. If all
PC features are being used in option 2, then
‘‘Randomize’’ is selected
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output updated group attack probability estimates. Using a
relook is more effortful but more accurate. This ‘‘look–
relook’’ effect aligns with speed-accuracy trade-offs in psy-
chological experiments (e.g., Laming, 1979; Rabbitt, 1966).
In the case of reactive control, PFC controls the use or dis-
use of features in PC. There are three options. The first
option, ‘‘Maintain,’’ retains the current level of PC engage-
ment. The second option, ‘‘Increase,’’ raises the level of PC
engagement by adding features used in assessing a group’s
probability of attack. The third option, ‘‘Randomize,’’ is
only used when all PC features are being used and yet more
control is needed; it randomly selects which factors are
used in PC computation. Using more of features entails
greater effort but greater accuracy. However, if no more
control can be applied, a random strategy might be tried
out of frustration. In Fig. 2b, PFCCtrlPC represents which
features to use in PC probability computation.

Anterior cingulate cortex: conflict and surprise

Several subregions of ACC with different functions have
been identified including those for conflict, error and sur-
prise or unexpectedness (Nee, Kastner, & Brown, 2011).
An influential subset of performance monitoring models
include conflict models (Botvinick, Braver, Carter, Barch,
& Cohen, 2001). Typically, conflict is a measure of the
incompatibility of opposing responses or actions. Conflict
is often measured by energy or the sum across response
options. However, for probability distributions this sum
would be constant (viz., 1). Thus, we chose normalized
entropy to measure conflict instead (Chelian, Oros,
Zaldivar, Krichmar, & Bhattacharyya, 2012). As examples,
the normalized entropy of probabilities (.25.25.25.25) is
1; for probabilities (1000) it is 0. A 3-layer network is
trained to map probabilities within the working memory
portion of prefrontal cortex to normalized entropy values
in ACCConflict (Fig. 2b).

Surprise was defined by the following formula:
surprise ¼
error
2

if error < 0:2
error

conflict
otherwise

(

with limits to prevent division by zero or exceeding the
value of one. When error is small, surprise is also small.
However when errors are larger, surprise is the ratio of error
and conflict. Conflict acts as a proxy for uncertainty or lack
of confidence in a response. For example, with probabilities
(.25.25.25.25), conflict is high because no response is dif-
ferentiated from others and confidence is low. On the other
hand, with probabilities of (1000), conflict is low so confi-
dence is high––the neurocognitive model is sure that the
first option is the true attacker. (Other measures of confi-
dence might sum the spread or confidence interval within
the probability estimate of each group.) Error is the mean
of absolute differences (MAD) between ground truth and
predictions of the true attacker shown as ACCError in
Fig. 2b, while conflict is defined above. For the same error
value (e.g., 0.4), surprise scales with confidence. When
error is smaller than conflict, surprise is low (e.g., 0.4/
0.8 = 0.5)––although an error was made, there was little
confidence in the answer. Conversely, when error exceeds
or is the same as conflict (e.g., 0.4/0.4 = 1), surprise is
high––an error was made and the neurocognitive model
was confident in its original response. A 3-layer network is
trained to perform the calculation in ACCSurprise (Fig. 2b).

Neuromodulatory system: basal forebrain and locus
coeruleus

ACC Conflict values are relayed to the basal forebrain (BF).
If the activity of the BF crosses a critical threshold, it will
trigger the programmatic encapsulation of PBDM to analyze
the utility of the two possible options for proactive control
as in Table 1. When conflict is low, the neurocognitive
model provides a direct response; however when conflict
is high, the neurocognitive model reconsiders, or relooks
at input data before providing a response. So long as conflict



Fig. 3 ACC Conflict decreases when PC calculation is changed
from an Unsharp to a Sharp state in both tasks 2 and 3. Unsharp
is before the relook while Sharp is after the relook.
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Fig. 4 The sharpness of PC layers (sharper for smaller kWTA
value) results in either an increased relative success rate––a
better fit to human responses––for task 3 or a response that
fluctuates depending on the sharpness for task 2.
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is low, utility will be high for the ‘‘Look’’ strategy and it will
continue to be used. However, when conflict is high, utility
is low for the ‘‘Look’’ strategy and the ‘‘Relook’’ strategy
has a chance of winning. BF activity increases attention in
PC by increasing competition between neurons effectively
increasing the network’s signal-to-noise ratio. In Emergent,
increasing competition corresponds to reducing the number
of winners in the kWTA mechanism.

ACC Surprise values are relayed to the locus coeruleus
(LC). If the activity of the LC crosses a critical threshold,
Fig. 5 After high error and surprise levels, the model selects mor
decrease in mean error to occur in both tasks.
it will trigger PFC to analyze the utility of three possible
options for reactive control as in Table 1. As surprise
increases, the utility of the ‘‘Maintain’’ option decreases
and the ‘‘Increase’’ option is more likely to be chosen. If
all PC features are being used in option 2, then ‘‘Random-
ize’’ is selected. This is meant to model frustration––no
more control can be applied and perhaps a random strategy
might be worth trying.

Results

Conflict

In Fig. 3, when ACC computed high conflict (>0.6), PC recal-
culated the probability of each group with increased atten-
tion. When conflict is calculated again after sharpening of
attention in PC, there is less conflict (<0.6) and a decision
can be made. We tested multiple different levels of sharp-
ening of PC and found it does decrease conflict in both tasks
presented, but it only increases accuracy of PC calculation
in task 3 as shown in Fig. 4. In task 2, it has little or even
detrimental changes to the accuracy of the calculation. In
Fig. 4, accuracy is measured in relative success rate, a mea-
sure of how well models fit human responses described in
Lebiere et al. (2013). (The detrimental changes occur in this
task because the differences in group probability estimates
between the groups was below the range of error for PC
calculation even in the sharpened condition, therefore
even though conflict decreases, the calculation actually
worsens.)

Surprise

In addition to conflict, when the result of the previous trial
results in surprise, ACC mean error reaches a threshold and
additional resources are used within PC to better calculate
future trials. Fig. 5 shows that ACC Mean Error decreases in
both task 2 and 3 when either base rate or radius is added to
the distance only calculation to provide more information
on each group. Similarly as with conflict, the addition of
additional information may end up helping or hurting the
final solution as shown in Fig. 6. In task 2, when the neuro-
cognitive model is already using Distance and Radius, a sur-
prising result causes PBDM to instruct PC to use additional
information, i.e. Base rate, which highly increases the accu-
racy of the calculation with respect to human responses.
e features to be used in future trails. On average this causes a
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However, in task 3 if the neurocognitive model is surprised
and PBDM requests additional information the results
worsen. This result would cause additional surprise resulting
in PFC resetting its expectations and no longer requesting
the use of Base rate in future calculations.

Discussion and conclusion

Typically models of cognitive control are demonstrated on
simple tasks such as the Stroop task (1935). However in this
work, we found that proactive and reactive control pro-
duces better fits to human data in relatively complicated
inference and decision-making tasks. Furthermore, in our
model, cognitive control was coordinated across several
brain areas such as posterior cortex, frontal cortical areas
and neuromodulatory areas. When group attack estimates
were relatively undifferentiated, conflict was high. High
conflict was relayed from ACC to the BF to increase atten-
tion in PC. Increased competition in PC, in turn, led to more
distinction between response options and greater overall
success in matching human performance of predicting
attackers. When group attack estimates were incorrect,
surprise was high. This was relayed from ACC to LC to trigger
a re-evaluation of the spatial strategies used by PC. More
terms in the spatial strategy in turn drove down error.

With respect to ACC, our model used conflict and
surprise to initiative proactive and reactive control respec-
tively. Broader theories of ACC such as PRO (Alexander &
Brown, 2011) and EVC (Shenhav et al., 2013) attempt to
unify several cognitive control functions of ACC, including
conflict and surprise, with various objective functions.
These models are also tied to neuroimaging and neurophysi-
ological studies but do not discuss the effects of the
neuromodulatory system.

With respect to neuromodulators, we primarily focused
on acetylcholine and noradrenaline. Other models of
decision making often include dopamine and serotonin
(e.g., Chelian et al., 2012; Herd, Krueger, Kriete, Huang,
& O’Reilly, 2013). Doya (2002) has also presented alternate
interpretations of the neuromodulatory functions. In his
work, dopamine signals reward prediction errors, serotonin
controls the time scale of reward prediction (discounting),
acetylcholine controls the speed of memory update, and
noradrenaline controls the randomness in action selection.
However, his work primarily considers reactive control in
a reinforcement learning framework whereas in this work
we also consider proactive control. Acetylcholinergic and
noradrenergic effects for modulating attention in visual pro-
cessing were also modeled by Avery et al. (2012, 2014). The
latter work also uses detailed anatomical models of the pri-
mary visual area or V1. To our knowledge a similarly
detailed reconstruction of parietal cortex used in this work
has not been performed.
Acknowledgements

Supported by the Intelligence Advanced Research Projects
Activity (IARPA) via Department of the Interior (DOI) contract
number D10PC20021. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained hereon are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either
expressed or implied, of IARPA, DOI, or the U.S. Government.

References

Aisa, B., Mingus, B., & O’Reilly, R. (2008). The emergent neural
modeling system. Neural Networks, 21, 1146–1152.

Alexander, W. H., & Brown, J. W. (2010). Computational models of
performance monitoring and cognitive control. Topics in Cogni-
tive Science, 2, 658–677.

Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex
as an action-outcome predictor. Nature Neuroscience, 14,
1338–1344.

Avery,M.C., Dutt,N.,&Krichmar, J. L. (2014).Mechanismsunderlying
the basal forebrain enhancement of top-down and bottom-up
attention. The European Journal of Neuroscience, 39, 852–865.

Avery, M. C., Nitz, D. A., Chiba, A. A., & Krichmar, J. L. (2012).
Simulation of cholinergic and noradrenergic modulation of
behavior in uncertain environments. Frontiers in Computational
Neuroscience, 6, 1–16.

Botvinick, M. M., Braver, T. S., Carter, C. S., Barch, D. M., & Cohen,
J. D. (2001). Conflict monitoring and cognitive control. Psycho-
logical Review, 108, 624–652.

Bouret, S., & Sara, S. J. (2005). Network reset: A simplified
overarching theory of locus coeruleus noradrenaline function.
Trends in Neuroscience, 28, 574–582.

Broussard, J. I., Karelina, K., Sarter, M., & Givens, B. (2009).
Cholinergic optimization of cue-evoked parietal activity during
challenged attentional performance. European Journal of Neu-
roscience, 29, 1711–1722.

Chelian, S.E., Oros, N., Zaldivar, A., Krichmar, J., & Bhattacharyya,
R. (2012). Model of the interactions between neuromodulators
and prefrontal cortex during a resource allocation task. In
Proceedings of the IEEE international conference on develop-
ment and learning and epigenetic robotics, San Diego, USA.

Dalley, J. W., McGaughy, J., O’Connell, M. T., Cardinal, R. N.,
Levita, L., & Robbins, T. W. (2001). Distinct changes in cortical
acetylcholine and noradrenaline efflux during contingent and
noncontingent performance of a visual attentional task. Journal
of Neuroscience, 21, 4908–4914.

Disney, A. A., Aoki, C., & Hawken, M. J. (2007). Gain modulation by
nicotine in macaque V1. Neuron, 56, 701–713.

http://refhub.elsevier.com/S2212-683X(14)00071-1/h0005
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0005
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0010
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0010
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0010
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0015
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0015
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0015
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0020
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0020
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0020
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0025
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0025
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0025
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0025
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0035
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0035
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0035
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0030
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0030
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0030
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0040
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0040
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0040
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0040
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0050
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0050
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0050
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0050
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0050
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0055
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0055


A model of proactive and reactive cognitive control with anterior cingulate cortex and the neuromodulatory system 67
Doya, K. (2002). Metalearning and neuromodulation. Neural Net-
works, 15, 495–506.

Goard, M., & Dan, Y. (2009). Basal forebrain activation enhances
cortical coding of natural scenes. Nature Neuroscience, 12,
1444–1449.

Herd, S. A., Krueger, K. A., Kriete, T. E., Huang, T., & O’Reilly, R.
C. (2013). Strategic cognitive sequencing: A computational
cognitive neuroscience approach. Computational Intelligence
and Neuroscience, 149329.

Herrero, J. L., Roberts, M. J., Delicato, L. S., Gieselmann, M. A.,
Dayan, P., & Thiele, A. (2008). Acetylcholine contributes
through muscarinic receptors to attentional modulation in V1.
Nature, 454, 1110–1114.

Jacobsen, C. F. (1935). Functions of frontal association area in
primates. Archives of Neurology and Psychiatry, 33, 558–
569.

Krichmar, J. L. (2008). The neuromodulatory system – A framework
for survival and adaptive behavior in a challenging world.
Adaptive Behavior, 16, 385–399.

Laming, D. (1979). Choice reaction performance following an error.
Acta Psychologica, 43, 199–224.

Lebiere, C. (1999). The dynamics of cognition: An ACT-R model of
cognitive arithmetic. Kognitionswissenschaft, 8, 5–19.
Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-Taylor, M.,
Staszewski, J., et al (2013). A functional model of sensemaking
in a neurocognitive architecture. Computational Intelligence
and Neuroscience, 921695.

Nee, D. E., Kastner, S., & Brown, J. W. (2011). Functional
heterogeneity of conflict, error, task-switching, and unexpect-
edness effects within medial prefrontal cortex. NeuroImage, 54,
528–540.

Nelson, C. L., Sarter, M., & Bruno, J. P. (2005). Prefrontal cortical
modulation of acetylcholine release in posterior parietal cortex.
Neuroscience, 132, 347–359.

Rabbitt, P. M. (1966). Errors and error correction in choice-response
tasks. Journal of Experimental Psychology, 71, 264–272.

Sara, S. J. (2009). The locus coeruleus and noradrenergic modula-
tion of cognition. Nature Reviews Neuroscience, 10, 211–223.

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected
value of control: An integrative theory of anterior cingulate
cortex function. Neuron, 79, 217–240.

Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of Experimental Psychology, 18, 643–662.

Sun, Y., & Wang, H. (2013). The parietal cortex in sensemaking: The
dissociation of multiple types of spatial information. Computa-
tional Intelligence and Neuroscience, 152073.

http://refhub.elsevier.com/S2212-683X(14)00071-1/h0060
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0060
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0065
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0065
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0065
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0070
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0070
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0070
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0070
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0075
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0075
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0075
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0075
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0080
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0080
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0080
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0085
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0085
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0085
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0090
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0090
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0095
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0095
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0100
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0100
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0100
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0100
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0105
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0105
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0105
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0105
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0110
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0110
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0110
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0115
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0115
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0120
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0120
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0125
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0125
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0125
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0130
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0130
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0135
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0135
http://refhub.elsevier.com/S2212-683X(14)00071-1/h0135

	A model of proactive and reactive cognitive control with anterior cingulate cortex and  the neuromodulatory system
	Introduction
	Materials and methods
	Tasks
	Model
	Posterior cortex: probability calculations
	Prefrontal cortex: decision making for proactive and reactive control
	Anterior cingulate cortex: conflict and surprise
	Neuromodulatory system: basal forebrain and locus coeruleus


	Results
	Conflict
	Surprise

	Discussion and conclusion
	Acknowledgements
	References


