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Abstract

Computational models of frontal function have made important contributions to understanding how the
frontal lobes support a wide range of important functions, in their interactions with other brain areas includ-
ing, critically, the basal ganglia (BG). We focus here on the specific case of how different frontal areas
support goal-directed, motivated decision-making, by representing three essential types of information:
possible plans of action (in more dorsal and lateral frontal areas), affectively significant outcomes of those
action plans (in ventral, medial frontal areas including the orbital frontal cortex), and the overall utility of a
given plan compared to other possible courses of action (in anterior cingulate cortex).

Computational models of goal-directed action selection at multiple different levels of analysis provide
insight into the nature of learning and processing in these areas and the relative contributions of the frontal
cortex versus the BG. The most common neurologic disorders implicate these areas, and understanding
their precise function and modes of dysfunction can contribute to the new field of computational
psychiatry, within the broader field of computational neuroscience.

INTRODUCTION

The frontal lobes are well deserving of all the attention in
this volume and the broader scientific literature, due to
their outsized role in so many central aspects of human
cognition and behavior. However, the frontal lobes do
not work alone: there is increasing evidence that frontal
cortex depends critically on the basal ganglia (BG) and
parietal lobes, for example. Thus, a more complete
understanding of frontal function likely requires a
systems-level framework that integrates the contribu-
tions of all these brain areas. A computational modeling
approach can play an essential role in this context, by
helping to understand how different brain systems
can work together while each contributes a distinct func-
tion. In this chapter, we review some of the major com-
putational frameworks for understanding frontal
function within a larger systems perspective. To narrow
the scope and provide a more concrete, substantive treat-
ment within the very broad range of frontal functions, we
focus on frontal contributions to motivated decision-
making, where the ventral and medial frontal areas

(e.g., orbitofrontal cortex, OFC; anterior cingulate cor-
tex, ACC) play central roles. Evolutionarily, it seems that
these brain areas are the oldest, primary frontal areas. For
example, in rodents, analogs of these areas (using pri-
mate terminology) are clearly present, whereas analogs
of dorsolateral prefrontal cortex (PFC) areas are less
obviously developed (Ong€ur and Price, 2000; Brown
and Bowman, 2002; Uylings et al., 2003). Thus a focus
on these areasmay shed light on the essential forces shap-
ing frontal function, which later adapted to support
higher-level cognitive functions in primates and humans.

In this context, we evaluate the hypothesis that a
common set of core specializations, which can be under-
stood through mechanistic computational models of the
underlying neural systems, underlies the unique frontal
contributions across all frontal areas. Of particular rele-
vance to this volume, the ventral and medial areas
of frontal cortex are widely recognized as the most
important for understanding common disorders of
clinical relevance, including major depressive disorder,
anxiety disorders, attention deficit hyperactivity disorder
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(ADHD), obsessive–compulsive disorder (OCD), etc.
(Ong€ur and Price, 2000; Itami and Uno, 2002;
Fitzgerald et al., 2005; Kim et al., 2011; Haber and
Behrens, 2014). These can all be considered disorders
of motivation and affect in one way or another,
highlighting the importance of understanding the neural
mechanisms of motivation and how the frontal cortex
and BG work together to support goal-directed behav-
ior, and also how these systems can go awry in these
disorders.

We begin with an integrated framework that synthe-
sizes a number of different ideas from various computa-
tional models of frontal function, which then provides a
roadmap for a subsequent discussion of specific models.
This should provide the clinician with a broad overall
sense of the kinds of insights and approaches that compu-
tational models offer and good places to look for further
reading. We then broaden our discussion to include more
of the unique contributions of dorsolateral PFC (DLPFC)
and frontopolar PFC areas, which are most significantly
enlarged in primates and humans, to provide a more
complete picture of frontal function in humans, including
the functions of robust and flexible working memory,
higher-level cognitive function, and behavioral inhibition.
Finally, we discuss the promise and pitfalls of the rela-
tively new field of computational psychiatry, within the
broader field of computational neuroscience.

A SKETCH OF AN INTEGRATED,
SYSTEMS–NEUROSCIENCE
COMPUTATIONAL MODEL

To situate the many different specific computational
models in the literature, we begin with an overall sketch
of a biologically realistic framework for affectively moti-
vated decision-making across the frontal cortex and BG
systems. Historically, the BG were originally considered
to be specialized for habit learning, with the frontal lobes
being more important for higher-level, “smarter” cogni-
tive functions (Miller, 1981; Mishkin et al., 1984;
Squire, 1992; Packard and Knowlton, 2002). In the
domain of motivated decision-making, the distinction
between a goal-directed process that takes into account
subsequent outcomes of actions, versus a more habitual,
stimulus–response process that does not, has been an
important dimension for dissociating behaviors and
underlying brain systems (e.g., Tolman, 1948; Balleine
and Dickinson, 1998; Yin and Knowlton, 2006; Tricomi
et al., 2009). For example, there is long-standing evidence
that the OFC is important for anticipating the specific
affectively relevant outcomes of previously acquired
actions, so that behavioral action–selection accurately
tracks manipulations such as the selective devaluation
of particular rewards (Balleine and Dickinson, 1998).

OFC lesions impair this devaluation-appropriate behavior,
putatively by causing the system to fall back on the
conditioned habit of performing actions that lead to the
now-devalued reward.

A similar distinction has been developed in computa-
tional models of reinforcement learning (RL), where
model-based RL is distinguished from model-free RL
(Daw et al., 2005; Daw and Dayan, 2014). Computation-
ally, a model-free RL system memorizes (caches) the
value (reward or punishment) of outcomes associated
with different states of the environment, whereas a
model-based RL system employs an internal model that
can simulate the outcomes of different potential courses
of action, to make action choices informed by their likely
outcomes.

More recently, there has been increasing evidence that
the BG are also important for flexible, higher-level cog-
nitive functions (Pasupathy and Miller, 2005), and there
is now a general consensus that the habit-learning role of
the BG is specifically associated with the dorsolateral
striatum, in conjunction with associated motor cortex
areas, while other areas of the striatum play a critical role
in goal-directed behavior (Samejima et al., 2005; Yin and
Knowlton, 2006; Pauli et al., 2012a). Functionally, the
FC is well suited for generating and evaluating a menu
of possible action plans, which the BG then help to select
among. The selection process in BG drives updating of
FC to reflect the selected option, which is then main-
tained to support subsequent behavior, consistent with
the classic top-down biasing framework (Desimone,
1996; O’Reilly et al., 1999; Miller and Cohen, 2001).

For this type of FC/BG dynamic, it is more natural to
think in terms of articulating differences among different
FC/BG loops, rather than between the FC and BG them-
selves. The classic FC/BG loops identified by Alexander
et al. (1986) provide a suitable coarse-grained grouping
of such areas (Fig. 17.1). Each of these loops can be
associated with a broad category of different informa-
tion: affectively significant outcomes in OFC, sensory-
motor plans of action in DLPFC, and overall affectively
oriented integration of this OFC andDLPFC information
in the ACC. The ACC effectively provides a net-utility
level of evaluation of different potential plans of action
(as represented by DLPFC) in terms of their ability to
achieve desired outcomes (in OFC), befitting its location
and extensive interconnectivity between these two
frontal areas. Consistent with a motivational/activational
understanding of ACC (e.g., Stuss and Alexander, 2007;
Holroyd and Yeung, 2012), when a high-utility plan is
available, the ACC could then provide a “motivating”
activation to energize accomplishment of that plan.

Biologically, monkey electrophysiology and other
data are broadly consistent with this overall framework
for understanding different contributions of OFC,
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ACC, and DLPFC (Rushworth et al., 2007; Kennerley
et al., 2011; Walton et al., 2014; Rich and Wallis,
2016; Hunt et al., 2018). At a broad level, each of these
areas has neurons tuned for relevant information such as
overall value, specific outcomes, plans, etc., consistent
with the extensive interconnectivity among these areas.
However, instead of thinking of this as a mass of undif-
ferentiated tissue, more sensitive population-coding
analyses show systematic differences consistent with
the preceding characterization (Hunt et al., 2018).
Specifically, Hunt et al. (2018) found that OFC had both
a clear encoding of the current stimulus identity, along
with a more graded, linear representation of reward
value, whereas the ACC had a more decision-like encod-
ing of value, divided sharply between high and low
values, and it, along with DLPFC, encoded the action
plan. Moreover, the OFC was unique in encoding values
of prior options, appropriately modulated by attention,
whereas ACC and DLPFC only encoded the value of
the currently attended option. Thus, OFC representations
can support the ability to compare relative outcomeswith
each other, while DLPFC and ACC are more focused on
evaluating a current plan of action and whether the
current evidence supports or contradicts that plan.
Furthermore, Hunt et al. (2018) found that a dissociable
component of ACC activity ramped up to a threshold
level just prior to action initiation, consistent with the
idea that ACC activation is key for motivating the
selected plan.

Although these data are focused on frontal activation,
there are comparable data about value and action-
selection coding in corresponding areas of striatum

(Samejima et al., 2005; Yin and Knowlton, 2006;
Redgrave et al., 2010; Pauli et al., 2012a), and our overall
framework again suggests that, whereas the frontal areas
are encoding signals in a high-dimensional, dynamic
fashion, the BG are evaluating these signals and helping
to select appropriate cognitive steps to take in focusing
attention and further processing on the available options,
and then helping to select the final course of action
chosen.

Overview of computational mechanisms for
motivated decision-making

Within the preceding biologically motivated framework,
we can now consider how different computational frame-
works can help clarify the underlying mechanisms of
motivated decision-making. As noted previously, the
model-based versus model-free distinction has been very
influential in the context of understanding how goal-
directed behavior might work. However, the notion of
model-based RL has been somewhat more narrowly
defined within the computational models, as compared
to how many empirical scientists think about these
processes and as compared to the broader space of rele-
vant computational models. Specifically, the model-
based RL framework is focused on an iterative,
simulation-like planning process that projects events
forward in time to determine the outcomes of actions.
Typically, multiple such steps of iterative simulation
and evaluation are taken, much like a classic lookahead
process in chess or other strategy games. By contrast,
there are many simpler types of information and
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Fig. 17.1. Schematic for how four different anatomically defined loops through the frontal cortex and basal ganglia (Alexander

et al., 1986) can each represent information relevant for making appropriately motivated decisions taking into account affectively

relevant outcomes (orbitofrontal cortex, OFC), sensory-motor plans (dorsolateral prefrontal cortex, DLPFC), and the integration of

these factors, along with potential effort and other costs in terms of overall utility (anterior cingulate cortex, ACC). All of these

factors, combined together, enable the organism to act in a goal-driven manner. In contrast, the loop through the supplementary

motor areas (SMAs) is thought to reflect a lower level of motor action selection, which can be shaped by the goal-driven areas but

can also operate independently based on current sensory inputs, in which case it reflects longer-term habit learning of the form that

has been classically ascribed to the BG.
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processes that can also contribute to goal-directed behav-
ior, and we are skeptical that rodents or even most other
mammals engage in much of this kind of sequential, iter-
ative planning process. Indeed, even humans are likely to
favor quicker, simpler heuristic kinds of processes rather
than engaging in effortful extended planning. In chess,
for example, studies show that experts rely extensively
on perceptual and memory-based processes, to a much
greater extent than typical AI planning models (Gobet
and Simon, 1996). Thus, while we are clearly capable
of this kind of elaborative planning process, it is likely
reserved for only the most novel, important situations,
while everyday decision-making is likely dominated
by other simpler processes.

From the neural recording data reviewed previously,
for example, we can see how flexible attentional modu-
lation of different value representations in OFC, together
with a utility-focused evaluation of the current plan in
ACC, can support effective goal-directed decision-
making. The underlying value, plan, and utility represen-
tations can be learned over time and generalized from
prior relevant experiences, instead of requiring a fully
detailed simulation of the environment. These kinds of
learned representations can be thought of as various
levels of state abstraction in the broader RL framework,
where the current sensory state is recoded in various
ways that emphasize particularly decision-relevant
factors, and support more systematic generalization of
prior experience into novel situations. For example,
many different computational models have been pro-
posed for learning about future outcomes of prior situa-
tions and actions, at many different levels, and these
learned predictions can provide a relatively quick and
easy way of taking into account likely future conse-
quences of actions, instead of attempting to actually sim-
ulate the current situation. A particularly simple yet
powerful form of such a model learns a successor repre-
sentation (Dayan, 1993) that encodes the discounted full
set of future expected states likely to follow from the cur-
rent state, and this aggregated state matrix provides the
input to the action-selection system, which benefits from
being able to generalize over states that all lead to similar
subsequent outcomes.

Outside of the formal RL framework, Alexander and
Brown (2011) proposed that medial PFC areas learn to
encode various types of outcomes based on actions taken
and showed how such a model can explain a range of
electrophysiological and other data about these areas.
In addition, the widely publicized work of the Google
DeepMind group has pioneered the coupling of RL
models with deep neural network systems that are partic-
ularly good at learning powerful state abstractions, which
have been shown to perform well at various simpler
video games (Mnih et al., 2015). This same framework,

augmented with an optimized model-based RL-like
lookahead planner system, subsequently was able to beat
the best human players at the very challenging game of
Go (Silver et al., 2016). Thus, the broad framework of
state-abstraction learning in support of goal-directed
behavior represents a critical contribution of computa-
tional models for understanding the power of frontal
function, which would be hard to appreciate and under-
stand without the concrete, implemented models that
demonstrate the impact of different forms of abstraction.
We review these models in somewhat greater detail later.

Relatively less computational modeling work has
been devoted to understanding how different frontal/BG
areas might work together dynamically to support moti-
vated decision-making. For example, we are not aware of
biologically realistic models of the iterative planning
process underlying formal model-based RL models,
nor how such a system could be learned in a plausible
way.Most existing models of frontal/BG action selection
are focused on a single parallel competition among dif-
ferent options, as represented in different competing
subsets of neurons in the BG pathways (Barto, 1995;
Houk and Wise, 1995; Gurney et al., 2001; Doya,
2003; Frank, 2005, 2011; Humphries et al., 2006), but
it is not clear how these parallel pathways might be
learned for relatively novel decision-making situations,
nor how the BG might participate in a more complex
goal-directed decision-making process involving coordi-
nated information across the OFC, ACC, and DLPFC.

To address some of these issues, we have recently
developed an integrated computational model that cap-
tures many aspects of this framework and simulates
the basic processes behind motivated decision-making
(Herd et al., 2019). This model incorporates OFC,
DLPFC, and ACC frontal areas, representing outcome,
plan, and integrated utility information about a space
of different situations where different action plans lead
to different outcomes. These outcomes in turn have
different net value or utility depending on internal state
(e.g., hunger, thirst) and other factors. This model shows
that, by encoding these different factors across different
brain areas, it can successfully generalize to novel com-
binations of situations, action plans, and internal states,
through the appropriate combination of representations
like those found in the OFC, DLPFC, and ACC.
A major contribution of this model is to demonstrate
how this generalizable, flexible decision-making ability
depends on sequentially evaluating different possible
courses of action, with the BG evaluating the overall
utility of each in turn for action selection. This sequential
evaluation process is more plausible for complex, novel
decision-making situations, compared to the parallel
selection process that most BGmodels envision. It seems
unlikely that dedicated BG channels would be available,
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with appropriate learned synaptic connections from
relevant frontal state abstractions, to support the kinds
of novel, arbitrary decisions that humans often confront
in daily life. Instead, it seems more plausible that
these parallel models of BG action selection are applica-
ble to well-learned, consolidated, “habitual” response
pathways. In our overall framework, this would corre-
spond to the SMA FC/BG loop of Alexander et al.
(1986) (Fig. 17.1). However, even these pathways are
likely strongly influenced by maintained activations
across higher frontal areas, consistent with the spiral
connectivity of these areas (Haber et al., 2000).

COMPUTATIONAL MODELS OF
MOTIVATED DECISION-MAKING

In this section, we provide a somewhat more detailed
description of selected computational models that illumi-
nate important components of the motivated decision-
making process, and consider how they fit within the
larger framework articulated previously.

First, the model-free side of RL has been extensively
explored through fundamental RL learning mechanisms
such as the temporal differences (TD) actor-critic frame-
work, where reward prediction errors (in the critic) train
up a competitive action–selection process that chooses
actions that are more likely to lead to higher levels of
future reward (Sutton and Barto, 1981, 1998). The corre-
spondence between elements of this framework and
different parts of the brain are shown in Fig. 17.2, with
the BG playing the role of the actor (in concert with its
projections through the frontal motor cortex), and
midbrain phasic dopamine signals playing the role of
a TD-like critic (Montague et al., 1996), driving

dopamine-modulated learning in the BG (Gerfen,
2001; Frank, 2005; Gerfen and Surmeier, 2011). The
neocortex abstracts the environmental state input to sup-
port more powerful function in both the critic and
the actor.

Computationally, there are different ways of organiz-
ing the learning and action selection on the actor side
(i.e., learning a policy in RL terminology). For example,
the basic TD learning framework learns an estimate of
the expected future value associated with different states
of the environment, and then chooses actions as a func-
tion of the estimated value of the states that each action
leads to. This represents a simple one-step lookahead
planning function, even though it is typically categorized
as a model-free process, because the environmental
model is very simple. The Q-learning algorithm
(Watkins and Dayan, 1992) is a variant that learns the
value of state-action pairs, so it does not require this
lookahead process and can choose actions directly based
on their learned value estimates, and it can also handle
situations where actions themselves might have different
values. Both of these algorithms can be used with lookup
tables that just directly encode these learned expected
values, or with various types of function approximators
(e.g., a neural network) that learn these values in a more
compact, efficient manner than the full lookup tables.
Furthermore, there are many important issues con-
cerning the trade-off between exploiting (choosing the
action with the highest value) versus exploring other
options—early in learning, exploration should be prior-
itized, as the value estimates are unlikely to be very
accurate, but later in learning, it can make more sense
to optimize exploitation (with the risk of only finding a
locally optimal solution instead of a possibly more
globally optimal one) (Sutton and Barto, 1998; Cohen
et al., 2007).

The essential learning process in these models
involves chaining prediction errors backward in time—
for example if the system fails to accurately anticipate
a reward (or punishment), this then updates its estimate
for the value of the state that immediately preceded the
current one. When the system is next in that state, the
updated value estimate will in turn trigger an update of
the state that preceded that one, and so on backward in
time/states. This iterative process can be rather slow,
so often a graded eligibility trace over prior states (typi-
cally parameterized by the symbol l) can be used to push
updates back across multiple prior states at once. This
trace is important for capturing the properties of dopa-
mine firing in the brain, which does not exhibit the
characteristic backward chaining dynamic as predicted
by TD without this trace (Pan et al., 2005). Other more
biologically based models show how the different brain
systems driving phasic dopamine firing produce this and
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other characteristic firing patterns without requiring an
eligibility trace (Hazy et al., 2010).

In a biologic context, the extensive cortical inputs into
the BG action selection system play the role of state
abstractions. As explained earlier, the nature of these
state abstractions can play a huge role in determining
how effective the overall system is. An early compelling
demonstration of this point was provided by the
backgammon-playing success of an RL model using a
simple neural network on top of carefully hand-crafted
input states (Tesauro, 1995; this was the “DeepMind”
model of its era). Oneway of understanding why humans
are so adaptable is that we have such a large and powerful
state abstraction learning system in our highly enlarged
neocortex, which can extract systematic information
useful for making good strategic decisions. In compar-
ison, animals with less elaborated neocortex must rely
on more literal stimulus-driven state representations,
which do not support sophisticated goal-directed
behavior very well and instead drive a simpler
stimulus–response level of learning.

The recent use of deep neural network models for
discovering powerful abstract state representations,
exemplified by the work of the Google DeepMind group
(Mnih et al., 2015; Silver et al., 2016), demonstrates the
importance of state abstractions. These models combine
relatively standard Q-learning mechanisms (augmented
with a few key tricks) together with powerful error back-
propagation through deep layers of simple neuron-like
processing elements, to shape abstract encodings of the
raw environmental state in ways that support impressive
overall performance on a range of different tasks. One of
the key tricks here was avoiding the positive-feedback
loops that tend to develop when a system’s behavior
(policy) is based on what it has learned so far, causing
it to overly focus on exploiting learned policies instead
of acquiring new ones. The DeepMind model randomly
reshuffles small sequences of learning experience to
avoid these positive-feedback loops. They motivated
this idea in part by theories of hippocampal replay of
experiences through later recall (McClelland et al.,
1995), although their implementation would likely place
unrealistic demands on the extent and capacity of such a
hippocampal replay mechanism.

State abstractions are often thought of in terms of
recoding the current environmental state, but consider-
able advantage can be gained by learning representations
that integrate across time as well. The classic TD algo-
rithms described previously are constrained to treat each
point in time separately, continually choosing actions at
each step based on their predicted future outcomes.
However, it has been suggested that human planning
takes place on more temporally abstract representations,
where a whole sequence of actions and its cumulative

outcome may be represented holistically (Botvinick
and Weinstein, 2014). For example, there is extensive
evidence of anticipatory motor planning in speech and
other domains (e.g., Dell et al., 1997). This allows us
to develop coordinated, high-level action plans, for
example. A number of intersecting lines of neuroimaging
and neuropsychologic research suggests that PFC may
be an important brain structure underlying this kind
of processing (Fuster, 1991; Koechlin and Jubault,
2006; Badre and D’Esposito, 2007; Badre, 2008;
Botvinick, 2008).

Temporal abstraction has been formally explored in a
series of computational frameworks collectively referred
to as hierarchical RL (Barto and Mahadevan, 2003). For
example, in the options framework, at each time step the
agent can choose from the set of available low-level
actions as in traditional RL, but it can also choose from
a set of options, which are composed of subpolicies
defining whole sequences of low-level actions to be
executed (Sutton et al., 1999). More recently, the hierar-
chical RL approach has been explored with a variety of
different deep neural network algorithms that allow hier-
archical representations to be discovered by the agent
itself rather than being hand-coded by the programmer
(Kulkarni et al., 2016). A more cognitively motivated
version of such models was proposed by Collins and
Frank (2013), which was applied to explain a range of
human behavioral data on how task representations are
learned from experience.

An interesting potential upshot of temporal abstrac-
tion has been suggested by Botvinick et al. (2009) and
Botvinick and Weinstein (2014): in what the latter term
saltatory model-based hierarchical RL, an agent with
temporally abstract representations of the state-space
would be able to predict the environmental consequences
of its actions beyond one time-step in the future. This
capacity would greatly reduce the computational com-
plexity of generating a temporally extended action-plan;
rather than requiring a full tree-search through potential
future actions at each time-step, the agent could jump
directly to the predicted outcome of a sequence of
prelearned (habitual) actions. For example, rather than
predicting the consequences of every low-level
muscle-movement in the sequence of actions required
to make a cup of coffee, the outcome of the high-level
plan could itself be considered in order to motivate the
decision. Thus, the agent could effectively simulate the
experience of having a cup of coffee in hand to help it
make the decision to execute the required sequence of
actions.

Another form of temporal abstraction, the successor
representation mentioned earlier (Dayan, 1993),
involves associating each state with a temporally abstract
representation of the states that are expected to follow
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from it. The original motivation behind this work was
that TD-learning of a value function becomes easier
when distributed representations of states with similar
expected future rewards are close together (in Euclidean
distance). When successor representations are used, the
value function is easier to learn because states with
similar successors will also have similar future rewards.

More recently, the successor representation has been
reconceptualized as an intermediate between model-
based andmodel-free algorithms, because it encodes use-
ful information about the dynamics of the environment
without requiring a full model of every possible transi-
tion probability (Momennejad et al., 2017). In a series
of behavioral experiments, the authors showed that a
hybrid between the successor representation algorithm
and the usual model-based TD-learning best captured
the basic features of human behavior on tasks involving
changes to environmental contingencies (i.e., reward
devaluation and changes to transition probabilities).

In related work, human participants exhibited event
segmentation of visual stimuli based on temporal
community structure: the stimuli that tended to follow
one another (and would therefore have similar successor
representations)were grouped together so that transitions
within community groups were identified by participants
as belonging to a single event, whereas transitions
between such groups were seen as the natural starting
points of new events (Schapiro et al., 2013). The fMRI
results of this study offered support to the hypothesis that
visual stimuli with similar expected successor items had
greater overlap in their neural representations, and
specifically identified left inferior frontal gyrus as an
important brain area for representing temporal structure.
Although these models focused on bottlenecks as an
important characteristic for segmenting regions of
state-space, other work has emphasized points of maxi-
mum prediction error or maximum entropy where people
naturally segment events and other temporally extended
stimuli (e.g., Reynolds et al., 2007). Thus it may well be
that the hippocampus and other medial temporal lobe
areas play a critical role in helping to organize the
continuous stream of environmental states into distinct
episodes (e.g., Ranganath and Hsieh, 2016; Schapiro
et al., 2017) that then provide a basis for more systematic
goal-directed action selection in the future (Schacter
et al., 2007).

The PRO model of Alexander and Brown (2011)
provides a related form of temporal abstraction learning,
where the ACC is hypothesized to learn the expected
subsequent outcomes of different actions, along multiple
different dimensions at the same time. Critically, this
framework suggests that cortical representations are
high-dimensional and not reduced to a single scalar
value, as in standard RL models. Furthermore, the

temporal predictions of subsequent outcomes give rise
to two kinds of prediction errors: absences of expected
outcomes, and occurrences of unexpected outcomes—
these are tracked separately in the model, and are critical
for accounting for a range of neural data, including phe-
nomena otherwise attributed to conflict coding in the
ACC (Botvinick et al., 2001). The PRO model is consis-
tent with the broad framework outlined previously, in
terms of ACC connecting DLPFC motor plans with
OFC outcome representations and playing a critical role
in encoding the net utility of different plans under consid-
eration. Furthermore, this model suggests how the ACC
might learn based on prediction errors. A more elabo-
rated hierarchical version of this model specifically con-
nects the ACC with a model of DLPFC and provides a
more comprehensive framework for goal-directed motor
control in these areas (Alexander and Brown, 2015).
Meanwhile, the original proponents of the conflict model
have adopted a largely consistent, broader framework for
understanding the ACC in terms of an overall net-utility
construct, evaluating the cost and benefits of exerting
cognitive control (Shenhav et al., 2013).

Finally, the notion that the cortical representations are
fundamentally formed through predictive learningmech-
anisms is consistent with a detailed model of the role of
the higher-order thalamus and neocortical deep layers,
organized over time at the alpha frequency (10 Hz)
(O’Reilly et al., 2017). Specifically, this model suggests
that the neocortex is generating predictions over the thal-
amus (acting as a kind of projection screen for coordinat-
ing predictions across multiple areas), and every 100ms
it is driven by phasic bust firing from neocortical deep-
layer projections that represent the bottom-up sensory
ground truth for what actually did happen. Learning
throughout the cortex occurs based on the difference
between the prediction and this ground-truth outcome
signal, as broadcast from the thalamus broadly back up
to cortex. This same circuitry exists throughout the
neocortex and could provide the neural basis for predic-
tive learning in frontal areas (ACC, OFC, DLPFC, etc.),
along the lines envisioned by many of the previous
models. One specific idea is that OFC directly learns
to predict amygdala, insular, and other affectively driven
representations, whereas ACC learns to predict these
OFC representations, conditional on plan-based inputs
from the DLPFC (i.e., it learns to anticipate the affective
outcomes of given high-level action plans, as in the PRO
model of Alexander and Brown, 2011). The DLPFC,
meanwhile, is driven by learning to predict sensory-
motor outcomes, building on lower levels of such
learning occurring in the parietal lobe, but also with
influence from the ACC representations.

In summary, computational models of frontal/BG
function in motivated decision-making provide many
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important ideas for how to solve the fundamental
problem of deciding what course of action to take to
achieve desired future outcomes (goals). There are many
different ways in which predicted future states can be
anticipated, with one extreme being the classical
model-based RL framework, using explicit iterative
simulations of the environment. Short of this, there are
many simpler “heuristic” approaches involving various
forms of predictive learning that can anticipate potential
future outcomes without requiring a full-blown simula-
tion. From a cognitive and behavioral perspective, these
different computational mechanisms provide different
levels of explicit access to the relevant predictive
knowledge, and abilities to generalize to novel situations.

For example, with a full-blown simulation, you likely
have extensive access to the reasonwhy you chose a given
action plan, in terms of the predicted effects on future
outcomes, whereas the simpler predictive learning
approaches may correspond to more of a “hunch” or intu-
ition about likely outcomes, without as much explicit rea-
soning behind it. These different strategies can also vary in
their dependence on prior experience in the relevant
domain and ability to generalize systematically to novel
situations. Many of the computational models excel in
well-trained domains (e.g., the DeepMind models play
millions upon millions of games to develop their exper-
tise), but they fail to capture that essential ability of human
intelligence to rapidly adapt and extrapolate to novel tasks.
A critical construct here is the spectrum of controlled ver-
sus automatic processing (Shiffrin and Schneider, 1977;
Cohen et al., 1990): people use deliberate, explicit con-
trolled processing in novel situations, and progressively
develop automatic forms of processing as theygain greater
familiarity. Controlled processing depends on juggling
active neural firing information in PFC (Miller and
Cohen, 2001; O’Reilly, 2006), whereas automatic proces-
sing relies on shaping synaptic weights through learning.
Thus, advancing the frontal abilities of computational
models represents an important direction for improving
their overall abilities to handle novel situations.

GENERALIZING TO BROADER FRONTAL
FUNCTIONS

In this section, we attempt to integrate the previous
more-focused consideration of the affective decision-
making aspects of frontal function with the broader
space of frontal functions. We argue that this approach
recapitulates the course of evolution: frontal cortex
was initially specialized for supporting the core affective
action selection processes considered earlier, and larger
mammalian and especially primate PFC areas evolved
from that foundation. In brief, aside from everything
being more richly represented across larger brain areas,

it appears that the DLPFC and frontal pole areas are most
uniquely enlarged in primates and especially humans
(Semendeferi et al., 2001; Badre and D’Esposito,
2009; Thiebaut de Schotten et al., 2012). In the preceding
framework, these areas would support the ability to
represent more complex, and especially deeply hierarchi-
cal, action plans. Many have argued for various different
hierarchical organizations of PFC areas (e.g., Koechlin
et al., 2003; Bunge, 2004; Bunge et al., 2005; Badre,
2008; Badre and D’Esposito, 2009), but there are also
indications that thingsmight bemoremixed and complex
than the pure form of any of these models (Reynolds
et al., 2012). Nevertheless, the highly enlarged area
10 is anatomically connected in a manner consistent with
its observed role in enabling reasoning involving multi-
ple different relationships—it only interconnects with
other, more posterior frontal areas, whereas these other
frontal areas are directly interconnected with posterior
cortex (Badre and D’Esposito, 2009). Furthermore, there
is evidence that the medial and lateral areas of dorsal
frontal cortex work together along the rostral-caudal axis
(Kouneiher et al., 2009), consistent with the idea that
these dorsal medial areas are evaluating the affective
outcomes and overall net utility of potential action plans
at different levels of abstraction.

The broader dorsal versus ventral organization of
frontal cortex is also consistent with the core distinctions
in affective frontal areas between the OFC (ventral) and
ACC (dorsal) (O’Reilly, 2010) (Fig. 17.3). Specifically,
OFC and ventral-lateral PFC (VLPFC) areas are more
clearly driven by aspects of stimulus identity, presum-
ably originating in projections from the inferotemporal
cortex (IT) where neurons first encode object-level
information robustly (i.e., the What visual pathway;
Ungerleider and Mishkin, 1982). In contrast, ACC and
DLPFC more clearly encode action plans and related
information, consistent with their projections from pari-
etal areas that encode sensation-for-action information
(i.e., the How visual pathway; Goodale and Milner,
1992). For example, the comparison between coding in
OFC versus ACC reviewed earlier (Hunt et al., 2018)
is consistent with this overall organization, with OFC
showing clear encoding of stimulus information, while
ACC more strongly encoded the current action plan.

In the following sections, we consider various compu-
tational models that have advanced our understanding of
different mechanisms of frontal functionmore broadly, in
relation to the overall organization sketched here.

Robust active maintenance, working
memory, and BG gating

A long-standing framework for understanding frontal
function centers around the apparently unique capacity
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for robust maintenance of neural firing patterns in frontal
cortex (e.g., Fuster and Alexander, 1971; Kubota and
Niki, 1971; Miller and Desimone, 1994; Goldman-
Rakic, 1995; Sommer and Wurtz, 2000). According to
the previous framework, it is plausible that this capacity
for active maintenance evolved to allow goal representa-
tions to be sustained over time to guide behavior toward
accomplishing selected goals and plans, and perhaps to
also enable learning about action/outcome connections
that span a longer temporal duration. Computationally,
there have been a number of different models at different
levels of analysis exploring how neurons can sustain a
pattern of firing robustly over time, from more biologi-
cally detailed models to more abstract mathematical
attractor models (e.g., Brunel and Wang, 2001;
Durstewitz and Seamans, 2002; Goldman et al., 2002;
Koulakov et al., 2002; Brody et al., 2003; Durstewitz,
2009; Barak and Tsodyks, 2014; Lim and Goldman,
2014; Zylberberg and Strowbridge, 2017).

These kinds of working memory systems face an
important trade-off: to the extent that they are better at
sustaining neural activity in the face of interference, it
then becomes more difficult to rapidly update when
new information must be maintained. A gating system
can resolve this trade-off by dynamically modulating
the system, opening the gate when new information must
be updated, and closing the gate to support robust main-
tenance of existing information. One possibility is that
dopamine neuromodulation drives this kind of gating
dynamic (Braver and Cohen, 1999, 2000; O’Reilly
et al., 1999; Durstewitz and Seamans, 2002). However,
in contrast to the more global effects of dopamine,
BG-mediated gating of frontal cortex can provide a more
fine-grained gating signal, allowing some information
to be updated while other information is robustly

maintained (Frank et al., 2001; O’Reilly, 2006;
O’Reilly and Frank, 2006). This biologically based gat-
ing idea coincides with the computationally motivated
long-short-term-memory (LSTM) model of gating in
working memory (Hochreiter and Schmidhuber, 1997),
which is currently experiencing a resurgence of interest
along with other neural-network learning mechanisms,
and demonstrates the computational power of this gating
framework. This gating framework also corresponds to
a partially observable Markov decision process (Todd
et al., 2008), which has been studied extensively in
machine learning and computer science, and other
approaches have also been used to model this gating
process (Dayan, 2007, 2008).

The LSTMmodel and later versions of the BG-gating
model (Hazy et al., 2007) have included an output gating
mechanism in addition tomaintenance gating—this form
of gating allows information to be actively maintained in
a form that does not influence ongoing processing until
the output gate is opened. There is evidence for such a
dynamic operating in the human brain (Chatham et al.,
2014), and it can support a powerful form of indirection
(Kriete et al., 2013) along with other benefits (Kriete and
Noelle, 2011). Our current understanding of the interac-
tion between BG and frontal cortex now incorporates the
differential roles and connectivity of the superficial and
deep layers of neocortex, along with a central role of
predictive learning (O’Reilly et al., 2012, 2017). In brief,
we now think of BG gating as mediating the transfer of
activation from a more labile, transient superficial-layer
representation to a more robustly maintained deep-layer
representation, which, via excitatory loops through the
thalamus, is ultimately responsible for robust active
maintenance. This framework also unifies the functions
of maintenance gating and output gating: both involve

Fig. 17.3. Schematic of cortical functional organization along dorsal–ventral, medial–lateral, and anterior–posterior dimensions

(O’Reilly, 2010). The ventral visual pathway encodes stimulus identity information in inferotemporal cortex (IT), and this carries

forward into frontal cortex, in terms of OFC representations of the affective value and associations of different stimuli, and more

lateral ventral areas driving top-down control over IT representations of verbal and semantic knowledge. The dorsal pathway

through parietal cortex transforms visual and other sensory input to support action planning and execution, and this carries through

to dorsal lateral PFC high-level planning and control of action and corresponding evaluation of action plans in ACC.
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the activation of deep-layer representations, with the pri-
mary difference being the subsequent projections from
these deep layers. Output gating corresponds to activa-
tion of deep-layer representations with extensive direct
connections to other cortical areas to effect motor or
cognitive actions, while maintenance gating corresponds
to representations that primarily project to other PFC
areas that can then serve as output gating areas for this
maintained information. These distinctions are clearly
graded, and any given area may reflect a mix of both pat-
terns of connectivity. This is in contrast to the LSTM
framework, which has a stricter segregation between
maintenance and output gating.

This overall BG-gating framework has the potential to
connect the extensive literatures on the involvement of
ventral striatum (including the nucleus accumbens,
NAcc), and ventral/medial frontal cortex (including
OFC, ACC), in similar domains and disorders. Despite
the fact that these areas are extensively interconnected,
many studies examine each of these areas separately.
Instead, it may make more sense to consider them as a
system, with the NAcc playing a critical role in driving
a gating-like updating of robust active maintenance in
OFC, ACC, etc. For example, when NAcc responds pha-
sically to conditioned stimuli (CS) as a result of
dopamine-modulated learning there, this could drive
updating of CS and associated unconditioned stimuli
(US) outcome information in OFC. The OFC can then
robustly maintain this information to track progress
toward achieving desired outcomes. This overall frame-
work is consistent with a variety of different types of
data, including the relative impact of OFC on reversal
learning (Stalnaker et al., 2007; Pauli et al., 2012b),
and selective deactivation of dorsal versus ventral stria-
tum (Atallah et al., 2006; Pauli et al., 2010).

Furthermore, it may potentially help understand
the differences between sign-tracking versus goal-
tracking behavior (Flagel et al., 2010). Some recent data
shows the promise of this approach for understanding
psychiatric disorders (Burguière et al., 2013).

Symbolic cognition and the nature of PFC
representations

One active, unresolved question in the field is the extent
to which the PFC is important for enabling abstract,
symbolic cognition, and if there are particular signatures
of this in the nature of PFC representations (e.g., Miller
et al., 2003; Nieder, 2009; O’Reilly et al., 2014). Some
single-cell monkey electrophysiological data comparing
PFC versus posterior cortical representations have
concluded that the PFC representations are more
crisply tuned to the task-relevant dimensions, e.g.,
showing sharp task-defined visual categorical boundaries

(Freedman et al., 2003) or more symbol-like number rep-
resentations (Diester and Nieder, 2007). A computational
model demonstrated how sustained activate maintenance
can shapePFC representations to have thesemore symbol-
like representations (Rougier et al., 2005). On the other
hand, other recordings have demonstrated mixed selectiv-
ity in PFC representations (Mante et al., 2013; Rigotti
et al., 2013; Fusi et al., 2016), where individual neurons
have significant tuning for multiple different stimulus
and task dimensions. Mixed selectivity is a hallmark of
posterior-cortical representations and has been discussed
in terms of coarse-coded distributed representations in ear-
lier neural network literature (e.g., Rumelhart and
McClelland, 1986; O’Reilly and Busby, 2002). It allows
efficient representation of high-dimensional information,
and different downstream pathways can extract different
features from these representations as needed. However,
a critical limitation of these representations is in gener-
ative, combinatorial tasks, when different representa-
tions need to be flexibly and systematically
combined, without any additional opportunity for tun-
ing up new representations (i.e., single-trial generaliza-
tion). In this case, higher-dimensional distributed
representations can interfere with each other, signifi-
cantly impairing this ability for systematic generaliza-
tion, while more crisply categorical, symbol-like
representations enable more flexible recombination of
elements (Brousse, 1993; O’Reilly, 2001).

This kind of instant generative behavior is generally
considered to be something that only humans truly excel
at, with limited evidence of it outside of our species. Thus
there is always the possibility that the PFC in other pri-
mates has only the basic precursors of the kinds of truly
systematic representations present in the human brain,
but this is obviously a difficult hypothesis to test, given
the limitations of current recording techniques. Further-
more, even in the macaque monkey, some of the differ-
ences noted previously may be due to the nature of the
tasks involved: the mixed-selectivity tasks were strongly
perceptually driven and lacked any significant demand
for abstraction or flexibility (e.g., same-different match-
ing of complex picture stimuli, or motion versus color
discrimination). By contrast, the more categorical repre-
sentations were observed in a task with systematic
stimulus variation along two dimensions, only one of
which was task-relevant, and when systematically asso-
ciating visual representations of number with arabic
digits. Thus, it would be interesting to more systemati-
cally explore the effects of task factors on the nature of
the learned representations in PFC, particularly in tasks
that require truly generative single-trial generalization.

There is a further question regarding the nature of the
influence of BG gating on PFC activation patterns and
representations. In an extreme case, BG gating should
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impart a strong discretization over time and space on
corresponding activity in the PFC, as specific subsets
of PFC neurons are gated on and off. In our original
models, we hypothesized that topographically organized
anatomic features called stripes in PFCmight correspond
to independently gatable subsets of PFC neurons (Frank
et al., 2001;O’Reilly and Frank, 2006). However, it is not
clear if the relevant projections between the PFC and
thalamus, and through the BG subareas, actually obey
a strong topographic ordering constraint, as opposed to
being more diffusely projecting. In this latter case, it
would be difficult to trace the influence of BG gating
on a coherent subset of PFC neurons if those neurons
were widely scattered. Furthermore, it is not clear to what
extent a topographic organization is functionally benefi-
cial for the gating function—further computational stud-
ies are necessary to explore this issue. Given the number
of synapses involved in these BG/PFC loops, it would be
technically challenging to trace the topography all the
way through, but we are hopeful that future anatomic
studies may help resolve some of these questions. Mean-
while, it does seem to be generally true that PFC neurons
exhibit relatively sharp transitions over time, particularly
when they deactivate after a response has been made—
this is consistent with a gating-like dynamic. The poten-
tial influence of BG gating on PFC activations could
be tested through selective optogenetic manipulation
studies.

Inhibition

From a clinical perspective, it has long been useful to
think of the frontal cortex, and its interconnectivity with
the BG, as supporting behavioral inhibition: for example,
in the early observation of utilization behavior in patients
with damage to a variety of prefrontal areas (Lhermitte
et al., 1986), and the observation of a close linkage
between the right inferior frontal cortex (rIFC) and per-
formance on stop-signal tasks, in which a prepared
response must be withheld at the last possible moment
(Aron et al., 2004). This latter framework is also a nice
example of how frontal–BG circuits might work together
in coordinating the initiation and control over motor
action. An important question that computational models
have impacted is whether this overall behavioral inhibi-
tion reflects literal neural inhibition emanating from the
frontal cortex, or whether it is more accurate to under-
stand the frontal cortex as maintaining and supporting
desired behaviors via excitatory connections, which
then has the consequent effect of inhibiting unwanted
behaviors (Cohen and Servan-Schreiber, 1992; Miller
and Cohen, 2001; Stedron et al., 2005; Herd et al.,
2006; Munakata et al., 2011).

In the context of understanding the functional contri-
butions of the rIFC, recent studies have shown that it is
equally activated when a signal triggers pressing a button
twice instead of withholding a response, in an otherwise
identical paradigm (Chatham et al., 2012) and even when
detecting a salient stimulus when no external response is
required (Hampshire et al., 2010). These data and others
are consistent with the alternative view that rIFC is
important for attentional monitoring of the signal
(consistent with the broader perspective of IFC as
top-down control over ventral pathway visual proces-
sing; O’Reilly, 2010), rather than driving literal inhibi-
tion of the response itself. Another potential framing
would be to think of the rIFC, and right frontal cortex
more generally, as maintaining alternative action plans,
while the left frontal cortex is engaged with the currently
active, dominant plan (Charron and Koechlin, 2010).
Although proponents of the direct inhibition framework
have argued that rIFC activation always causes some
kind of breaking or interruption of motor execution
(Aron et al., 2014), that may not be exclusive to this area,
and instead may reflect the consequences of any form of
update to the current action plan in frontal cortex, via
the hyperdirect pathway from frontal cortex to the sub-
thalamic nucleus (Frank, 2006). Unraveling the precise
contributions of different brain areas in a complex
interacting circuit such as this is an ideal target for
computational modeling.

COMPUTATIONAL PSYCHIATRY AND
FRONTAL/BG MODELS

The frontal cortex/BG system is strongly implicated in
most of the common mental disorders, including major
depressive disorder, anxiety disorders, OCD, schizo-
phrenia, addiction, and ADHD. This fact, combined with
the evident complexity of these systems and relative
limitations of existing pharmacologic treatments, has
led to a recent focus on the potential of computational
frameworks to impact the next generation of treatment
approaches, i.e., computational psychiatry (Montague
et al., 2012; Wang and Krystal, 2014; Huys et al.,
2016). The interest in supporting this approach from
the NIH and other funding agencies is obviously exciting
to proponents of the computational modeling approach,
but it also carries obvious risks. It is likely that the exten-
sive comorbidity between these disorders reflects
common failure modes arising from many different
etiologies, within a highly complex interactive system.
These failure modes reflect the dominance of negative
affective states such as fear, which has a clear evolution-
ary survival value, even if it also leads to some level of
dysfunction in modern human society. Thus, effective
treatment requires fighting against millions of years of
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entrenched evolutionary forces, and our expectations of
probability of success should be adjusted accordingly.
Nevertheless, the degree of fragmentation of empirical
research along many different lines (e.g., animal versus
human, BG versus frontal cortex) provides an important
opportunity for computational modeling approaches to
integrate across these different areas and provide coher-
ent frameworks for thinking about how these systems
function at many different levels. Furthermore, aside
from any particular theoretic advances, computational
and machine learning techniques have demonstrated
potential to improve diagnosis and select appropriate
treatments based on an individual’s specific profile
(Huys et al., 2016).

Computational psychiatry can be considered a subset
of the broader discipline of computational neuroscience,
which uses computational models to understand how the
brain works more generally. Many of the computational
models discussed in this chapter are important examples
of computational neuroscience, and in particular
systems–neuroscience level models. One of the enduring
challenges in this field is figuring out how to evaluate and
test these often complex models, and understanding
exactly what these models have contributed to the
broader field of neuroscience and how these contribu-
tions can be enhanced going forward. In many ways,
models function like more specific versions of the kinds
of theories that drive all of science: they provide ways of
interconnecting different phenomena and levels of anal-
ysis into a more coherent and self-consistent explanatory
account. Like theories, their ultimate value is in driving
further experimental tests. Furthermore, once a model is
sufficiently well understood, its fundamental insights can
often be conveyed without going into much of the spe-
cific details (as we have attempted to do here in this
review), leading nonmodelers to often wonder about
whether all that effort developing the model in the first
place was really necessary. Instead of being discouraged,
one could regard this as a compliment: all major scien-
tific advances eventually seem obvious in retrospect,
and all the false leads and misguided ideas along the
way are quickly forgotten. So it is with computational
modeling: it is a process that some people find useful
for figuring out how complex systems might work.

If modelers can do a good job of conveying their
insights in ways that lead to useful experiments, and the
field as a whole progresses toward a shared understanding
of how these brain systems function together in ways that
are consistent with both the experimental data and coher-
ent computational models, then we can likely agree that
progress is being made. Indeed, an optimistic view sug-
gests that our existing understanding of the large-scale
systems–neuroscience-level organization of the brain

has already converged on a stable, self-consistent under-
standing of many of the major functions. Nevertheless,
much work remains to be done, and many of the issues
raised here represent some of the most challenging and
important directions for future work in this field.
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