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Conjunctive Representations in Learning and Memory:

Principles of Cortical and Hippocampal Function

Randall C. O’Reilly and Jerry W. Rudy

University of Colorado at Boulder

The authors present a theoretical framework for understanding the roles of the hippocampus and
neocortex in learning and memory. This framework incorporates a theme found in many theories of
hippocampal function: that the hippocampus is responsible for developing conjunctive representations
binding together stimulus elements into a unitary representation that can later be recalled from partial
input cues. This idea is contradicted by the fact that hippocampally lesioned rats can learn nonlinear
discrimination problems that require conjunctive representations. The authors’ framework accommodates
this finding by establishing a principled division of labor, where the cortex is responsible for slow
learning that integrates over multiple experiences to extract generalities whereas the hippocampus
performs rapid learning of the arbitrary contents of individual experiences. This framework suggests that
tasks involving rapid, incidental conjunctive learning are better tests of hippocampal function. The
authors implement this framework in a computational neural network model and show that it can account

for a wide range of data in animal learning.

The role of the hippocampus in memory has been characterized
in many different ways, but one common idea is that the hip-
pocampus binds together the sensory features of a situation or
episode to create a unitary representation of the experience. Thus,
the hippocampus is said to construct configural representations,
support the acquisition of a spatial map that binds together stim-
ulus features specific to locations, form episodic memories, rep-
resent the conjunction or co-occurrence of the stimulus features, or
to chunk or bind these features into a unitary representation. This
binding process enables the original conjunction of features to be
recalled from a subset of its parts and allows the conjunction to be
treated differently from the sum of its parts.

Specifically, the idea that the hippocampal formation encodes
representations of stimulus conjunctions is critical to the following
important approaches to understanding the hippocampal forma-
tion:

¢« Human amnesia associated with damage to the hippocampal
formation has been attributed to the inability to bind together
novel stimulus conjunctions (e.g., Marr, 1971; Squire, 1992;
Teyler & Discenna, 1986).

¢ Spatial learning that is dependent on the hippocampal formation
has been explained in terms of the ability to acquire a maplike
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representation of the environment (O’Keefe & Nadel, 1978) or
an auto-association process that binds together the stimulus
features specific to locations (McNaughton & Morris, 1987;
McNaughton & Nadel, 1990).

Impaired performance in a variety of discrimination learning
problems involving ambiguous cues resulting from damage to
the hippocampus is said to occur because the subjects cannot use
contextual labels (Hirsh, 1974) or acquire configural represen-
tations (Schmajuk & DiCarlo, 1992; Sutherland & Rudy, 1989).

* Many computational or biologically based theories of the hip-
pocampal formation emphasize the auto-associative binding
properties in area CA3 of the hippocampus (e.g., the Hebb—Marr
theory and its descendants; Hebb, 1949; Marr, 1971; McNaugh-
ton & Morris, 1987; Rolls, 1989). Related theories emphasize
the role of sparseness and conjunctivity in avoiding interference
during rapid learning of novel information (e.g., McClelland,
McNaughton, & O’Reilly, 1995).

All these approaches incorporate the idea that the hippocampus
is important for acquiring representations of stimulus conjunctions
and predict that damage to the hippocampal formation should
impair performance on problems that require the acquisition of
such representations. Sutherland and Rudy (1989) suggested a
strong test of this prediction using nonlinear discrimination prob-
lems that can only be solved if subjects construct conjunctive
representations of stimuli. This prediction resulted in a large Iit-
erature that failed to support the conjunctive idea, showing instead
that rats with extensive damage to the hippocampus can solve
nonlinear discrimination problems that require conjunctive repre-
sentations (e.g., Alvarado & Rudy, 1995b; Bunsey & Eichenbaum,
1996; Gallagher & Holland, 1992; McDonald et al., 1997, Whi-
shaw & Tomie, 1991).

Although much of this literature has focused on disproving the
specific predictions made by Sutherland and Rudy (1989), we
argue that these data constitute an important challenge for many
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other hippocampal theories that embrace the idea that the hip-
pocampus encodes conjunctive representations. The rejection of a
strong form of conjunctive theory, in our view, puts the field in a
state of crisis because there is no longer a clear theoretical basis for
understanding the division of labor between the hippocampus and
neocortex.

In this article, we attempt to resolve this crisis by providing a
theoretical framework based on two complementary but powerful
learning systems, the neocortex and the hippocampus (McClelland
et al., 1995). The neocortex (also called cortex) has powerful
learning capacities that enable it to gradually encode regularities
over many experiences. These regularities can include the contin-
gencies of complex tasks, including the nonlinear discrimination
problems that require conjunctive representations. However, there
is a fundamental conflict between extracting regularities over
experiences and encoding the specifics of individual experiences,
such that a complementary learning system is needed in the form
of the hippocampus. The hippocampal system can rapidly learn
about individual experiences without suffering interference by
keeping the representations of these experiences separated. Con-
junctive representations emerge naturally as a result of this sepa-
ration process.

Thus, we argue that stimulus conjunctions can be acquired by
two neural systems, the hippocampus and neocortex. However, the
operating characteristics of these systems differ in two important
ways: (a) learning rate, where the hippocampal system rapidly
acquires stimulus conjunctions, whereas the cortical system learns
relatively slowly; and (b) bias toward developing conjunctive
representations, where the hippocampal system automatically and
continuously constructs representations of stimulus conjunctions,
whereas the cortical circuit must be driven to construct such
representations by the demands of a task and does not otherwise
naturally do so. The slow learning of task-driven conjunctions is
consistent with the way that rats actually solve nonlinear discrim-
ination problems, thereby explaining why hippocampal lesions do
not necessarily impair performance on these tasks.

Our framework suggests a class of tasks that should provide a
much better test of the differential contributions of the neocortex
and hippocampus than the nonlinear discrimination learning prob-
lems. Specifically, rapid, incidental conjunctive learning tasks,
where the acquisition of stimulus conjunctions is not forced by
task demands and only relatively few exposures are provided,
should be uniquely sensitive to hippocampal damage. This is
supported by a number of experimental findings (e.g., Fanselow,
1990; Hali & Honey, 1990; Honey & Good, 1993; Honey, Watt, &
Good. 1998: Kim & Fanselow. 1992; Save, Poucet, Foreman, &
Buhot, 1992). Our framework can also explain, at a mechanistic
level, why the hippocampus appears to be important for supporting
some kinds of flexibility, for example in transitive inference tasks
(e.g.. Bunsey & Eichenbaum, 1996; Dusek & Eichenbaum, 1997).

The article proceeds in several stages. First, we provide a
historical overview of the development of the idea that the hip-
pocampus is critical to the acquisition of conjunctive representa-
tions. We then detail how tests of Sutherland and Rudy’s (1989)
configural association theory generated a strong challenge to this
idea and created a crisis for mechanistic accounts of hippocampal
function. After reviewing another literature that is consistent with
our proposed solution to this crisis, we describe the solution in
detail. We then present a biologically based computational model

of the hippocampal-neocortical system that instantiates our ideas
about the dimensions along which the hippocampus and neocortex
differ. This model is then applied to a wide range of tasks that have
been used to assess the contribution the hippocampus makes to
learning and memory, including nonlinear discrimination tasks,
rapid incidental learning tasks, contextual fear conditioning, and
transitive inference tasks.

We focus our application on animal experiments because they
have most directly addressed the nature of underlying mechanisms
through careful lesion studies and analytic experiments. However,
the same model has also been used to account for human memory
data (O’Reilly, Norman, & McClelland, 1998). Because the major
aspects of our mode] can be motivated independently on the basis
of computational and biological considerations, it is not merely an
ad hoc attempt to preserve the conjunctive account in the face of
conflicting data, but rather situates this data within a richer overall
framework.

Historical Overview

We track two themes in this overview of the historical devel-
opment of theories of hippocampal function: (a) general ideas
about the existence and nature of the division of labor between the
cortex and hippocampus and (b) the specific idea that the hip-
pocampus can bind together different types of information into a
conjunctive representation. We track these themes through human
and animal studies, and biological-computational models.

Human Studies

As is well known, the story of the hippocampus as a major
contributor to human memory began about 40 years ago with the
work of Milner and her colleagues (Milner, 1966; Penfield &
Milner, 1958; Scoville & Milner, 1957). On the basis of extensive
neuropsychological examination of a number of patients with
unilateral and bilateral damage to the medial temporal lobes (most
notably the famous patient H.M.), Milner (1966) concluded that
damage to the hippocampal formation was critical to the extensive
anterograde and the limited retrograde amnesia that was observed
in these patients.

Since Milner’s original reports, extensive research has been
aimed at characterizing the fundamental deficits common to pa-
tients with medial temporal lobe damage and other amnesics. One
of the major ideas that has emerged from this research is that
memory is not a single entity but rather consists of multiple
processes or systems, and that the hippocampal formation is only
important for a particular kind of memory (Gaffan, 1974; Hirsh,
1974; Nadel & O’Keefe, 1974; see Squire, 1992, for a review).

The early, more mechanistically oriented accounts of human
hippocampal function emphasized the idea that the hippocampus
encodes stimulus conjunctions (Marr, 1971; Teyler & Discenna,
1986; Wickelgren, 1979). This notion continues to be central as an
explanation of how people recall and recognize episodes from the
past. For example, this idea was clearly embedded in the memory
indexing theory of Teyler and Discenna (1986), who suggested
that each experiential event is represented in a unique array of
peocortical modules. By virtue of neocortical-hippocampal infor-
mation flow, a memory index of the cortical pattern is established
in the hippocampus. Subsequently, activation of the memory index
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by some subset of cues that were included in the original experi-
ence will be sufficient to activate the entire array of cortical
modules originally activated and provide the basis for recall and
recognition.

More recently, Squire (1992) concluded his review with a sim-
ilar idea of how the hippocampus supports declarative memory. In
his words,

In the present account the possibility of later retrieval is provided by
the hippocampal system because it has bound together the relevant
cortical sites. A partial cue that is later processed through the hip-
pocampus is able to reactivate all of the sites and thereby accomplish
retrieval of the whole memory. (p. 224)

Note that in both of these accounts the hippocampus represents the
conjunction of the stimulus features that made up a particular event
or experience; it is the activation of the conjunction that allows
memories to be recalled or recognized. These views of hippocam-
pal function correspond well with the notion of episodic memory—
that is, memory for the specific contents of individual episodes or
events (Tulving, 1972, 1983; Tulving & Markowitsch, 1998).

In contrast with these views supporting an essentially conjunc-
tive story, some other perspectives are more difficult to character-
ize in terms of the underlying mechanisms. A good example of this
is the influential declarative/explicit versus nondeclarative/implicit
memory distinction, which appears to provide a reasonable ac-
count of some of the differences between the hippocampal/medial-
temporal lobe areas and other cortical and subcortical areas in
humans (Squire, 1987, 1992). However, the lack of a clear mech-
anistic basis to these ideas makes them difficult to relate to the
kinds of constructs that have been developed in the animal and
computational literatures, which are the focus of this article.

Animal Studies

Milner’s (1966) conclusion that the hippocampus plays an es-
sential role in human amnesia also generated a large volume of
animal experimental work. Although the initial findings were only
indirectly related to the conjunctive learning idea, this idea soon
became a dominant theme in the animal literature, although this
theme took various different guises.

The first wave of studies, summarized in a thorough review by
Douglas (1967), overwhelmingly demonstrated that rats and pri-
mates with extensive damage to the hippocampus and related
cortical structures displayed no anterograde or retrograde amnesia
for basic learning paradigms. Nevertheless, Douglas (1967) noted
that animals with damage to the hippocampal formation were often
impaired in tasks that required the animal to learn a behavior that
was incompatible with a previously learned or prepotent response.
For example, damage to the hippocampus produced animals that
were highly resistant to extinction and slow to learn discrimination
reversals (e.g., where the conditioned association is reversed for
two stimuli).

On the basis of this pattern of results, Douglas (1967) offered
the hypothesis that the hippocampus was critical for enabling
animals to withhold responding—the response inhibition view.
However, Douglas realized that only certain types of responses
were inhibited by the hippocampus, specifically those involving
acquired stimulus-response associations. This specificity to ac-
quired associations kept alive the possibility that the hippocampal

formation was igvolved in memory processing in animals, even if
it was in an inhibitory capacity. Also, Douglas provided the first
seeds of the idea that the hippocampus plays an important role in
solving the ambiguous cue problem. This problem emerges when
the same stimulus is associated with incompatible outcomes (e.g.,
associated with reward in one contexi but not in another), and
solving the problem requires keeping the resulting associations
separate to minimize associative interference. We show later in
this article that use of a separation mechanism to avoid interfer-
ence is closely related to one of the functional properties of
conjunctive representations.

The issue of how to solve the associative interference problem
was subsequently addressed by Hirsh (1974), who proposed one of
the first multiple memory system frameworks (see also Nadel &
O’Keefe, 1974). Hirsh argued that a learning experience leaves its
impact on two different memory systems: the performance line
storage system and the memory system, which is associated spe-
cifically with the hippocampus. Generally speaking, experience
leaves its effect on the performance line by altering the strength of
connections between the neural elements activated by a stimulus
and those responsible for the response. Thus, when faced with an
ambiguous cue, an organism with only performance line memory
must respond solely on the basis of the relative strengths of
connection, regardless of whether this is appropriate to the task at
hand. In contrast, Hirsh’s memory system stored representations of
experience off the performance line and used the concept of a
contextual label to keep conflicting associations separate. As Hirsh
put it:

Systems utilizing contextual retrieval do not require deletion of pre-
vious learning. The conflicting items of information can be differen-
tiated by the addition of a contextual label indicating that the previ-
ously acquired information was formerly true. (p. 426)

Constructing contextualized representations clearly involves rep-
resenting the conjunctions of stimuli, behaviors, and associated
outcomes as separate from these features individually—in other
words, though Hirsh did not use this terminology, a conjunctive
representation. )

The ideas of Nadel and O’Keefe (1974) emerged most clearly in
the extremely influential view of the hippocampal formation pub-
lished by O’Keefe and Nadel (1978) in their now classic (but
unfortunately out of print) book, The Hippocampus as a Cognitive
Map. They also distinguished between two memory systems, a
locale system and a raxon system. Motivated in part by the
discovery of place cells in the hippocampus (O’Keefe &
Dostrovsky, 1971), they linked the hippocampal formation with
the locale system. This system supports the acquisition of a map-
like representation of the environment, where the map is composed
of “a set of place representations connected together according to
the rules which represent distances and directions amongst them”
(O’Keefe and Nadel, 1978, p. 488). The taxon system is concep-
tually similar to Hirsh’s performance line system because it rep-
resents consistent rules, routes, procedures, and stimulus-response
habits.

Because the hippocampus-dependent locale system represents
experience as connections between stimulus features (e.g., dis-
tance, directions), it is clearly a stimulus conjunction theory.
However, O’Keefe and Nadel (1978) limited the kind of informa-
tion the locale system could represent exclusively to spatial infor-
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mation in the form of an allocentric spatial map. Their view of the
hippocampus has generated an enormous amount of research on
both the physiology and memory functions of the hippocampus,
and its fundamental behavioral prediction—that damage to the
hippocampus will impair performance in spatial learning tasks—
has been confirmed many times (cf. Barnes, 1988). However,
many theorists have noted that this spatial map view is overly
restrictive relative to the range of nonspatial behaviors impaired by
hippocampal damage, especially in humans (Hirsh, 1980; Squire,
1992, 1994). Thus, it may be more useful to consider spatial
conjunctions as a special case of a more general conjunctive
hippocampal function (e.g., McClelland et al., 1995; McNaughton
& Nadel, 1990; Sutherland & Rudy, 1989).

The idea that the hippocampal formation contributes to memory
by representing stimulus conjunctions emerged unambiguously in
an article by Wickelgren (1979). He argued that the hippocampus
is essential to the process of chunking. In Wickelgren’s words,
chunking “stands for a learning process by which a set of nodes
representing constituents {components, attributes, features) of a
whole become associated with a new node that thereby represents
the whole chunk” (Wickelgren, 1979, p. 44). Wickelgren’s concept
of chunking is clearly equivalent to the concept of conjunctive
representations. The conjunctive idea was also embedded in a
theory put forth by Mishkin and Petrie (1984) that included many
of the same assumptions associated with Hirsh’s position. They
distinguished between a habit and a memory system and assumed
that the memory system depends on the hippocampal formation
and supported the acquisition of stimulus conjunctions.

Perhaps the strongest statement of the conjunctive idea came
with the Sutherland and Rudy (1989) configural association the-
ory, which has much in common with the ideas of Hirsh (1974)
and Wickelgren (1979) reviewed earlier. The core idea in this
theory was the assertion that the hippocampus is essential to the
acquisition, storage, and retrieval of configural associations. The
configural association system combines the representations of
the elementary stimulus events to construct unique representations.
In other words, it represents stimulus conjunctions. This configural
notion was also offered as a more general alternative to the
O’Keefe and Nadel (1978) spatial map theory (Wood, Dudchenko,
& Eichenbaum, 1999).

Biologicall Computational Models

The anatomy and physiology of the hippocampus has been the
subject of much investigation (for reviews see Amaral & Witter,
1989; Risold & Swanson, 1996; Rolls, 1989; Squire, Shimamura,
& Amaral, 1989; Van Hoesen, 1982). These biological data, to-
gether with related computational neural network models, led to
independently motivated theories of conjunctive encoding in the
hippocampus. Two major biological properties of the hippocampus
led to these ideas: (a) the considerable convergence of a wide
range of different cortical areas into the hippocampus and (b) the
presence of substantial interconnectivity among neurons within the
CA3 region of the hippocampus.

The hippocampus receives information from virtually all asso-
ciation areas in the neocortex and “has available highly elaborated
multimodal information which has already been processed exten-
sively along different, and partially interconnected sensory path-
ways” (Rolls, 1996, p. 607). In addition to receiving sensory

innervation from polysensory associational corticies via the ento-
thinal cortex (EC), the hippocampus also projects back to these
areas via return connections from the EC. This pattern of connec-
tivity has led a number of theorists to the view that the hippocam-
pus is especially well suited to represent the pattern of activity or
conjunction of specific sensory features of the environment. For
example, Rolls (1989) suggested that “the hippocampus is ideally
placed for detecting such conjunctions in that it receives highly
processed information from association areas” (p. 242). McNaugh-
ton and Nadel (1990) concluded that “the activity projected back
toward the association cortex by individual neurons can be shown
to represent the conjunctions of a broad range of specific sensory
features” (p. 25).

The interconnectivity among the CA3 neurons of the hippocam-
pus figured centrally into Marr’s (1971) influential computation-
ally motivated theory of hippocampal function. Marr sought to
infer the computational properties of the hippocampus from its
anatomy and physiology, and he focused on the notion of an
auto-associator—a neural network that can learn to associate the
independent elements or components of an stimulus input pattern
with each other. An auto-associator clearly has properties similar
to that of a conjunctive representation because it encodes a unitary
representation of a stimulus pattern composed of many separable
features. McNaughton and Nadel (1990) noted the similarity of
Marr’s concept of an auto-associator to Hebb’s (1949) idea of a
cell assembly and referred to such networks as Hebb—-Marr net-
works (see also Gluck & Myers, 1997). The idea that the hip-
pocampus serves as an auto-associator and/or represents stimulus
conjunctions is a core assumption of a number of contemporary
computational models of the hippocampus (e.g., Hasselmo &
Wyble, 1997; Levy, 1989; McClelland et al., 1995; McNaughton
& Nadel, 1990; O’Reilly & McClelland, 1994; Rolls, 1989).

Summary

This brief review indicates that significant aspects of the behav-
ioral, neuroanatomical, and computational literatures have con-
verged over the past 25 years on the idea that the hippocampal
formation provides a substrate for representing stimulus conjunc-
tions. That is, the hippocampus binds together disparate cortical
representations into a unitary encoding that can later be recalled
from partial cues. This idea emerged early in the history of the
field, and it is at the core of many contemporary theories of
hippocampal function.

Problems for Mechanistic Hippocampal Theories

Given the broad support for the importance of the hippocampus
in encoding stimulus conjunctions, it is surprising that a substantial
literature now seriously challenges this idea. Much of this litera-
ture was generated in response to the configural association theory
of Sutherland and Rudy (1989). Perhaps Sutherland and Rudy’s
most important contribution is that they explicitly noted how to
provide a strong test of the configural/conjunction theory in non-
verbal animals. They argued that there is a set of discrimination
problems requiring configural associations that can be solved by
normal animals. The central feature of these problems is that they
do not have a linear solution: They cannot be solved by combining
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the individual associative strengths of component cues that are
relevant to the solution.

A prototypical example of these nonlinear discrimination prob-
lems is called negative patterning, which is also referred to in the
computational modeling literature as the exclusive (X) OR prob-
lem (Minsky & Papert, 1969; Rumelhart, McClelland, & PDP
Research Group, 1986). Here, the subject is rewarded (+) for
responding when either feature A or B is present, but is not
rewarded (—) when the compound stimulus AB is present. To solve
this A+, B+, AB— problem, the subject must respond less to AB
than to A and B alone. A linear system that can only combine the
associative strengths of the elements could not solve this problem
because it would always produce more responding to the com-
pound than to the component cues. Thus, the solution to such a
problem requires a system that can represent stimulus conjunctions
and differentiate conjunctions from their components.

Because nonlinear discrimination problems, like negative pat-
terning, require a configural/conjunctive representation, Suther-
land and Rudy (1989) made a strong prediction: Damage to the
hippocampus should impair performance on any discrimination
problem that does not have a linear solution. Thus, they provided
a simple, clear hypothesis to directly test the configural/conjunc-
tive theory of hippocampal function.

The existing literature at that time suggested that nonlinear tasks
would have been extremely sensitive to the effects of damage to
the hippocampal formation. Indeed, Rudy and Sutherland (1989)
reported that damage to the hippocampus impaired both the ac-
quisition and retention of the negative patterning problem; this
result has been replicated several times (e.g., Alvarado & Rudy,
1995b; Sutherland, McDonald, Hill, & Rudy, 1989; Sutherland et
al., in press). Nevertheless, when Rudy and Sutherland (1995)
reviewed additional tests of the theory, they were forced to con-
clude that the strong position they staked out in 1989 could not be
maintained. There were clear examples in which damage to the
hippocampal formation either did not prevent animals from solv-
ing nonlinear discrimination problems or had no measurable effect
(Davidson, McKeman, & Jarrard, 1993; Gallagher & Holland,
1992, Whishaw & Tomie, 1991).

We describe only two results here, with more discussion later in
the context of our computational model (also see Rudy & Suther-
land, 1995, for a review). First, Whishaw and Tomie (1991)
reported that rats with damage to the hippocampal formation were
able to solve a simultaneous biconditional discrimination of the
form AC+, BC—, AD—, BD+, where each element is equally
often associated with reward (+) and nonreward (—). The stimulus
elements were two different diameter strings (A and B) and two
odors (C and D). On a trial (e.g., AC+ vs. AD—), a food pellet was
attached to the end of a scented string, and the rat was required to
pull up the string that contained the food pellet. Second, Gallagher
and Holland (1992) reported that rats with damage to the hip-
pocampal formation were not impaired on an ambiguous feature
problem, AC+, B+, AB—, C—, that is very similar to negative
patterning (A+, B+, AB—). Their findings were replicated by
Alvarado and Rudy (1995b). In each of these cases, the damage to
the hippocampal formation produced by neurotoxic chemicals was
extensive, so there was little doubt that even without a functional
hippocampal formation rats could solve problems that require a
system to represent stimulus conjunctions. Since Rudy and Suth-
erland’s 1995 review, there have been additional reports that the

hippocampal formation is not necessary to solve problems that
require configural solutions (Bunsey & Eichenbaum, 1996; Cho &
Kesner, 1995; McDonald et al., 1997).

Many researchers agree that this literature provides ample evi-
dence against Sutherland and Rudy’s (1989) assertion that the
hippocampal formation is essential for the acquisition, storage, and
retrieval of configural/conjunctive representations (Alvarado &
Rudy, 1995b; Davidson et al., 1993; Gallagher & Holland, 1992;
McDonald et al., 1997; Nadel, 1994; Rudy & Sutherland, 1995;
Whishaw & Tomie, 1991). However, as we noted previously, the
idea that the hippocampus is specialized for encoding conjunctive
representations is also central to many other theories; therefore,
these data should be equally damaging to all of these theories.
Nevertheless, these broader implications have not been widely
acknowledged, possibly because the extent to which, at a mecha-
nistic level, conjunctive representations are an essential component
of many theories has not been sufficiently appreciated. Indeed,
many theories are stated without reference to specific mechanistic
constructs like conjunctive representations (e.g., the notion that the
hippocampus is important for encoding declarative information or
for supporting the flexible use of relational knowledge), even
though we would argue that conjunctive representations provide an
essential mechanism for such ideas.

Once the central importance of conjunctive representations as a
mechanistic principle is appreciated, however, it is clear that the
findings of preserved conjunctive learning under hippocampal
damage have implications that extend beyond Sutherland and
Rudy’s (1989) conjunctive theory. If the function of the hippocam-
pus cannot be identified with a clear mechanistic principle, such as
enabling the learning of conjunctive representations, then what is
the alternative, other than ad hoc descriptions of data or vague
amechanistic terminology? Furthermore, how can these descriptive
ideas be related to the highly specialized neural structure of the
hippocampal formation? Either an alternative mechanism needs to
be put forth or the 1dea that the hippocampus stores representations
of stimulus conjunctions must be constrained in a way that places
theorizing about the hippocampus on rational ground.

Other Conjunctive Tasks: Hints of a Way Out

Nonlinear discrimination problems unambiguously require the
subject to learn conjunctive representations. Indeed, they cannot be
solved unless the requisite conjunctions are learned. Conjunctive
representations, however, can also be learned even when they are
not required to solve any problem. The tasks used to study this
incidental conjunctive learning are quite simple. Subjects are ex-
posed to a set of features in a particular configuration and then the
features are rearranged. Subjects are then tested to determine if
they can detect the rearrangement. If the test indicates that the
rearrangement was detected, then one can infer the subject learned
a conjunctive representation of the original configuration. The
literature indicates that the incidental learning of stimulus conjunc-
tions, unlike many nonlinear discrimination problems, is depen-
dent on the hippocampus. After reviewing this literature, we inte-
grate it with the nonlinear discrimination literature to show how
together they are consistent with a principled understanding of the
division of labor between the cortex and the hippocampus that is
the basis for our theoretical framework.
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Rapid. incidental conjunctive learning in animals. Perhaps the
simplest demonstration comes from the study of the role of the
hippocampal formation in exploratory behavior. In a well-designed
study, Save et al. (1992) repeatedly exposed controf rats and rats
with damage to the dorsal hippocampus to a set of objects that
were arranged on a circular platform in a fixed configuration
relative to a large and distinct visual cue. After the exploratory
behavior of both sets of rats habituated, the same objects were
rearranged into a different configuration. This rearrangement re-
instated exploratory behavior in the control rats but not in the rats
with damage to the hippocampus. In a third phase of the study, a
new object was introduced into the mix. This manipulation rein-
stated exploratory behavior in both sets of rats. This pattern of data
suggests that both control rats and rats with damage to the hip-
pocampus encoded representations of the individual objects and
could discriminate them from novel objects. However, only the
control rats encoded the conjunctions necessary to represent the
spatial arrangement of the objects, even though this was not in any
way a requirement of the task.

A more recent article by Honey et al. (1998) makes a similar
point. They repeatedly exposed control rats and rats with excito-
toxic hippocampal lesions to different sequences of auditory and
visual stimuli. On the left side of the apparatus, a tone was
followed by the presentation of constantly illuminated light, while
a train of clicks was followed by a flashing light on the right side.
After the orienting response to the constant and flashing light in
both sets of rats habituated, the auditory and visual combinations
were switched (the clicks preceded the constant light and the tone
signaled the flashing light). This switch reinstated the orjenting
response to the light in the control rats but not in the rats with
damage to the hippocampal formation. Thus, whereas Save et al.
(1992) reinstated the habituated response by rearranging the spatial
locations of the objects, Honey et al. reinstated the habituated
response simply by altering the stimulus sequence. In both cases,
the acquisition of incidental conjunctive representations by the
hippocampus, but not the cortex, provides a good account of the
data.

There 1s also evidence from Pavlovian conditioning studies of
the context specificity effect that normal rats, but not rats with
hippocampal damage, learn stimulus conjunctions that are not
required by the task (Good & Bannerman, 1997; Hall & Honey,
1990; Honey & Good, 1993; Honey, Willis, & Hall, 1990). In
these studies, rats are conditioned to cue A in Context 1 and cue B
in Context 2, and then they are tested in switched contexts (cue A
in Context 2 and cue B in Context 1). Normal rats, but not those
with hippocampal damage, exhibit more conditioning in the orig-
inal contexts than in the switched ones. Because each of the
contexts and stimuli were equally associated with reward, re-
sponses based on the independent elements should not exhibit this
context specificity effect (Rudy & Sutherland, 1995). Thus, the
intact rats were incidentally encoding conjunctions between the
context and stimulus elements whereas the hippocampally lesioned
ones were not.

Evidence for the involvement of the hippocampal formation in
the incidental learning of stimulus conjunctions has also emerged
in the contextual fear conditioning literature. Rats with damage to
the hippocampal formation do not express fear to a context or
place in which shock occurred but will express fear to an explicit
cue (e.g., a tone) paired with shock (Kim & Fanselow, 1992;

Phillips & LeDoux, 1992, 1994; but see Maren, Aharonov, &
Fanselow, 1997). Fanselow (1990; see also Kiernan & Westbrook,
1993) argued that hippocampally mediated contextual fear condi-
tioning derives from conjunctive representations of context on the
basis of the following data. If intact animals are given a single
strong shock immediately after being placed in the conditioning
chambers, they fail to show fear of the conditioning context when
tested 24 hr later. However, they do show fear if they are in the
conditioning chamber for about 2 min before being shocked.
Fanselow argued that this additional time was necessary for the
construction of a conjunctive representation of the conditioning
context before the shock occurred. Consistent with this interpre-
tation, Fanselow showed that 2 min of exposure to the conditioning
context 24 hr prior to immediate shock resulted in contextual fear
conditioning. He argued that this 2-min exposure was sufficient to
permit the animals to (incidentally) construct a configural, unitary
representation of context, which was then associated with fear
during the subsequent immediate shock.

In summary, there are conditions under which animals automat-
ically acquire representations of stimulus conjunctions as a natural
consequence of being exposed to the environment. The examples
cited here also show that animals with damage to the hippocampal
formation do not acquire these representations.

Rapid, incidental conjunctive learning in humans. Although
the human literature provides less definitive evidence, it too is
generally consistent with the idea that the hippocampus, but not the
cortex, naturally develops conjunctive representations. One salient
source of evidence comes from well-known context specificity
effects in intact humans, which closely parallels that observed in
intact rats. In one dramatic demounstration, Godden and Baddeley
(1975) had divers learn a list of 40 unrelated words in one of two
environmental contexts: on shore or 20 feet under water. When
asked to recall the words in either the same or a different context,
performance was better (by roughly 15%) in the same environment
than in the different one. This can be interpreted as the effects of
the hippocampus automatically forming conjunctive representa-
tions that combine the encoded features of the external environ-
ment with the list items.

To identify the hippocampus as being specifically responsible
for this incidental contextual encoding in intact humans, data from
amnesic patients would be required. A study by Mayes, Mac-
Donald, Donlan, and Pears (1992) showed that global amnesics
were not helped by the presence of incidental contextual cues in a
recognition memory experiment using word stimuli, whereas
nonamnesic participants were helped by such cues. Control and
amnesic participants were matched for performance on recogniz-
ing the words without context, so the lack of facilitation in amnesic
patients cannot be attributed to a floor effect. Further evidence
comes from a recent study by Chun and Phelps (1999), in which
specific context facilitated visual search for intact participants but
not hippocampally damaged patients. Thus, although the hip-
pocampal localization is not as precise as in the rat studies, it
appears that the hippocampus is likely responsible in large part for
incidental conjunctive learning in humans.

The generally accepted view that human hippocampal lesions
produce impairments in episodic memory is also generally consis-
tent with our framework. An episodic memory is one that encodes
the specific conjunction of environmental and temporal context
features that, together with the properties of an event, defines a
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particular episode (Tulving, 1972). Because such an episode is
generally unique, it must be learned rapidly as the episode unfolds.
Further, the contextual information is typically incidental to any
task that might happen to be performed at the time, yet such
information appears to be encoded automatically. There is evi-
dence that episodic recall (but not necessarily recognition, though
this is somewhat controversial) is specifically impaired in patients
with selective hippocampal damage (Holdstock et al., in press;
Vargha-Khadem et al., 1997).

Finally, it is likely that the rapid conjunctive learning supported
by the hippocampus operates in many situations used to test people
in which task demands do not force such learning. For example,
consider a set of simple, linearly solvable discrimination learning
problems (e.g., A+ vs. B—; C+ vs. D—; E+ vs. F—). Such
problems could be solved either by rapid conjunctive learning of
the cue and consequent outcomes as supported by the hippocam-
pus or by gradual incremental learning supported by the cortex.
Neurologically intact people solve such problems in very few
trials, whereas patients with damage to the hippocampus solve
them more gradually (Reed & Squire, 1999; Squire, Zola-Morgan,
& Chen, 1988). Such data can thus be viewed as reflecting the
rapid conjunctive learning available to intact people but not to
patients with selective damage to the hippocampus. However,
these data do not directly implicate the use of conjunctive repre-
sentations—tests in which the elements of the original task rear-
ranged in novel combinations are required to assess conjunctivity
(as in the animal studies described previously).

Summary: Two Types of Conjunctive Learning

There is a potentially conflicting and confusing pattern of hip-
pocampal dependence across the nonlinear discrimination and
incidental conjunctive learning tasks, even though all these tasks
involve conjunctive representations. To clarify this pattern, it is
important to discriminate between two types of conjunctive learn-
ing. One type is associated with nonlinear discrimination prob-
lems, where conjunctive learning emerges in the service of prob-
lem solving and requires a substantial amount of training. The
other type is associated with incidental tasks, where conjunctive
learning occurs rapidly and automatically. In the next section, we
show that computational neural network principles of learning in
the cortex and hippocampus clearly predict that the hippocampus
should be important for the incidental tasks but not necessarily the
nonlinear discrimination problems. This analysis provides a way
out of the theoretical crisis.

A Complementary Cortical/Hippocampal
Memory System Framework

At the center of our framework is a set of principles for under-
standing how the cortex functions. It is clear that the cortex is
important for many of the most important aspects of preserved
learning after hippocampal damage (though many other areas, such
as the basal ganglia, amygdala, and cerebellum, also play impor-
tant roles, e.g., Davis, 1992; Fiez, 1996; Gao, Parsons, & Fox,
1996; LeDoux, 1992; Mishkin, Malamut, & Bachevalier, 1984,
Packard, Hirsh, & White, 1989). For example, damage to cortical
areas surrounding the hippocampus impairs several aspects of
learning that are spared with more selective hippocampal lesions.

Our principles of cortical functioning, based on a variety of con-
siderations at the biological, psychological, and computational
levels of analysis, clearly support the idea that the cortex is capable
of powerful learning.

Nevertheless, our model of cortical learning also has important
limitations: It cannot rapidly acquire representations of novel
experiences. This limitation indicates a fundamental tradeoff be-
tween learning the general features of an environment and learning
the specifics of a particular experience (McClelland et al., 1995;
Sherry & Schacter, 1987). The cortex is specialized for gradually
extracting generalities, and the hippocampus is specialized for
rapidly learning the specifics that define a particular experience.
Although our model assumes that the cortex and hippocampus
constitute two complimentary learning systems, we think that both
operate according to a common set of underlying mechanistic
principles. Their unique contributions are a product of key differ-
ences in their architecture and other parameters, including the
overall level of activity (sparseness) and the learning rate.

We begin by describing the core cortical principles and then
discuss their limitations and how the hippocampus can provide
complementary learning functions. We then discuss in more detail
how a few central features of the hippocampal system can lead to
its unique learning capacities. We conclude with a summary of the
critical differences between the cortex and the hippocampus, and
how in general these account for the empirical data presented
previously. A number of important issues raised by our framework
are discussed next, followed by our explicit computational model
that implements our theoretical ideas and demonstrates their ability
to account for a wide range of data.

Principles of Cortical Function

Various cognitive neuroscience literatures (e.g., electrophysiol-
ogy, neuropsychology, neuroimaging) suggest that the cortex is
responsible for many of the most important and sophisticated
aspects of human and animal cognition, such as object recognition,
spatial processing, language, working memory, planning, and so
on. Furthermore, the cortex is generally regarded as a highly
plastic system capable of extensive experience-dependent learning.
Putting these views together, it is reasonable to conclude that the
cortex is a highly capable system even in the absence of the
hippocampal system (though there are other views on this, as we
discuss later). Here, we provide a set of arguments centered around
computational neural network modeling principles to support and
elaborate this idea.

Computational neural network models have been developed that
use learning mechanisms to understand human language, percep-
tion, and other high-level cognitive abilities. These models are
typically based on either error-driven backpropagation learning
(Rumelhart, Hinton, & Williams, 1986) or on statistically based
self-organizing learning mechanisms that utilize Hebbian-like
mechanisms (e.g., Miller, Keller, & Stryker, 1989). We incorpo-
rate both of these learning mechanisms in our model (O’Reilly &
Munakata, 2000; O’Reilly, 1996b, 1998). With these two mecha-
nisms, the cortex can be modified by task demands (by error-
driven learning) and can represent the extent to which different
features co-occur (by Hebbian learning). Together, these learning
mechanisms enable the cortex to extract the invariant properties of
repeated experience but not the unique features of each experience.
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After elaborating our model of cortical learning, we then explore
some ramifications of this model in the next section.

Error-driven task learning. The backpropagation mechanism
for performing error-driven learning minimizes errors in perfor-
mance by iteratively adjusting the weights between connected
units in the direction that will most decrease the error. Critically,
this mechanism can also modify connectivity between hidden
layers of units interposed between input and output units. Because
hidden units in the cortex can be modified to represent stimulus
conjunctions, the cortex should in principle be able to solve non-
linear discriminations without assistance from the hippocampus.

However, backpropagation has been widely challenged on the
grounds that it lacks a plausible biological mechanism (e.g., Crick,
1989; Zipser & Andersen, 1988). Specifically, backpropagation
requires that an error value is propagated backwards from the
dendrite of a receiving neuron, across the synapse, into the axon
terminal of the sending neuron, down the axon of this neuron, then
integrated and multiplied by some kind of derivative, and then
propagated back out of its dendrites. Moreover, no one has ever
recorded anything that resembles an error signal.

However, a well-documented property of the cortex, bidirec-
tional connectivity, can be used to perform essentially the same
error-driven learning as backpropagation (O’Reilly, 1996a). In-
stead of propagating an error signal, which is a difference between
two terms, one can propagate the two terms separately as activa-
tion signals and then take their difference locally at each unit.
Furthermore, the form of synaptic modification necessary to im-
plement this algorithm is consistent with (though not directly
validated by) known properties of biological synaptic modification
mechanisms. Another oft-cited problem with backpropagation
concerns the origin of the teaching patterns that provide the error
signals. However, many potential sources for these teaching pat-
terns in the form of actual environmental outcomes can be com-
pared with internal expectations to provide error signals (McClel-
land, 1994; O’Reilly, 1996a). Thus, it is difficult to continue to
object to the use of error-driven learning on the grounds that it is
not biologically plausible.

Hebbian model learning. Use of Hebbian learning mecha-
nisms to represent co-occurrence (Hebb, 1949) is important for
forming internal representations (i.e., internal models) of the gen-
eral (statistical) structure of the environment, without respect to
particular tasks. We also refer to this as model learning. Biologi-
cally, Hebbian learning requires that the synaptic strength change
as a function of the co-activation of the sending and receiving
neurons. NMDA-mediated long-term potentiation has this Heb-
bian property (e.g., Collingridge & Bliss, 1987). Thus, Hebbian
learning is almost universally regarded as being biologically plau-
sible. At a functional level, the co-occurrence of items suggests
that there might be a causal relationship between them. Further-
more, co-occurring items can be more efficiently represented to-
gether within a common representational structure. Mathematical
analyses have shown that Hebbian learning performs something
like principal-components analysis (Oja, 1982), which extracts the
principal dimensions of covariance within the environment.

Hebbian model learning and error-driven task learning have
complementary objectives, and the combination of both typically
performs better than either alone (O’Reilly, 1998, in press;
O’Reilly & Munakata, 2000). Both appear to be necessary to
account for the preserved performance of subjects with damage to

the hippocampal formation: Error-driven learning is necessary for
learning nonlinear discrimination problems that cortical Hebbian
learning typically cannot solve (McClelland & Rumelhart, 1988;
O’Reilly & Munakata, 2000). In addition, Hebbian learning can
explain phenomena such as preserved repetition priming in per-
sons with amnesia (e.g., Schacter & Graf, 1986), where there are
no obvious sources of error or task demands to drive the learning.

Limitations of Cortical Learning and the Need for
Complementary Systems

Although we believe that the model described in the preceding
section provides a good characterization of the cortex, and that
such a cortical system has powerful independent learning abilities,
we do not think that it can service all the adaptive functions that
the environment requires from organisms. Indeed, the cortical
model itself provides some important theoretical leverage for more
precisely characterizing the division of labor between the cortex
and the hippocampus by noting where the cortex fails (McClelland
et al., 1995).

The failure of standard neural network models to account for all
aspects of human learning was dramatized by McCloskey and
Cohen (1989), who noted that a standard error—backpropagation
network suffers catastrophic levels of interference when applied to
a list learning task. Although many attempts were made to remedy
this failure, McClelland et al. (1995) concluded that this failure
reflects a fundamental tradeoff in learning. On the one hand,
successful adaptation requires organisms to extract and represent
the general properties of the environment. On the other hand, it
also requires that organisms learn and remember many of the
important specifics of the world—where you parked your car
today, the name of the person you just met, where food or pred-
ators were encountered, and so on.

These objectives are incompatible because one representation
cannot simultaneously capture both generalities and specifics. Fur-
thermore, the learning mechanisms required to form these different
kinds of representations have contradictory properties; Acquiring
the generalities requires slow, incremental learning that integrates
over specific instances, whereas acquiring specifics often requires
fast learning that keeps the specific instances separate. The re-
quirement that integrative learning be slow for neural network
learning mechanisms was proved by White (1989) and is discussed
further in McClelland et al. (1995). The basic intuition is captured
by the idea that the weights connecting units in a network represent
a kind of running average over experiences, and the time window
over which any kind of running average is computed is directly
proportional to the size of the time constant (learning rate), with
smaller (slower) values giving longer time windows of integration.

To avoid the fundamental tradeoff between learning about gen-
eralities versus specifics, it is reasonable that the brain would use
two complementary learning and memory systems that optimize
these objectives separately. We believe that the primary role of the
cortex is to extract and represent the general features of the
environment and the primary role of the hippocampal formation is
to represent specifics. This computationally motivated division of
labor between cortex and hippocampus is generally consistent with
other descriptive characterizations (e.g., O’Keefe & Nadel, 1978;
Sherry & Schacter, 1987) and other models (e.g., Alvarez &
Squire, 1994; Hasselmo & Wyble, 1997). In particular, Sherry and
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Schacter (1987) suggested an almost identical distinction between
learning invariances across episodes versus learning the variances
of particular episodes, with the further suggestion that incompat-
ible functions such as these provide an important criterion for
distinguishing between memory systems.

The nature of this hippocampal/cortical tradeoff could also be
mapped onto the semantic versus episodic distinction advocated by
Mishkin, Vargha-Khadem, and Gadian (1998) and Tulving and
Markowitsch (1998), in that semantic memory typically refers to
knowledge about the general nature of the world. However, de-
pending on one’s definition of the term semantic memory, such
memories can also include rapidly acquired specific information
that would involve hippocampal learning. Thus, we prefer to use
mechanistically explicit terminology regarding the contributions of
the hippocampus and cortex.

Principles of Hippocampal Function

On the basis of the preceding discussion, to complement the
cortex, the hippocampus should rapidly acquire information about
a specific experience and represent it so that interference produced
by its similarity to other experiences is minimized (e.g., where you
parked your car today vs. yesterday). In this section, we build on
the framework developed for understanding the cortex to provide
a set of principles of hippocampal function and show how certain
architectural and parametric properties of the hippocampus can
support rapid conjunctive learning while minimizing interference.
To reduce interference produced by overlapping input patterns, the
hippocampus supports pattern separation by using a relatively
small number of highly selective units to represent an input pattern
(i.e., a sparse representation). This also produces conjunctive
representations. A complete memory system, however, not only
must store input patterns but it must also permit their retrieval. For
the hippocampus to support memory retrieval, it must be capable
of performing pattern completion, where a subset of cues from a
previous experience can activate (retrieve) the stored pattern rep-
resenting that experience. Thus, the hippocampal architecture and
operating parameters must balance two countervailing functions,
pattern separation and pattern completion. These mechanisms are
described in more detail below.

Pattern separation.
representations are produced when an input pattern is represented
by a small number of active neural units. To understand why a
sparse representation can lead to these outcomes, consider a situ-
ation where the hippocampal representation is generated at random
with some fixed probability of a unit becoming active. In this case,
if fewer units are active, the odds decrease that the same units will
be active in two dtfferent patterns (Figure 1). For example, if the
probability of becoming active for one pattern (i.e., the sparseness)
is .25, then the probability of becoming active for both patterns
would be .252 or .0625. If the patterns are made more sparse so that
the probability becomes .05 for being active in one pattern, the
probability of being active in both patterns falls to .0025. Thus, the
pattern overlap is reduced by a factor of 25 by reducing
the sparseness by a factor of 5 in this case. However, this analysis
does not capture the entire story because it fails to take into
account the fact that hippocampal units are actually driven by
weighted connections with the input patterns and therefore will be
affected by similarity (overlap) in the input.

Both pattern separation and conjunctive

Figure 1. Pattern separation in the hippocampus. Small circles represent
units, with active ones in white and inactive ones in gray. Circles A and B
in the cortex and hippocampus indicate two sets of representations com-
posed of patterns of active units. In the cortex, they are overlapping and
encompass a relatively large proportion of active units. In the hippocam-
pus, the representations are sparser as indicated by their smaller size and
thus overlap less (more pattern separation). Also, units in the hippocampus
are conjunctive and are activated only by specific combinations of activity
in the cortex.

A more complete understanding of pattern separation can be
achieved by considering the concept of a unit’s activation thresh-
old—how much excitation it requires to overcome the inhibitory
competition from other units (Marr, 1969; O’Reilly & McClelland,
1994). To produce sparse representations, this threshold must be
relatively high (e.g., because the level of inhibition is relatively
strong for a given amount of excitatory input). Figure 2 shows how
a high inhibitory threshold leads simultaneously to both pattern
separation and conjunctive representations, where the hippocampal
units depend critically on the conjunction of active units in the
input. The central idea is that sensitivity to the conjunction of
activity in the input produced by a high threshold leads to pattern
separation because even if two input patterns share a relatively
large number of overlapping inputs, the overall conjunction (con-
figuration) of input activity can be different enough to activate
different hippocampal units.

A high threshold leads to conjunctive representations because
only those units having the closest alignment of their weight
patterns with the current input activity pattern will receive enough
excitation to become activated. In other words, the activation a unit
receives must be a relatively high proportion of the total number of
input units that are active, meaning that it is the specific combi-
nation or conjunction of these inputs that are responsible for
driving the units. Figure 2 illustrates this effect in the extreme case
where only the most excited receiving unit becomes active. In
reality, multiple units (roughly 1-5%) are activated in the hip-
pocampus at any given time, but the same principle applies (see
O’Reilly & McClelland, 1994, for a detailed analysis).

For optimal pattern separation, it is important that different
receiving units be maximally activated by different input patterns.
This can be achieved by having relatively diffuse, random patterns
of partial connectivity with the inputs, which appears to be a
property of the perforant path of the hippocampus (as discussed in
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Input Input

Figure 2. Conjunctive, pattern-separated representations result from
sparseness (active units are represented in white, inactive ones in gray).
The extreme case where only one receiving unit (in the upper layer,
representing the hippocampus) is allowed to be active is shown here for
simplicity. Each receiving unit has roughly the same number of randomly
distributed connections from the input units. The two shown here have
overlapping input connections, except for one unique unit each. Thus, two
very similar input patterns sharing all the overlapping units and differing
only in these unique units (shown in panels a and b) will yield completely
nonoverlapping (separated) memory representations. In this way, the con-
junctive memory representation resulting from sparseness produces pattern
separation. HC = hippocampus.

greater detail later). One important consequence of this random
conjunctivity is that it suggests that the hippocampus acts as a
simple binding device (Cohen & O’Reilly, 1996) instead of form-
ing more systematic “relational” encodings (e.g., Eichenbaum,
1992), which would seem to require more systematic patterns of
connectivity. Under this simple binding view, all relationship
information must be present in the inputs to the hippocampus,
which can then bind together the relational information with other
information about the related items in a conjunction. For example,
the cortex would encode that the chair is to the left of the table
(left-of being the relational encoding), but the hippocampus could
bind this information together with details about the specific
properties of the chair and table into a unitary representation.

Pattern completion. . Pattern completion is the mechanism that
takes a partial input pattern that is a subset of a stored memory and
fills in the missing parts. Thus, when you are asked, “Where did
you park your car today?” this input cue is sufficient to trigger the
completion of the full encoded memory, enabling you to respond,
“Over by the stadium.” Pattern completion is facilitated by partic-
ular properties of the hippocampal system, most notably a strong
set of lateral connections within a particular layer (CA3) that
enable partial activity to spread and fill in the missing pieces (as
emphasized in Marr’s, 1971, auto-associator theory).

There is a fundamental tension between pattern separation and
pattern completion. Consider the following event: A good friend
begins to tell a story abbut something that happened in college.
You may or may not have heard this story before, but you have
heard several stories about this friend’s college days. How does
your hippocampus know whether to store this information as a new
memory and keep it separate (using pattern separation) from the
other memories or to instead complete this information to an
existing memory and reply, “You told me this story before”? In
one case, your hippocampus has to produce a new activity pattern;
in the other, it has to produce an old, one. If you have perfect
memory and the stories are always presented exactly the same way
each time, this problem has an obvious solution. However, imper-
fect memories and noisy inputs (e.g., your friend) require a judg-

ment call involving a tradeoff between pattern separation and
completion.

In addition to providing basic recall of stored information,
pattern completion can enable some kinds of flexible processing
that the cortical system by itself cannot support. This flexibility
arises by pattern completing to stored memories based on novel
input cues. In short, although the cortex can perform some degree
of both pattern separation and completion, the unique features of
the hippocampal system (principally sparse representations and
extensive auto-associator circuitry) produce much more significant
capacities for these important functions.

Complexities of the separation/completion tradeoff. The fact
that pattern separation and completion trade off with each other is
important for understanding the behavior of the hippocampus in
nonlinear discrimination tasks. The critical dimension for deter-
mining whether pattern separation or pattern completion will occur
in the hippocampus is the overlap (similarity) of the input patterns.
Figure 3, based on a simulation from O’Reilly and McClelland
(1994), summarizes the separation/completion tradeoff as a func-
tion of the level of input pattern overlap—for very high levels of
overlap, pattern completion takes over from pattern separation.
Usually, such high levels of overlap would only be present in cases
where the input is a retrieval cue for a previously stored pattern.
When a large number of features contribute to the input pattern, as
for representations of environmental context, even ostensibly sim-
ilar inputs, such as two different views of the environment, will
likely have enough differences to drive pattern separation, not
completion. However, many nonlinear discrimination learning
problems prove to be an important exception to this rule because
they specifically recombine a small number of stimulus elements
across conditions that require conflicting outputs.

In these nonlinear discrimination problems, the hippocampus
can be using pattern completion to recall previously stored patterns
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Figure 3. Tradeoff between pattern separation and completion as a func-
tion of input overlap (similarity) between two random patterns. The vertical
axis shows the overlap in the hippocampal (simulated rat-sized CA3)
representation of input patterns having the level of overlap specified on the
horizontal axis. The diagonal line shows the identity transformation—
values below this line reflect pattern separation and those above the line
reflect pattern completion. As similarity increases, pattern completion
takes over from separation. Details of the learning mechanism can alter
where this tradeoff line falls, but its existence is a basic property of the
network. From “Hippocampal Conjunctive Encoding, Storage, and Recall:
Avoiding a Tradeoff,” by R. C. O’Reilly and J. R. McClelland, 1994,
Hippocampus, 4, p. 674, Figure 15a. Copyright 1994 by Wiley & Sons, Inc.
Adapted with permission.



CONJUNCTIVE REPRESENTATIONS 321

in situations where pattern separation would otherwise be more
advantageous. When this occurs, error-driven learning, operating
within the hippocampus in much the same way it operates in the
cortex, can overcome the pattern completion process to produce
pattern separation, but in this case it will likely take many repeti-
tions of learning. Thus, in these situations, learning in the hip-
pocampus can look a lot Tike that of the cortex, as we see when we
apply our computational model to the nonlinear discrimination
learning problems.

Principled Account of Conjunctive Learning

We now describe how this theoretical framework can, in prin-
ciple, provide an account of performance on tasks that require the
learning of conjunctive representations. To summarize, the critical
properties for understanding cortical and hippocampal differences
are

Learning rate. The cortical system typically learns slowly, whereas
the hippocampal system typically learns rapidly.

Conjunctive bias. The cortical system has a bias toward integrating
over specific instances to extract generalities. The hippocampal sys-
tem is biased by its intrinsic sparseness to develop conjunctive rep-
resentations of specific instances of environmental inputs. However,
this conjunctive bias trades off with the countervailing process of
pattern completion, so the hippocampus does not always develop new
conjunctive representations (sometimes it completes to existing ones).

Learning mechanisms. Both cortex and hippocampus use error-driven
and Hebbian learning. The error-driven aspect responds to task de-
mands and will cause the network to learn to represent whatever is
needed to achieve goals or ends. Thus, the cortex can overcome its
bias and develop specific, conjunctive representations if the task
demands require this. Also, error-driven learning can shift the hip-
pocampus from performing pattern separation to performing pattern
completion, or vice versa, as dictated by the task. Hebbian learning
operates constantly reinforcing the representations that are activated
in the two systems.

We can use these principles to provide a relatively straightfor-
ward account of the behavioral data on conjunctive learning. There
are two key findings: (a) the cortex alone can learn nonlinear
discrimination problems; and (b) the hippocampus, but not the
cortex, is capable of rapidly forming conjunctive representations in
incidental learning contexts.

The finding that the cortex will develop conjunctive represen-
tations over a relatively large number of trials when such repre-
sentations are specifically required by the task (e.g., to obtain
rewards) is entirely consistent with the idea that error-driven
learning is operating in the cortex. This kind of learning is specif-
ically driven by task contingencies and can form complex con-
junctive representations when given enough training trials. As we
discussed previously, the hippocampus also requires many repeti-
tions of error-driven learning to learn some of these nonlinear tasks
because it ends up performing pattern completion instead of pat-
tern separation.

Therefore, an important conclusion from our framework is that,
ironically, nonlinear discrimination problems do not reveal the
unique contributions of the hippocampus precisely because they
require that the subject develop conjunctive representations. These
tasks are learned slowly and they cannot be solved unless the

subject develops representations of stimulus conjunctions. The
cortex can acquire conjunctions under these conditions. Instead,
our framework suggests that incidental learning tasks that do not
require the subject to learn stimulus conjunctions provide the best
way to reveal the contributions of the hippocampus. The critical
feature of such tasks is that the subject rapidly acquires represen-
tations of stimulus conjunctions even though they are not required
by any task demands.

The second major conclusion from our framework, therefore, is
that these rapid, incidental learning tasks provide the best venue
for assessing the role of the hippocampus in learning.

A Computational Neural Network Model

We now describe a computational model that implements our
theoretical framework. The model s based on a computational
framework called Leabra (O’Reilly, 1996b, 1998, in press;
O’Reilly & Munakata, 2000), which provides a biologically based
set of activation and learning mechanisms that enable the modeling
of both cortical and hippocampal networks within one common
framework. The use of a common underlying set of mechanisms is
supported by the numerous structural similarities between cortex
and hippocampus (which is a form of cortex called archicortex),
including many of the same general patterns of interconnectivity
between excitatory pyramidal neurons and inhibitory neurons and
the same kinds of synaptic modification (i.e., learning) mecha-
nisms. After we briefly summarize the basic network mechanisms,
we discuss the architectural properties of the implemented model.
Then we apply intact and hippocampally lesioned versicns of the
model to a range of learning tasks and conduct other manipulations
to illuminate the basis of the model’s behavior.

Basic Mechanisms

The equations for these mechanisms are presented in the Ap-
pendix, and the main properties are summarized here. The basic
unit is modeled atter the jonic channels present in actual neurons,
but the spatial geometry of the neuron has been reduced to a single
point. This point-neuron formulation maintains close ties to the
underlying biology while remaining nearly as simple as more
abstract network formalisms. The modeled units correspond to
excitatory pyramidal neurons of both the cortex and hippocampus.
The inhibitory interneurons are simulated through the use of a
k-winners-take-all (kWTA) inhibitory function, which enables a
maximum percentage of units (k out of N) to be active at any given
time, though fewer than this can be active. This kWTA function
approximates set-point negative feedback inhibition from the in-
terneurons and is implemented by computing a level of inhibitory
current that when applied uniformly to all units within a layer
allows only k units to be at or above threshold. By setting this &
parameter low {(e.g., around 5% or less), we obtain the sparse
representations of the hippocampal system and their corresponding
conjunctive representations. By setting it higher (e.g., 15-25%),
we obtain more integrative, distributed representations character-
istic of the cortex.

Learning takes place using the two basic mechanisms discussed
earlier: a biologically plausible error-driven learning mechanism
called GeneRec (O’Reilly, 1996a) and a simple Hebbian learning
mechanism that has been used in a number of other models
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(Kohonen, 1984; Nowlan, 1990; Rumelhart & Zipser, 1986).
Weight changes are computed by simply adding these two mech-
anisms together (with a normalized weighting factor).

Overall Architecture and Connectivity

The architecture of the model was designed to capture some
very basic and important aspects of the structure of the cortex and
hippocampus while simplifying as much as possible to facilitate
analysis of the model’s behavior. For most behavioral paradigms,
the model learns to associate an input stimulus pattern with an
output response pattern, where this response pattern could reflect
either the expectation of a reward or punishment or a specific
behavioral response. These input/output associations can be
learned both by the cortex (in two different ways) and by the
hippocampus.

The overall architecture and connectivity of the model is shown
in Figure 4. There are two major components, the cortex and the
hippocampus. The cortex includes the basic input/output pathways
for carrying out a sensory-motor mapping, including input and
response layers that contain simple representations of sensory and
motor activity patterns, and three levels of internal representations
(elemental, associative, and output). These are described in greater
detail in the next section. The hippocampus interfaces with the
cortex via the entorhinal cortex (EC), which captures the informa-
tion represented in the cortex in a one-to-one fashion. The EC then
drives the basic anatomical regions of the hippocampal formation,
including the dentate gyrus (DG) and the fields of Ammon’s Horn,
CA3, and CAl. Another input/output area, the subiculum, is not
represented here but is likely to play a similar role to the EC,
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Figure 4. The model, showing both cortical and hippocampal compo-
nents. The cortex has 12 different input dimensions (sensory pathways),
with four different values per dimension. These are represented separately
in the elemental cortex (Elem). Higher level association cortex (Assoc) can
form conjunctive representations of these elements, if demanded by the
task. The interface to the hippocampus is via the entorhinal cortex (EC),
which contains a one-to-one mapping of the elemental, association, and
output cortical representations. The hippocampus can reinstate a pattern of
activity over the cortex via the EC. DG = dentate gyrus.

perhaps with a greater emphasis on subcortical and motor repre-
sentations. The hippocampal areas form a sparse, conjunctive
representation of the entire EC input pattern. Partial input of this
pattern can trigger recall of the rest, enabling the hippocampus to
take the cortical input pattern and produce an appropriate corre-
sponding output pattern.

Although we have attached different labels to the cortical and
hippocampal components, they are really both part of the same
bidirectionally connected network. Activity simultaneously flows
between the cortical and hippocampal parts at each step of updat-
ing; the development of cortical representations can affect the
trajectory of hippocampal learning and vice versa. This results in
complex interactions that can be difficult to analyze in detail, but
the model nevertheless captures the overall contributions of the
cortex and hippocampus that our theoretical framework suggests.

The Cortical System

All of the representations in the cortical system are organized
into groups of four units (shown in Figure 4 as the smaller boxes
within the cortical layers), with only one out of these four units
allowed to be active at any given time (yielding a relatively high
expected activity level of 25%). This is important for simplifying
the interface of the cortex with the hippocampal system as de-
scribed in the next section. It also simplifies the representationat
system, while providing a reasonable means of instantiating the
tasks that the model will simulate.

The first (elemental) level of internal representation in the
cortex is assumed to contain specialized processing pathways that
encode information separately along different stimulus dimensions
(e.g., different sensory modalities and pathways within modalities,
such as form, color, or location). Each such pathway is mapped
onto a group of four units that we refer to as a slof, representing
four different values along each dimension, and there are a total
of 12 such dimensions (slots). Note that values within a dimension
are mutually exclusive, but any combination of values across
dimensions can be represented. The input simply provides a one-
to-one activation of these feature values, but the activations over
the elemental layer also reflect the influences from the other layers
it is interconnected with.

The association cortex develops distributed representations over
six four-unit slots. Each association unit receives from all of the
elemental units, enabling conjunctive representations that combine
multiple elemental representations to develop here if required by
task demands. This layer is thought to correspond to the parahip-
pocampal region in the rat.

Although it typically only represents a binary reward/no-reward
value, the output layer also has a population-coded representation
over four slots. This distributed output representation is important
for providing a sufficiently substantial representation of the output
layer in the hippocampal system, relative to the other cortical areas
(which all contribute several active units to the hippocampal
input). The output layer receives full connectivity from the ele-
mental and association cortical areas in addition to the hippocam-
pal output via the EC. Thus, it can learn a mapping from these
areas to a desired output response. Note that because the output
layer receives from all of these areas, each area competes to some
extent for influence over the actual output response made.
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To more easily decode a binary response from the distributed
output layer, the first units in each of the four output groups all
project to the first unit in the response, and so on, so that the single
unit activated in the response is the one that has received the most
“votes” across the four output groups. Thus, the network’s behav-
ior is measured as which of the four response units is active.

The cortical areas are all bidirectionally connected, as is con-
sistent with the known biology (e.g., Felleman & Van Essen,
1991). This is important for enabling the biologically plausible
GeneRec error-driven learning algorithm to communicate error
signals, as described previously. The error signals in the model
come from the difference between an expected reward value over
the output layer and the actual reward value that is received. Thus,
the network settles in the expectation phase with the output values
updating freely, and then in the outcome phase the output values
are clamped to the actual values. The differences in these two
activation states throughout the network are the propagated error
signals used in learning.

The Hippocampal System

Our implementation of the hippocampal model is based on what
McNaughton has termed the Hebb—Marr model (Hebb, 1949;
Marr, 1971; McNaughton & Morris, 1987; McNaughton & Nadel,
1990). This mode] provides a framework for associating functional
properties of memory with the mechanisms of pattern separation,
learning (synaptic modification), and pattern completion. Further,
it relates these mechanisms to underlying anatomical and physio-
logical properties of the hippocampal formation. Under this model,
the two basic computational structures in the hippocampus are the
feedforward pathway from the EC to area CA3 (via DG), which is
important for pattern separation and pattern completion, and the
recurrent connectivity within CA3, which is primarily important
for pattern completion. The model relies on the sparse, random
projections in the feedforward pathway from the EC to the DG and
CA3, coupled with strong inhibitory interactions within DG and
CA3, to form sparse, random, and conjunctive representations. We
also emphasize the importance of the CAl region as providing a
means for translating the separated CA3 representation back into
the language of the EC, which is necessary to recall information.
This can happen if CAl forms an invertible representation of the
EC, such that the CA1 pattern can recreate the EC pattern that gave
rise to it in the first place (McClelland & Goddard, 1996).

The general scheme for encoding new memories in the hip-
pocampus is that activation comes into the EC from the cortex and
then flows to the DG and CA3, forming a pattern-separated rep-
resentation across a sparse, distributed set of units in these layers.
These active units are then bound together in an auto-associator
fashion by rapid Hebbian learning within the recurrent CA3 col-
laterals. Learning in the feedforward pathway also helps to encode
the representation. Simultaneously, activation flows from the EC
to the CAl, forming a somewhat pattern-separated but also invert-
ible representation in CA 1. The two different representations of the
EC input in CA3 and CAT1 are bound together by learning in the
connections between them.

After the information is encoded in this way, retrieval from a
partial input cue can occur as follows. Again, the EC representa-
tion of the partial cue (based on inputs from the cortex) goes up to
the DG and CA3. Then the prior learning in the feedforward

pathway and the recurrent CA3 connections leads to the ability to
complete this partial input cue and recover the original CA3
representation. This completed CA3 representation then activates
the comresponding CA1 representation via facilitated connections,
which, because it is invertible, is capable of recreating the com-
plete original EC representation. If the EC input pattern is novel,
then the weights will not have been facilitated for this particular
activity pattern and the CAl will not be strongly driven by the
CA3. Even if the EC activity pattern corresponds to two compo-
nents that were previously studied, but not together, the conjunc-
tive nature of the CA3 representations will prevent recall from
taking place.

The rough sizes and activity levels of the hippocampal layers in
the rat, and corresponding values for the model, are shown in
Table 1. Note that the DG seems to have an unusually sparse level
of activity (and is also roughly 4 -6 times larger than other layers),
but CA3 and CAI are also less active than the EC input/output
layer. The model has very roughly proportionately scaled numbers
of units, and the activations are generally higher to obtain suffi-
cient absolute numbers of active units for reasonable distributed
representations.

The model similarly incorporates rough approximations of the
detailed patterns of connectivity within the hippocampal areas
(e.g., Squire et al., 1989). Starting with the input, the EC has a
columnar structure, and there are topographic projections to and
from the different cortical areas (lkeda, Mori, Oka, & Watanabe,
1989; Suzuki, 1996). This 1s approximated by the one-to-one
connectivity between the cortex and EC. The perforant path pro-
jections from EC to DG and CA3 are broad and diffuse, but the
projection between the DG and CA3, known as the mossy fiber
pathway, is sparse, focused, and topographic. Each CA3 neuron
receives only around 52-87 synapses from the mossy fiber pro-
jection in the rat, but it is widely believed that each synapse is
significantly stronger than the perforant path inputs to CA3. In the
model, each CA3 unit receives from 25% of the EC and 10% of the
DG. The lateral (recurrent) projections within the CA3 project
widely throughout the CA3, and a given CA3 neuron will receive
from a large number of inputs sampled from the entire CA3
population. Similarly, the Schaffer collaterals, which go from the
CA3 to the CAl, are diffuse and widespread, connecting a wide
range of CA3 to CAl. In the model, these pathways have full

Table 1

Rough Estimates of the Size of Various Hippocampal Areas
and Their Expected Activity Levels in the Rat

and Corresponding Values in the Model

Rat Model
Area Neurons Activity % Units Activity %
EC 200,000 7.0 96 25.0
DG 1,000,000 0.5 250 1.6
CA3 160,000 2.5 160 6.3
CAl 250,000 2.5 256 9.4

Note. EC = entorhinal cortex; DG = dentate gyrus. Rat data are from
Barnes, McNaughton, Mizumori, Leonard, and Lin (1990); Boss, Peterson,
and Cowan (1985); Boss, Turlejski, Stanfield, and Cowan (1987); and
Squire et al. (1989).



324 O’REILLY AND RUDY

connectivity. Finally, the interconnectivity between the EC and
CAl is relatively point-to-point, not diffuse like the projections
trom EC to DG and CA3 (Tamamaki. 1991). This is captured in
the model by the columnar structure and connectivity of CAl,
which 1s described next.

We noted that for the CAl to serve as a translator of the
pattern-separated CA3 representation back into activation patterns
on the EC during pattern completion, it must have invertible
representations. At the same time, to minimize interference in the
Jearning of CA3-CA] mappings, CAl must also achieve some
amount of pattern separation. Indeed, this pattern separation in
CAl may explain why the hippocampus actually has a CAl,
instead of just associating CA3 directly back with the EC input.
Thus, the challenge in implementing the CAl is to achieve both
invertibility (which requires a systematic mapping between CAl
and EC) and pattern separation (which requires a nonsystematic
mapping where similar inputs get mapped to very different repre-
sentations). This is done in the model by training the CAI-EC
mapping to be invertible in pieces (referred to as columns), using
pattern-separated CA | representations. Thus, over the entire CA1,
the representation can be composed more systematically and in-
vertibly (without doing any additional learning) by using differ-
ent combinations of representations within the different columns,
but within each column, it is conjunctive and pattern separated
(McClelland & Goddard, 1996).

The CA1 columns have 32 units each so that the entire CAl is
composed of eight such columns. Each column receives input from
three adjacent EC groups of 4 units (i.e,, 12 EC units), which is
consistent with the relatively point-to-point connectivity between
these areas. The weights for each CAJ column were trained by
taking one such column with 9.4% activity leve] (3 units active)
and training it to reproduce any combination of patterns over three
EC_in slots (64 different combinations) in a corresponding set of
three EC_out slots. Thus, each CA1 has a conjunctive, pattern-
separated representation of the patterns within the three EC slots.
The cost of this scheme is that more CA1 units are required (32 per
column vs. 12 in the EC), which is nonetheless consistent with the
relatively greater expansion in humans of the CA1 relative to other
hippocampal areas as a function of cortical size (Seress, 1988). A
further benefit is that only certain combinations of active CAl
units (within a column) correspond to valid EC patterns, allowing
invalid combinations (e.g., due to interference) to be filtered out.

We imagine that in the real system, slow learning develops these,

CA1 invertible mappings in all the columns separately over time.

To capture the idea that the hippocampus learns incidentally and
automatically, we have set the balance of influence between Heb-
bian and error-driven learning in the hippocampus to favor Heb-
bian more strongly. Nevertheless, error-driven learning still plays
an important role in the hippocampus, as we see when we apply the
model to nonlinear discrimination problems. Also, the leaming
rate is twice as fast in the hippocampus compared with the cortex
(.02 vs. .01) to facilitate its rapid learning. This cortical learning
rate is the standard value for most complex, interleaved learning
problems in Leabra (O’Reilly & Munakata, 2000). That the hip-
pocampal rate is only twice as fast suggests that the specialized
features of the hippocampal anatomy also play an important role in
producing rapid learning effects.

Application of the Model

We now apply our model to a representative set of findings that
are relevant to understanding the role of the hippocampal forma-
tion in learning stimulus conjunctions. We first describe simula-
tions of nonlinear discrimination problems, where we find that the
model captures the complex patterns of behavior on these tasks
exhibited by intact and hippocampally lesioned rats. We then apply
the model to problems in which stimulus conjunctions are learned
but are not required by the demands of the task. It is in these
incidental conjunctive learning tasks where we expect to see the
most reliable effects of hippocampal damage. Next, we explore the
role of the hippocampus in forming conjunctive representations of
context in contextual fear conditioning tasks. In addition to cap-
turing the basic patterns of intact and lesioned behavior, we sim-
ulate generalized fear in terms of pattern completion in the hip-
pocampus. Pattern completion also plays a critical role in our final
exploration, where we simulate the “flexibility” of hippocampal
representations in transitivity tasks.

In our simulations, we focus on the qualitative, not quantitative,
features of the data. This is because, with only the slight modifi-
cations needed to accommodate a few of the more complex ex-
perimental paradigms, we use exactly the same model] for all of our
simulations. To produce more detailed quantitative fits, we would
expect that various parameters would need to be tuned to reflect
the different details present across different experiments, which
would undermine our main point, that a single set of principles can
account for the critical (qualitative) patterns across a wide range of
behavioral data.

Nonlinear Discrimination Problems

The primary goal of these simulations is to show that our model
can solve nonlinear discrimination problems without the contribu-
tion of the hippocampal component. Our theoretical framework
emphasizes that this cortical conjunctive learning arises from the
explicit task demands of these problems—these task demands are
captured by the error signals that drive learning in both the cortical
and hippocampal components of our model. Also, we argue that
these problems trigger hippocampal pattern completion instead of
pattern separation, such that even the intact animal takes many
trials to learn them. Beyond these basic points, more complex
patterns of data exist in the literature that suggest that some
nonlinear problems are more sensitive to hippocampal damage
than others. Although these patterns are not completely reliable
across studies, our model reproduces what appears to be the
dominant pattern.

Negative patterning, ambiguous feature, and biconditional
problems. We begin by analyzing three problems: (a) the nega-
tive patterning (NP) problem, A+, B+, AB—; (b) the ambiguous
feature (AF) problem, AC+, B+, AB—, C—, studied by Gallagher
and Holland (1992); and (c¢) a version of the biconditional discrim-
ination, CA+, CB—, DA—, DB+. First we compare the very
similar NP and AF problems. Both of these problems require many
trials to learn, even for intact subjects, and rats with hippocampal
damage are able to learn them with enough trials. Nevertheless,
there are a number of reports that rats with damage to the hip-
pocampal formation are impaired relative to intact control rats on
the NP problem (e.g., Alvarado & Rudy, 1995b; McDonald et ai.,
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1997; Rudy & Sutherland, 1995) but not on the AF problem
(Alvarado & Rudy, 1995b; Gallagher & Holland, 1992). Indeed, in
spite of their similarity, Alvarado and Rudy (1995b) reported that
the same animals that were impaired on NP were not impaired on
AF. However, Davidson et al. (1993) found no impairment for
hippocampal lesions on the NP problem, so there may also be other
relevant task factors or individual differences at work here.

The NP and AF problems were implemented in the model by
presenting the patterns shown in Figure 5. Note that, following
Alvarado and Rudy (1995b), we added the C— trial to the NP
problem, making it even more similar to AF without changing its
logical structure (i.e., the network learns C— very quickly because
it does not conflict with anything at the elemental level). Thus, the
only difference between the two problems is the addition of the C
stimulus in the AC+ trial of the AF problem.

In both cases we compared the performance of the intact model
with that of the model with the hippocampal formation component
removed (the hippocampal lesion condition). In this case and all
subsequent nonlinear discrimination problems, we ran 40 replica-
tions with different random initial weights for each condition, and
the model was trained for 400 epochs (an epoch is one pass
through all trial types). The total number of errors was the depen-
dent variable, where an error was defined as a trial-inappropriate
response. For example, if the model generated a + response on the
AB trial, this was an error. Typically, the model made errors until
it learned the problem, after which point it performed accurately,
so it is possible to interpret this measure as corresponding to the
number of trials to criterion. It has the advantages, however, of not
requiring the use of a criterion and of being applicable across
different training paradigms (e.g., blocked vs. interleaved training,
which we explore later).

Figure 6 compares the performance of the intact and lesioned
models on the NP and AF problems with the data from Alvarado
and Rudy (1995b). These comparison data make four points: (a) of
most importance, both the intact and lesioned models can solve

a) Negative Patterning b) Ambiguous Feature

Stim  Rew

Figure 5. Input/output patterns for the (a) negative patterning and (b)
ambiguous feature problems. For each of the four trial types in each
problem, the input stimuli (Stim) and output reward (Rew) are shown.
Mutually exclusive values (e.g., + vs. — reward) are represented as
different values within a dimension, whereas independent values (e.g., A,
B, C) are represented across different dimensions arbitrarily using the first
value. The input stimuli in this case are each represented by four dimen-
sions, and the output across six dimensions for reasons described in the
text.

these problems; (b) both problems require many trials to solve
(both models make many errors); (c) the intact model performs no
better on the AF problem than the lesioned model; but (d) consis-
tent with the bulk of the literature, the intact model is better than
the lesioned model on the NP problem. Thus the model’s behavior
closely matches the data.

McDonald et al. (1997) examined the role of the hippocampal
formation in several nonlinear discriminations, including the NP
problem and a biconditional problem. Both problems required
many trials to solve, and they presented evidence that rats- with
damage to the hippocampus acquired the stimulus conjunctions. In
addition, however, rats with damage to the hippocampus were
more impaired on the NP problem than they were on the bicondi-
tional problem. In fact, depending on whether one looks at the
transformed or nontransformed data from their experiment, dam-
age to the hippocampus either had no effect or a modest effect (see
also Whishaw & Tomie, 1991).

The stimulus elements in the McDonald et al. (1997) experiment
were two auditory cues and the presence or absence of a visual cue.
Because the auditory cues (A and B) share common features, their
similarity was represented by having a 50% overlap in the stimulus
patterns that represented their presentation. Similarly, we assumed
a 50% overlap in the input patterns representing the visual cues (C
and D). The Whishaw and Tomie (1991) stimuli were also over-
lapping (two diameters of string and two odors).

Figure 7 shows the patterns we used to implement the bicondi-
tional. As shown in Figure 8, consistent with the literature indi-
cating that rats with damage to the hippocampus solve the bicon-
ditional problem, the lesioned model performed as well as. the
intact model. This problem was also difficult and the models
required many trials to solve it.

Explanation of the model’s behavior. The network produces
the two most basic findings from the literature: (a) The cortex
alone can solve nonlinear discrimination problems, and (b) these
problems are difficult and require many trials to be solved. The
first outcome can be explained as the result of error-driven learn-
ing shaping the units in association cortex to construct the con-
junctive representations needed to solve the problem. Consistent
with this interpretation, the cortical model could not solve any
nonlinear discrimination problems if either the association cortex
units were removed or the error-driven learning process was not
used.

Nonlinear discrimination problems require many trials to solve,
even in the intact model, because of the tradeoff between the
pattern separation and pattern completion properties of the hip-
pocampus (see Figure 3). These problems require pattern-
separated conjunctive representations of the controlling stimuli,
but because there is extensive overlap in the input patterns that
have to be conjoined the pattern completion properties of the
hippocampus are engaged. Pattern completion then interferes with
the need to associate different outcomes with these similar
patterns.

For example, solving the NP problem (A+, B+, AB—) requires
that the animal construct a representation of the AB compound that
is separated from the representations of A and B. However, when
A or B is presented, the hippocampus will have a strong tendency
to pattern complete to the AB representation. In such cases, the AB
representation, in addition to the A or B representation, would



326

O’REILLY AND RUDY

a) Negative Patterning: Rats b) Ambiguous Feature: Rats
25 25
20 L 20 T
4 4
5 15 5 15 T 1
& I & }
3 10 y 10
2 1 2
5 5
0
0 Intact HL Intact HL
) Negative Patterning: Model d) Ambiguous Feature: Model
300 T 300
4 [d
g 1 g T T
W 200 I & 200 T T
] 1 K]
g 2
" 100 100
0
0 Intact HL Intact HL

Figure 6. Results for the negative patterning (left column) and ambiguous feature (right column) problems.
The top row shows data from rats from Alvarado and Rudy (1995b), and the bottom row shows data from the
model. Intact is intact rats/networks, and HL is rats/networks with hippocampal lesions. N = 40 different random
initializations for the model. The hippocampally lesioned system is able to learn the problems, and all conditions
require many trials (i.e., large number of errors). Negative patterning is differentially impaired with a hippocam-

pal lesion.

become more associated with reward, which works against the
solution to the problem.

Our model also captures the pattern in the literature indicating
that the NP problem depends more on the hippocampus than do the
AF or biconditional problems. In approaching this outcome, it is
important to appreciate that the difference between the intact and
lesioned models’ performance on these problems is small com-
pared with the number of trials needed to solve them. Also,
damage to the hippocampus also does not always impair perfor-
mance on the NP problem (e.g., Davidson et al., 1993).

The specific difficulty with the NP problem has actually already
been identified by Gallagher and Holland (1992) and Rudy and
Sutherland (1995), who noted that the extent to which the individ-
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Figure 7. Input/output patterns for the bi¢onditional discrimination prob-
lem studied by McDonald et al. (1997), where A and B stimuli overlap
50%, as do C and D. Stim = stimuli; Rew = reward.
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Figure 8. Results for the biconditional problem for (a) rats (data from
McDonald et al., 1997, replotted in terms of error ratios) and (b) the model,
which shows no statistically reliable difference between the intact and
lesioned conditions. HL = rats/networks with hippocampal lesions.
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ual stimulus elements (e.g., A, B, C) appear alone versus in
combination with other elements was an important difference
between NP and AF (and the biconditional). In the NP problem,
both A and B (and C) appear alone, whereas in the AF problem,
only B (and C) appear alone. In the biconditional problem, no
elements appear alone. We think this difference is important be-
cause it has implications for the relative difficulty the network (and
the animal) has in separating individual elements appearing alone
(e.g., separating A and B from AB in the NP problem) as compared
with separating combinations of elements (e.g., separating AC
from AB in the AF problem).

The problem with elements appearing alone is that it is very
difficult to form a conjunction with only one stimulus input, yet
these conjunctions are essential for separating the representations
in nonlinear problems (Figure 9). However, this problem is present
for both the cortex and the hippocampus, so why is the hippocam-
pus of any benefit? We answer this question using a “horse race”
analogy. The cortex and the hippocampus are both attempting to
separate the elements (A, B) from the compound (AB) in the NP
problem and both systems require many trials. The hippocampus
may have a slight advantage in this race because its sparse repre-
sentations, compared with the cortex, make it somewhat easier to
allocate different, nonoverlapping subsets of units to represent the
elements and the compound. The sparseness advantage of the
hippocampus is less important when the elements appear in com-
pounds, as in the AF and biconditional problems, and is also
countered by the greater tendency of the hippocampus to pattern
complete.

The next section provides further support for this analysis by
probing the extent to which the internal representations of the A
element and AB compound are truly separated in the NP and AF
problems.

Assessment of pattern separation and blocked versus inter-
leaved training. Our analysis suggests that the NP problem re-
quires that the representation of the A element be separated from
the AB compound,.whereas the AF problem can rely on the
interactions with the C stimulus to separate AC from AB (as
illustrated in Figure 9). Alvarado and Rudy (1995a) provided
evidence relevant to this issue. They trained one set of intact rats
to solve the AF problem and another set to solve the NP problem.
Then, all rats received several sessions in which they received only
A+ trials. All rats were then tested on the NP problem. Of
particular interest was the effect of the A+ training on the rat’s

Figure 9. Example of how the presence of multiple stimuli enables the
network to easily represent conjunctions. Lighter units are more active. If
A is seen in the presence of C, AC is favored, and in the presence of B, AB
is favored, but if just A is present, there is nothing to modify or interact
with, so all representations that have an 4 in them (AC and AB in this case)
are equally activated. Thus, negative patterning is specifically difficult
because it has two out of three trials where the stimulus elements appear
alone.

response to the AB— compound. If the animals had constructed
separated representations of A and AB, then the additional A+
trials should have no influence on the rats performance on AB
trials—they should be protected from interference. However, if the
A representation had not been separated from the AB representa-
tion, then A+ trials should increase errors on AB— trials. Alvarado
and Rudy reported that A+ trials significantly increased errors on
AB trials for rats previously trained on the AF problem but had no
effect on the errors made by rats trained on the NP problem,
exactly as our analysis would suggest.

We simulated the Alvarado and Rudy (1995a) experiment in our
model and found the same results. As shown in Figure 10, addi-
tional A+ training increased the number of errors on the AB—
trials made by rats trained on the AF problem compared with rats
trained on the NP problem. To further support our analysis that the
reason the cortex has greater difficulty on the NP problem is
because it has greater difficulty separating A from AB, we found
that the lesioned network exhibited 10.6 AB— errors on this test
compared with only 2.4 for the intact network.

Alvarado and Rudy (1995a) also compared two versions of the
NP problem. In one case rats were trained in a standard way: All
trial types (A+, B+ and AB—) were pseudorandomly interspersed
in each session. In another case, the rats received blocked presen-
tations of the trial types, with A+ trials presented in one block, and
B+ and AB— trials in another. These rats were then given A+
trials and tested on the interleaved NP problem as described
previously. Rats in the blocked condition increased their errors
(responses) on AB— compounds compared with the standard con-
dition. This result suggests that the blocked NP problem also can
be solved without truly separated representations of A and AB.

We also trained the model on the blocked version of the NP
problem. Following additional A+ training, the model also made
more errors on the standard NP problem when it had been trained
on the blocked problem than when it had been trained on the
standard model (see Figure 10).

We can explain these results by noting that the model reliably
made errors at the start of each block, but then rapidly learned
(usually within one trial) to produce the appropriate output. Thus,
it is clear that the same representation was being used for A and
AB, with the mapping between this representation and the response

" output being rapidly updated for each block (this was confirmed

inspecting the representations in the model). This analysis shows
that the network must be forced by the task to separate the
overlapping representations in these nonlinear problems, and it
does not do so if it can minimize errors without separating (e.g., by
this rapid remapping in the blocked condition). It also supports the
idea that the hippocampus in an intact animal is naturally doing
pattern completion in these tasks, not pattern separation.

On the basis of this analysis, we expected that our lesioned
model would not be impaired on the blocked version of the NP
problem because, unlike the interleaved NP problem, the blocked
version does not force the model to construct pattern-separated
representations of A, B, and AB. As shown in Figure 11, which
compares the simulation of the blocked and interleaved problems,
the lesioned and intact models did not differ on the blocked
problem but did differ on the interleaved problem. Furthermore,
we observed that the lesioned model had a slightly slower remap-
ping of the response at the beginning of each block compared with
the intact model, which is due to the slower learning rate in the
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Figure 10.  Results for AB errors in the negative patterning (NP) problem
after A+ trials for (a) rats (data from Alvarado & Rudy, 1995a) and (b) the
model. The interference from the A+ trials is the least in the interleaved NP
problem relative to the other problem types (ambiguous feature [AF] and
NP trained in a blocked fashion), indicating that the representation of A is
truly separated from that of AB in this case, but not in the others. Blk =
blocked.

cortex compared with the hippocampus. This produced the small
difference in overall errors between the intact and lesioned models.
We also expect to find these small differences in lesioned and
intact rats.

Transverse patterning. Damage to the hippocampal formation
impairs performance on another nonlinear discrimination problem,
the transverse patterning (TP) problem (Alvarado & Rudy, 1992,
1995b, 1995c¢; Dusek & Eichenbaum, 1998; but see Bussey, War-
burton, Aggleton, & Muir, 1999, for contrary results from fornix
lesions). At first glance, this result appears to violate the explana-
tion of why the NP problem is more dependent on the hippocam-
pus than are the AF and biconditional problems, because the TP
problem looks like a version of the biconditional problem. How-
ever, a more detailed consideration of this problem reveals that it
is more similar to the NP problem than the biconditional problem.
Thus, the analysis we developed to explain why the hippocampus
makes a contribution in the NP problem can also be applied to the
TP problem.

An important difference between TP and the other problems we
have described is that TP requires the subject to make a choice
between two stimulus elements. Specifically, the animal has to
concurrently solve three simultaneous discrimination problems
constructed from only three elements. Representing the correct
choice as + and the incorrect choice as —, we can describe the
problems as follows: A+ versus B—; B+ versus C—, and C+
versus A—. Thus, each element is correct or incorrect depending
on the other stimulus that is present. The elements could be visual
stimuli such as black, white, or striped cards (Alvarado & Rudy,

1992, 1995b, 1995¢) or could be odors (Dusek & Eichenbaum,
1998). Typically, the animal is presented with both stimuli and has
to direct a response to one of the elements to indicate its choice.

Because two stimuli are present on each trial and the correct
choice depends on their combination, this task resembles the
biconditional. However, the single chosen stimulus is probably in
the focus of the animal’s attention when the behavioral contin-
gency (reward or no reward) is applied. It is this difference that
makes the problem closer to the more difficult NP problem, where
stimuli appear individually. Thus, conjunctive representations
must be constructed largely from single stimuli in the TP problem,
and the sparseness of the hippocampus can make a measurable
contribution.

The typical training regime for TP in rats involves three phases.
First, they learn the A+ versus B— problem, then the B+ versus
C— problem is introduced, and finally the third problem (C+
versus A—) is introduced requiring the animal to deal with all three
problems in a random mixture of trial types. Note that it is not until
the third phase that the problem becomes nonlinear and requires
conjunctive processes. Thus, it is interesting to note that rats with
damage to hippocampal formation are not impaired until the final
phase of the experiment (Alvarado & Rudy, 1995b, 1995¢; Dusek
& Eichenbaum, 1998).

We implemented TP in the model in a manner similar to the
previous problems. As shown in Figure 12, the network is trained
to predict the correct reward associated with making each of the
two possible choices in a given trial type (e.g., choosing either A
or B in the A+ versus B— trial). We used three units in the input
space to represent each of the stimuli in the initial configuration
(e.g., AB) and three units to represent the choice made (e.g., A).
Thus, as compared with the biconditional problem, the combina-
tion of multiple stimuli is reduced in salience as a result of the
space allocated to the choice stimulus. This should make the
formation of conjunctive representations more difficult and there-
fore increase the dependence on the superior pattern separation
bias of the hippocampus.

To test the model, we compared the intact and hippocampally
lesioned networks on both the full TP problem (i.e., all three trial
types interleaved) and just the second phase with only two of the
three trial types. As shown in Figure 13, the model captures the

Blocked Negative Patterning: Model

Interleaved
300 Blocked

200

Total Errors

100

Intact HL

Figure 11. The model results are for learning performance in the blocked
version of negative patterning for both the intact model and the model with
the hippocampal component removed (HL), as compared with the standard
interleaved intact and HL data presented earlier. Note that the interleaved
data are taken from Figure 6.
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Stim

Figure 12. Input/output patterns for the transverse patterning problem.
The first set of stimuli (A-C) represents the initial configuration prior to
choice, and the second set (a—c) represents which choice was made, with
the reward being based on whether the correct choice was made. Stim =
stimuli; Rew = reward.

pattern of results reported in the literature, with the hippocampal
lesion condition impairing performance on the full problem but not
on the second phase of the problem alone (which is relatively easy
for both the intact and lesioned model; any differences in perfor-
mance would not be easily detected in an experimental context). In
summary, this problem provides a further confirmation of our
previous analysis that having a stimulus appearing alone makes the
problem more difficult.

Summary. Like the literature, our model shows that under
some conditions the hippocampus can make a contribution to
solving nonlinear discrimination problems. However, it is impor-
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tant to appreciate that with or without an intact hippocampus, both
animals and our model require many trials to solve these problems.
This is because there is extensive overlap in the stimulus patterns
that have to be associated with different outcomes, and the neces-
sary conjunctive learning is driven by the reinforcement contin-
gencies of the tasks. The extensive overlap coupled with conflict-
ing outcomes associated with the elements in effect neutralizes the
contribution of the hippocampus to conjunctive learning. Thus, by
this analysis, nonlinear discrimination tasks are not well suited to
reveal the unique contribution that the hippocampus can make in
encoding conjunctions.

Rapid Incidental Conjunctive Learning

We argued earlier that the hippocampal formation makes its
most important contribution to memory by automatically and
rapidly storing incidental stimulus conjunctions. Rapid incidental
conjunctive learning is revealed in experiments on exploratory
behavior, incidental learning, and contextual fear conditioning. In
this section we apply our model to a representative example of this
type of experiment, and in the next section we explore a range of
phenomena in contextual fear conditioning.

We noted previously that Honey and Good (1993) provided
evidence of hippocampal-formation involvement in incidental
learning by studying the context specificity of conditioning. They
conditioned rats to cue A in Context 1 (C1) and Cue B in Context 2
(C2). Normal rats not only conditioned to the two cues, but they
also incidently learned where the cues occurred because respond-
ing to the cues was disrupted if Cue A was tested in C2 and Cue
B was tested in C1. Rats with damage to the hippocampal forma-
tion did not display this incidental learning because responding to
the cues was independent of the test context.
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Figure 13. Results for the transverse patterning (Pat) problem, for both Phase 2 (left column), where only two
out of the three trial types are used, and the full problem (right column), with all three trial types. Only the full
problem requires separated conjunctive representations, and it shows an effect of hippocampal lesion (HL)
relative to the intact case in both rats (top row, data from Alvarado & Rudy, 1995b) and the model (bottom row).
Although the Phase 2 effect is statistically significant in the model, the small magnitude of differences involved
make it unlikely to find an effect in an experimental context.
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We applied the intact and hippocampally lesioned models to the
context specificity effect to see if it would simulate Honey and
Good’s (1993) findings. Instead of using exactly the same exper-
imental design as Honey and Good, we used a design where the
reward value of the contexts was specifically neutralized. Thus, we
trained the network on two different simple discrimination prob-
lems in two different contexts: Cl: A+, B—; C2: C+, D—.
Because the contexts have no net reward value in our design,
subjects could simply ignore the context and learn on the basis of
just the individual stimuli. However, if the hippocampus is auto-
matically encoding stimulus conjunctions, then a test where the
context—stimulus pairs are switched (i.e., C2: A+, B—; Cl: C+,
D—) should reveal any contribution from such conjunctive repre-
sentations. In Honey and Good’s design, the contexts could pos-
sibly attain at least some reward value, producing a positive
response bias. Indeed, the simulation results produce a clearer
effect than Honey and Good’s experiment, so we consider them to
be a prediction for future experimental testing.

To test the model, we ran two conditions following training with
either the intact or lesioned models: (a) The cues were presented in
their original context and (b) the cues were presented in the
switched context. The dependent variable was the percentage of
correct expectations of the rewards as defined during training.
Context specificity then is revealed by the fact that reward out-
comes are expected less accurately when the contexts are switched
than when the cues are tested in their original training contexts.

The specific patterns we used to train the network are shown in
Figure 14. In this and all subsequent simulations, the data are
based on 25 replications with random initial weights. Figure 15
shows that the intact model displayed the context-specificity ef-
fect: Its reward expectations were less accurate when the cues were
presented in the switched context than when they were presented
in the original context. The model lacking the hippocampus, how-
ever, did not display the context-specificity effect. It was roughly
equally accurate independent of test context. This matches the
somewhat weaker effects, indicated only by a significant interac-
tion between lesion and test condition, seen in Honey and Good’s
(1993) data.
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Figure 14. Input/output patterns for the incidental learning context spec-
ificity effect. Note cues A and B have equally associative values and that
the two contexts C1 and C2 have no net association with reward. If rats
respond only to the linear combination of context and cue associative
values, then responding should be the same regardless of the context in
which the cues are presented. Stim = stimuli; Rew = reward.
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Figure 15. Incidental conjunctive learning results for testing with both
the original (training) and recombined (switched) contexts. (a) Results
from Honey and Good (1993; response rate). (b) Results from the model on
a similar (but not identical) task (proportion correct). Even though the
contexts are completely incidental to the task, the intact rats and model
suffer from a context switch, whereas the rats and model without the
hippocampus (HL) do not.

One interesting parameter that can affect the extent to which the
model exhibits the incidental encoding of context is the amount of
training time given. For the results shown above, the network was
trained to the point where successful performance was achieved. If
a longer training period is used, the evidence of conjunctive
encoding tends to decrease or go away entirely. This may explain
the difficulties that some people have had in obtaining these
conjunctive context effects (Hall & Honey, 1990).

Contextual Fear Conditioning

As we noted previously, several researchers have suggested that
contextual fear conditioning involves conjunctive representations
of the conditioning context (Fanselow, 1990; Fanselow & Rudy,
1998; Maren et al., 1997; Rudy & Sutherland, 1994), and there is
evidence the hippocampus makes an important contribution to
contextual fear conditioning. In this section we apply the model to
some of the relevant contextual fear conditioning data, showing
that the hippocampal system in the model makes an important
conjunctive contribution and that hippocampal pattern completion
plays a role in generalized fear conditioning. Because fear condi-
tioning can be considered a simple spatial context learning task,
the results here should also generalize to other spatial learning
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tasks (though additional navigational mechanisms would likely
also be required).

The idea that contextual fear conditioning depends on the sub-
ject constructing a unitary or conjunctive representation of context
first emerged out of Fanselow’s analysis of the immediate shock
effect. Recall that rats shocked immediately after being placed in
the context fail to display fear of that context, whereas rats that
experience delayed shock display a substantial fear response.
Fanselow (1990) reported that the immediate shock deficit could
be ameliorated if the subjects were preexposed to the context prior
to the immediate shock session. He argued that context preexpo-
sure allowed rats to construct a unitary representation of the
context, so that when the rats only briefly encounter a subset of the
features on the immediate shock session, the whole pattern is
activated and conditioned. We first apply our model to this imme-
diate versus delayed shock effect.

Three phases of a contextual fear conditioning experiment must
be captured in our model. The first phase is exposure to the
context. During exposure, rats explore the environment and pre-
sumably are exposed to sequences of stimulus feature conjunctions
that, integrated together over time, facilitate the development of a
unitary representation of context. The second phase is the delivery
of shock. In the third phase the rat is tested by being placed in the
conditioning environment; the percentage of time it spends freez-
ing (exhibiting the fear response) is measured.

In the simulation we represented the context as four separate
stimulus features. We implemented the exposure phase of the
experiment by presenting all possible pairwise stimulus feature
conjunctions to the network and allowing it to learn without
providing any task inputs (Figure 16). To simulate the kind of
temporal integration over individual trials that rats presumably
experience, we did not completely reset the activations between
trials. Instead, we decayed activations .8 of the way toward zero
from their values in the prior trial. This procedure facilitated the
network’s ability to form a conjunctive representation of context
that integrated over all of the individual features.

The shock phase was implemented by activating the fear output
pattern in the context of a single input feature, representing the fact
that the rat receives a relatively narrow view of the environment
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Figure 16. Input/output patterns for the exposure phase of contextual fear
conditioning. All possible pairwise combinations of the four context features
for the A environment are experienced, enabling the hippocampus to encode a
conjunctive representation of the fear conditioning context. Stim = stimuli.
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Figure 17. Input/output patterns for the shock phase of contextual fear
conditioning. The + output represents a fear response induced by the
shock. The input stimulus (Stim) is assumed to be a single context feature,
which is arbitrarily chosen to be the first feature. The fact that the rat views
the environment for a brief period prior to being shocked is represented by
the initial trial without the fear output activated.

when shocked (Figure 17). Nevertheless, the intact model can
pattern complete this single input to the entire context representa-
tion, which can then become associated with shock. Only a single
shock was given. The final phase of fear response measurement
was computed as the average fear output activation produced by
exposing the network to the sequence of all possible stimulus
conjunctions for the conditioning environment (Figure 15). Thus,
a strong fear response would be produced if the single shock trial
could be associated with a conjunctive representation of context
that would be generally activated during testing.

The network was identical to that used previously, with two
modifications. The first modification was necessary to ensure that
the network did not produce a strong fear response without having
first been shocked. This was done by setting the bias weights on
the fear output units to —1, a negative bias that must be overcome
by learning for these units to become strongly active. The second
modification was necessary to compensate for the fact that the
network tends to activate units in the EC layers corresponding to
the output layer units even when no external activations to these
units are being provided (e.g., in the exposure phase). This has not
been an issue previously because the networks were always trained
with specific output patterns. However, in this case the spurious
activation during exposure causes the network to associate the
input stimulus with a nonfear output pattern, which then interferes
with the ability of the network to learn the shock-induced fear

- association during the shock phase. Thus, without suppressing

these activations, the exposure training has opposing effects—it
builds a coherent representation of the context, but it also associ-
ates this context representation with a competing output pattern,
which interferes with the shock learning.! The solution we adopted

! This issue of learning a competing output pattern during preexposure
affects the extent to which the network exhibits latent inhibition (LI), where
context exposure results in subsequently slowed conditioning in that context
(Lubow, 1989). One way that LI has been understood, and the way it works in
our model, is that a representation of context is being associated with a “no
response” representation, which then interferes with the acquisition of the
conditioned response (Bouton, 1993). Experience in our own lab has shown
that LI is difficult to demonstrate in the contextual fear conditioning paradigm
(Rudy & O’Reilly, 1999), and where it has been reported, a considerable
amount of preexposure was necessary (Kiernan & Westbrook, 1993). There-
fore, the reported results are for complete suppression of outputs during
exposure, producing no LI effect. However, it is also possible to model a
continuum of LI effects by manipulating the activation level of the outputs.
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Figure 18. Effects of exposure to the context on level of fear response (a)
in rats (measured by freezing, data from Fanselow, 1986) and (b) in the
model, measured as the activation level for fear output units minus the
baseline measure of fear response activation without any conditioning. The
immediate shock condition (Immed) is one trial of shock conditioning
without any prior training in the environment, showing virtually no con-
ditioning. The delayed shock condition (Delayed) has 2 min (rats) or 100
epochs (model) of exposure in the environment prior to the shock, resulting
in substantial conditioning in the intact rats/model, but not in the network
with a hippocampal lesion (HL; no equivalent rat data available).

was to add a negative bias to the appropriate EC units so they
would be inactive during exposure.

The first set of simulations demonstrates that the intact model
captures the immediate versus delayed shock effect. We compared
the level of fear conditioning produced by immediate shock with
that produced by exposure to the context for 100 epochs. As shown
in Figure 18, the intact model showed a strong level of fear when
it was trained for 100 epochs before the shock but almost no fear
when it was trained with only a single shock epoch. This exposure
facilitation was not evident in the model with the hippocampal
component removed, suggesting that the hippocampal system in
the model is primarily responsible for the formation of conjunctive
context representations.

Preexposure to the context reduces the impaired fear condition-
ing that results from immediate shock (Fanselow, 1990; Kiernan &
Westbrook, 1993). Obviously, preexposure to the context would
eliminate the immediate shock effect displayed by the intact model
because, from the model’s standpoint, all that matters is that it be
given the opportunity to learn a conjunctive representation of the
context prior to the shock—there is no difference between expo-
sure and preexposure in the model.

Is the representation of context conjunctive? Fanselow and

others have assumed that preexposure ameliorates the immediate
shock effect because it provides subjects the opportunity to learn a
unitary/conjunctive representation of the features that make up the
context, although there has been relatively little direct evidence for
this assumption. Recently, we provided independent support for
this view in a series of fear conditioning experiments with intact
rats (Rudy & O’Reilly, 1999). In one experiment, we compared
the effects of preexposure with the conditioning context with the
effects of preexposure to the separate features that made up the
context. Only preexposure to the context facilitated contextual fear
conditioning, suggesting that conjunctive representations across
the context features were necessary. The next simulation shows
that the model behaves in a similar manner.

To implement the separate-features condition in our model, we
exposed the network to a series of four different environments (for
100 epochs each), where each such environment had one of the
four conditioning context features (Figure 19). The results of this
simulation are shown in Figure 20, which compares the effects of
exposure to the elements and exposure to the context with the
immediate shock baseline. As in the Rudy and O’Reilly (1999)
experiment, there was a pronounced facilitation of contextual
conditioning when the intact model was exposed to the context as
compared with exposure to the features separately. The hippocam-
pally lesioned network showed very little benefit of preexposure to
either the context or the features and if anything responded more
in the separate feature exposure condition than in the together
condition. This could be due to the greater total number of expo-
sure trials in the separate condition. Thus, as we would expect, the
cortex alone does not appear to be sensitive to the stimulus
conjunctions in the incidental exposure learning situation.

Pattern completion and generalized fear. An important prop-
erty of stimulus conjunctions encoded in the hippocampus is that
they support pattern completion: A subset of an original training
pattern can activate the complete pattern. The pattern completion
process is central to the contextual fear conditioning phenomena
we have just discussed, because it is presumably what enables the
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Figure 19. Input/output patterns for exposure to the conditioning context
features separately. The first feature of the conditioning context (Al) is
mixed in with other features defining a separate environment where this
feature was experienced (B2-4). The second conditioning context feature
(A2) was similarly experienced in another different environment (C2-4),
and so on. Stim = stimuli.
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Figure 20. Effects of exposure to the features separately compared with
exposure to the entire context on level of fear response in (a) rats (data
from Rudy & O’Reilly, 1999) and (b) the model (see Figure 18 for details).
The immediate shock condition (Immed) is included as a control condition
for the model. Intact rats and the intact model show a significant effect of
being exposed to the entire context together compared with the features
separately, whereas the hippocampally lesioned (HL) model exhibits
slightly more responding in the separate (Sep) condition, possibly because
of the greater overall number of training trials in this case.

Context Overlap - Intact: Rats

testing cues to reactivate the conjunctive context representation
and its association with the shock. Recently, we provided novel
evidence for the pattern completion process by studying general-
ized contextual fear conditioning (Rudy & O’Reilly, 1999). In this
section, we show that our model replicates these pattern comple-
tion findings.

Rudy and O’Reilly (1999) constructed two contexts, A and B,
which shared several features, and a Context C that shared no
features with either A or B. Rats were preexposed to either Context
A or Context C and then conditioned in Context B. Preexposure to
Context A should establish an integrated conjunctive representa-
tion of that context. Because Contexts A and B share several
features, during the conditioning session, the features common to
both A and B should pattern complete to the representation of A,
and the A representation will thus become associated with the
shock. This means that following conditioning to Context B, rats
preexposed to Context A will display more generalized fear to A
than will rats not preexposed to A (e.g., those preexposed to C).
We found that indeed, preexposure to Context A markedly en-
hanced the rats’ generalized fear to A. This result strongly supports
the idea that rats use a conjunctive representation of the context.

We simulated this experiment in the model by constructing a
Context A that overlapped with Context B by 50% (i.e., shared two
out of the four features) and a Context C that overlapped with
neither A nor B. Just as in the experiment, the model was then
exposed to either A or C (for 100 epochs as before), conditioned in
B (with 100 epochs of exposure to B prior to shocking), and then
tested in both the A and B environments. The results for the intact
and hippocampally lesioned model are shown in Figure 21, which
match those of Rudy and O’Reilly (1999). Preexposure to A and
conditioning on B produced an equivalent level of fear when tested
on either A or B, but preexposure to C yielded less fear in the A test
than the B test because the network did not pattern complete to A
when conditioning in B, and thus the A representation did not get
associated with shock. However, because there was some level of
fear response to A even when preexposed to C, we conclude that
the network was also pattern completing somewhat to B in the A
testing environment. The lesioned network exhibited a low level of
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Figure 21.

Effects of preexposure to contexts that overlap with the conditioning context (B) by an amount

indicated in the horizontal axis (A has 50% overlap, C has 0% overlap). Testing performed in both A and B
contexts. (a) The intact rat behavior (data from Rudy & O’Reilly, 1999) network, (b) the intact model, and (c)
the hippocampally lesioned (HL) network. Pattern completion is indicated in the intact rat/model because the
amount of conditioning to A was similar to that shown for B (because of pattern completion based on the 50%
overlap). For 0% overlap preexposure {C), A did not get as much facilitation, but still does produce fear,
indicating that the effect is a result of pattern completion both at the time of conditioning and at the time of
testing. The lesioned model did not show any differentiable effects.
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conditioning that did not appear to vary systematically as a func-
tion of condition. Thus, we would predict that rats with damage to
the hippocampal formation would not reliably exhibit the en-
hanced generalization effect reported by Rudy and O’Reilly.

Summary. We have been able to account for several of the
major properties of contextual fear conditioning using the same
basic model that we used on the nonlinear discrimination prob-
lems. We see a reliable contribution of the hippocampal system in
this paradigm because the development of conjunctive represen-
tations is not required by the task, and thus the cortical system is
not driven to develop such representations. In contrast, the hip-
pocampal system naturally develops these representations, which
can be assessed in various ways (e.g., the separate vs. conjunctive
feature preexposure and pattern overlap conditions as described
above).

Transitivity and Flexibility

Several theorists have described memories encoded by the hip-
pocampus as being flexible, meaning that (a) such memories can
be applied inferentially in novel situations (Eichenbaum, 1992;
O’Keefe & Nadel, 1978) or (b) that they are available to multiple
response systems (Squire, 1992). Although the term flexibility
provides a useful description of certain behaviors, it does not
provide a mechanistic understanding of how this flexibility arises
from the properties of the hippocampus. In this section, we show
how the basic mechanism of hippocampal pattern completion can
explain some of these flexibility phenomena while making specific
testable predictions.

Some of the best evidence for hippocampal flexibility comes
from studies of transitivity in animals (Bunsey & Eichenbaum,
1996; Dusek & Eichenbaum, 1997). In one set of problems, Dusek
and Eichenbaum trained rats to solve a set of concurrent odor
discriminations that took the form A+ versus B—, B+ versus C—,
C+ versus D—, and D+ versus E—. Following training to crite-
rion on these problems, rats were then given probe trials with B
versus D and A versus E. When confronted with the A versus £
choice, both control rats and rats with damage to the hippocampal
formation chose A. This is not especially surprising because A was
always reinforced and E was never reinforced. The interesting
comparison then was how subjects behaved on the transitivity test,
the B versus D probe, because both B and D were equally often
reinforced and not reinforced. Control rats consistently chose B,
but rats with damage to the hippocampal formation chose
randomly.

In Bunsey and Eichenbaum’s (1996) version of the transitivity
test, rats were trained on two sets of conditional odor discrimina-
tion problems (Figure 22). In the first set, they sampled an initial
odor (A or X) and then had to choose between two odors (B and Y).
When A was the sample the correct choice was B, but when X was
the sample the correct choice was Y. Then, in the second set, the
same rats sampled either odor B or Y (the choice odors of the first
set) and had to choose between odors C and Z, where C was correct
for sample B and Z was correct for sample Y. After rats had solved
these two sets of conditional discriminations, they were given a
transitivity test by presenting A and X as samples but with the
choice now between C and Z Normal rats chose C when the
sample was A and Z when the sample was X. Rats with damage to
the hippocampal system, however, chose randomly.
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Figure 22. Logic of Bunsey and Eichenbaum’s (1996) version of the
transitivity test.
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Eichenbaum and his colleagues argued that the results from both
of these experiments support the theory that the flexible nature of
hippocampally mediated memories enables the rats to perform a
kind of logical inference. Dusek and Eichenbaum’s (1997) version
argued that the rats apply a transitivity operation to the B versus D
case and infer that because B > C and C > D, that it must be that
B > D. Specifically, Dusek and Eichenbaum proposed that their
rats had stored the problems as an orderly hierarchy that included
all five elements of the four problems (4 > B > C > D > E) that
could be used flexibly in the service of supporting logical infer-
ences. Similar arguments were made in Bunsey and Eichenbaum’s
(1996) version. '

Our analysis of the two tasks used to demonstrate transitivity
suggests that both results are a product of the pattern completion
properties of the hippocampus, not the use of logical reasoning.
Furthermore, our account shows that the detailed means for
achieving transitivity in these two tasks are somewhat different
and that both depend critically on the specific training procedures
used. Both tasks depend on hippocampal pattern completion to
activate a representation developed during the training procedure
that produces the correct transitivity response. Because the transi-
tivity test probes (B vs. D in Dusek & Eichenbaum, 1997, and AX,
CZ in Bunsey & Eichenbaum, 1996) overlap with multiple training
patterns, producing the correct transitivity response requires that a
specific hippocampal representation be favored in this pattern
completion process over other possible such representations that
also overlap with the test probes. We show in the following
sections that the two tasks differ in the way that this specific
hippocampal representation is favored as a function of the training
parameters.

The A > B > C > D > E transitivity problem. The key to
understanding how the rats solve the Dusek and Eichenbaum
(1997) transitivity test is in the training procedure. Dusek and
Eichenbaum trained the rats in ordered trial blocks, starting
with 10 trials on the A+ versus B— problem always followed
by 10 trials on the B+ versus C— problem, always followed by 10
trials on the C+ versus D— problem, and so on. Over the course
of training, the number of trials per block was reduced gradually to
the point of single trials of each type, and then randomly inter-
leaved trials were run at the very end. This training likely caused
nearby trial types in the A > B > C > D > E sequence to have
overlapping hippocampal representations, because each problem
overlaps 50% with the next one, so it is likely that some hippocam-
pal units exhibited pattern completion and were activated for the
two adjacent trial types.
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As Figure 23 shows, the overlapping hippocampal representa-
tions can then activate the correct B response for the B versus D
probe by means of pattern completion. Specifically, if the hip-
pocampal representations for B+ versus C— (BC) and C+ versus
D— (CD) overlap, then the overlapping portion of these represen-
tations will be activated by both B and D in the B versus D probe.
Because of pattern completion, one of the two hippocampal rep-
resentations will be activated (BC or CD) and will produce the
corresponding response (B or C, respectively). However, because
C is not available as a choice option on the B versus D probe, the
rat is unlikely to make use of the CD representation directly.
Instead, it is likely that the C response will trigger the represen-
tation of C as an input, which would then favor the activation of
the BC hippocampal representation, producing the correct B re-
sponse to the B versus D probe.

To evaluate this account in our model, we first pretrained the
network to associate responses with input stimuli (e.g., so that the
C response will preferentially activate the C input representation
with the preexisting bidirectional connectivity between them),
which we assume the rat would naturally do. Then we trained the
network in a sequential, blocked manner on 10 trials of each of the
problems in order. Figure 24 shows the patterns used. We repeated
this sequence five times, by which point the model had learned all
the problems, and then ran 10 epochs of randomly interleaved
training on all problem types. This simulates the blocked training
used by Dusek and Eichenbaum (1997), except that they used
successively fewer trials per block in their repetitions.

We find in the model that the final random-order training is
useful to prevent a kind of recency effect from the blocked training.
In general, the network is more likely to pattern complete the test
probe to a training pattern that was more recently trained, and in
the blocked training sequence, the C+ versus D— problem always
follows the B+ versus C— one, and is thus more recent. Therefore,
the network is more likely to pattern complete to C+ versus D—

Response

Hippocampus

Input

Figure 23. llustration of how overlapping hippocampal representations
can lead to correct transitivity response for the B versus D probe. The large
circles each represent the collection of hippocampal units encoding a given
comparison, as labeled (e.g., AB is A+ vs. B—). The overlap in represen-
tations is shown as overlap in these circles. Representative units from each
region are shown as small filled circles, with the activation of each unit
indicated by the darkness of the circle. The B versus D probe preferentially
activates the overlapping region between the BC and CD representations,
because units in this region receive from both B and D inputs while units
in all other regions only receive from one input. The pattern completion
property of the hippocampus will tend to complete to either the BC or CD
representation and activate the corresponding response output (B or C,
respectively). The C response, not being a valid option for the B versus D
probe, will instead activate the input representation of C, which will then
bias the network in favor of completing to BC instead of CD, thus making
the correct response B.
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Figure 24. Input/output patterns for the A > B > C > D > E version of
the transitivity test (Dusek & Eichenbaum, 1997). The network is trained
to produce the appropriate choice response (labeled with lowercase letters)
given an input representation of the two stimuli. The top row shows the
training patterns, while the bottom shows the B versus D test pattern, with
the appropriate B response indicated in the output (which was used only to
compare with the network’s output). Stim = stimuli; Out = output.

instead of B+ versus C—, which increases the probability of
producing the wrong output (C). The final interleaved training
reduces this recency effect by providing recent training on all the
patterns, and thus facilitates the production of the correct (B)
output.

The results of the model are shown in Figure 25. To interpret
these results, we first need to take into account an important
difference between the rat and our model—the rat is forced to
either choose B or D, but the model can produce any of the four
trained outputs (A through D). Our model provides a good fit to the
data if one assumes that the forced-choice constraint on the rat
causes it to always choose B even when its hippocampus might
have pattern completed to the C output by way of activating the
hippocampal representation for the C+ versus D— problem. Ad-
though the intact model has some tendency to do this remapping of
an initial C response to a B output (because it responds B about
twice as often as C), the forced-choice constraints on the rat
probably make it more likely to do so. Note that the hippocampally
lesioned model has a much reduced tendency to produce the
correct responses. Indeed, it seems to produce each of the four
trained responses about Y4 of the time—in other words, at random.

An interesting prediction falls out of our model that would seem
to directly contradict the prediction that a logical reasoning ac-
count of transitivity performance would make. This prediction
concerns what would happen if one additional comparison was
trained, E+ versus F—, and then the transitivity test was B versus
E instead of B versus D. Logically, B and E are even further apart
from each other, and thus it should be easier to conclude that B
beats E than it would be to conclude that B beats D. However,
according to our pattern-completion account, which depends on
pattern overlap as explained previously, the fact that the hippocam-
pal representations for B and E are further separated from each
other should make it much less likely that the network will get the
B versus E problem right.

The results from the model, shown in Figure 26, confirm our
reasoning about the pattern-completion-based mechanism—the in-
tact network never produces the correct response (B) to the B
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Figure 25. Results for the transitivity test (B vs. D). (a) Data from Dusek
and Eichenbaum (1997) in rats. (b) Model data, showing both proportion of
correct B responses (Resp) and proportion of either B or C responses.
Because the model is not constrained to choose either B or D but the rat is,
the B or C response may provide a better approximation to the rat behavior
assuming that the rat does a better job of remapping initial C responses to
actual B choices. The model chance line reflects the Y4 chance in the model,
and the rat chance line reflects the %2 chance for the rat; the intact model’s
B responses are well above model chance, and its B and C responses are
well above rat chance, whereas the hippocampally lesioned (HL) model’s
responses are at chance for both cases.

versus E probe! We also tested this network on the B versus D
probe to make sure that the additional training problem was not
behind the model’s poor performance. These results were very
similar to those shown before, ruling out this alternative account
for the impaired performance on the B versus E probe. The
lesioned network appears to still be responding essentially ran-
domly (with five trained responses, chance is 20%). This predic-
tion from the model thus stands as an important test of the two
different accounts of how rats solve the transitivity problem.

The A — B, X — Y, ... transitivity problem. Our analysis of
Bunsey and Eichenbaumi’s (1996) version of the transitivity prob-
lem also depends on hippocampal pattern completion. We show
that this pattern completion effect depends on the training order to
produce the correct response, as a result of a recency effect. By
this, we mean that a more recently experienced memory will be
more frequently recalled than one that was not experienced as
recently, as was mentioned previously in the discussion of the
other transitivity problem.

In this case, the transitivity test probes (A — C and X — Z) each
overlap with two different training patterns (e.g., A — B and B —
C for the A — C probe). Thus, we would expect that the hip-

pocampus would pattern complete the A — C probe to either the
A — B or B — C training representations, but not to the X — Y or
Y — Z patterns, which it does not overlap with. As in the previous
task, only one of these two training patterns is associated with the
correct transitivity probe response (B — C), so the key to solving
the problem is to favor pattern completion to this training pattern
(and to Y — Z for the X — Z probe). The training procedure used
in this task does exactly that, by taking advantage of the recency
effect.

Bunsey and Eichenbaum (1996) trained rats sequentially on the
two sets of problems (Figure 22). First, they trained on A — B and
X — Y until rats were performing to criterion. Then they trained on
B — C and Y — Z to criterion. It was at this point that the
transitivity test was given. Thus, because the training patterns
having the correct responses for transitivity were trained last, these
were more likely to be pattern completed to by the hippocampus
(because of the recency effect), producing correct transitivity
behavior.

To solve the conditional discrimination problems in this task,
the rats had to maintain the sample in memory for it to condition-
alize the choice. Because our model currently does not include a
process to hold the sample in memory, we had to make two
decisions to implement the problem within the input/output frame-
work of the model. First we decided to model the task at the point
where the choice is made and the learning occurs. Thus, the input
pattern was the sample (e.g., A) and the choice stimulus last visited
(e.g., B), and the output pattern was the choice response (e.g., B).
During the early stages of training before they learned the condi-
tionalizing pattern, rats presumably visited both wells given each
sample stimulus (e.g., visiting B and Y with the A sample). How-
ever, as the rats mastered the problem, the incorrect well visits
would drop out (e.g., visiting ¥ with the A sample). Thus, our
second decision was to only model the stage of training where the
correct A — B and X — Y choices were made, which simplified the
implementation to the point where we could use our standard
model (Figure 27).

We explored a representative range of three different training
conditions to test our hypothesis that the recency effect of training
on B — C and Y — Z was important for achieving transitivity
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Figure 26. Model results for the B versus E transitivity test, showing both
proportion of correct B responses (Resp) and proportion of either B or C
responses. Model chance is now !5 instead of the 4 shown in Figure 24.
The intact network does not respond correctly at all in this case, but the
hippocampally lesioned (HL) network performs somewhat near chance.
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Figure 27. Input/output patterns for the A — X, B — Y, C — Z version

of the transitivity test (Bunsey & Eichenbaum, 1996). We assume that the
rat remembers the sample stimulus (Stim) and learns to make a response to
the correct choice odor. Thus, in the A — B case, we represent the A and
B odors in the input and train the network to produce the B response
(denoted in lowercase in the figure). As before, the top row consists of the
training cases, and the bottom consists of the testing cases. Stim = stimuli;
Out = output.

behavior. The first condition mirrored the procedure used in Bun-
sey and Eichenbaum (1996), where there were two sequential
blocks of training, the first on the A — B and X — Y trials and the
second on the B — C and Y — Z trials. We trained for 50 trials in
each block, which was sufficient to achieve mastery of the prob-
lem. The second condition still used a blocked design, but there
were now 10 blocks of 10 trials alternating between the two
trial types. Thus, the B — C and Y — Z trials were still the most
recently trained, but the recency effect should be smaller. The
final condition was randomly interleaved training on all trial
types.

The results are shown in Figure 28. First, only the intact model
exhibited any evidence of transitivity—the hippocampally le-
sioned network always performed at or below chance. Second, the
importance of the recency effect in causing the network to pattern
complete to the appropriate hippocampal representation is evident
as a function of the training conditions: Perfect transitivity behav-
ior is exhibited in the sequentially blocked condition (2 blocks of
50), intermediate behavior for the more fine-grained blocking (10
blocks of 10), and nonsignificantly above-chance behavior for the
fully interleaved condition.

To summarize our exploration of transitivity, we have shown
that hippocampal pattern completion can produce the correct tran-
sitivity responses in two different types of problems. This pattern-
completion-based ‘mechanism depends critically on the training
parameters (order of training and the use of blocked training trials).
Thus, an important contribution of our model is to highlight the
importance of these “incidental” aspects of the experimental par-
adigm for achieving the transitivity outcome—these features
should not be important under the “logical inference” account
proposed by Eichenbaum and colleagues, but are demonstrably
important in our mechanistic, pattern-completion-based account.
Thus, to the extent that further empirical work finds that these
training parameters are important for the rat’s correct performance
as well, this would constitute an important source of support for

our account. Furthermore, we have highlighted the model’s pre-
diction regarding the B versus E transitivity test, which also
constitutes an important test of our model.

This emphasis on the task parameters and the importance of
mechanistic, process-based models is reminiscent of the general
point emphasized by Munakata (1998) and Munakata, McClelland,
Johnson, and Siegler (1997) that detailed task parameters can be
understood in a mechanistic, neural-network-based framework in
ways that simply do not make sense under more abstract symbolic-
level or richly interpreted accounts.

General Discussion

The idea that the hippocampal formation contributes to memory
by enabling organisms to store representations of stimulus con-
junctions is central to a number of theories, and there is consid-
erable evidence consistent with this view. However, this idea alone
cannot be correct because there is direct evidence that rats with
damage to the hippocampal formation can solve nonlinear discrim-
ination problems that require conjunctive representations. The
major goals of this article are to
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Figure 28. Results for Bunsey and Eichenbaum’s (1996) transitivity test
(A — Cand X — Z, where the transitivity-appropriate [“correct”] responses
are C and Z, respectively) for (a) rats (data from Bunsey & Eichenbaum,
1996) and (b) the model. The rat data show preference index for the correct
responses, (x — y)/(x + y), where x is the transitive response and y is the
alternate, and the model results are in terms of proportion of correct
responses. Results for three different training conditions in the model are
shown: two sequential blocks of 50 trials each, 10 blocks of 10 trials, and
fully interleaved. The intact model exhibits a relatively strong transitivity
effect compared with the model with the hippocampal component removed
(HL), and this effect is modulated by the recency of the trials containing theg
appropriate output responses as a function of the training conditions.
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Provide a theoretical framework that can accommodate the con-
flicting evidence on hippocampal conjunctive representations.

* Use this framework to identify better empirical tests of the
conjunctive representations hypothesis (e.g., incidental conjunc-
tive learning and contextual fear conditioning).

.

Implement this framework in a computational neural network
model that simulates a wide range of empirical data across
different task paradigms while also making novel predictions.

We propose that the conflict between the conjunctive theory and
the behavioral data can be resolved by developing a broader
framework for understanding the division of labor between the
cortex and the hippocampus. We adopt the general characterization
of McClelland et al. (1995), where the cortex acquires information
gradually to extract the generalities shared across different expe-
riences, whereas the hippocampus acquires information rapidly
and keeps specific events distinct. Our unique assumption is that
both the cortex and hippocampus are able to store representations
of stimulus conjunctions, but the cortex does so only when forced
by the demands of the environment, such as in the case of non-
linear discrimination learning problems. In contrast, the hippocam-
pus generally encodes stimulus conjunctions automatically as a
by-product of the organism sampling its environment (but it also
performs pattern completion when the inputs are sufficiently sim-
ilar to stored representations).

Our computational models of both the cortex and hippocampus
are based on a common set of principles embodied in the Leabra
algorithm (O’Reilly, 1996b, 1998; O’Reilly & Munakata, 2000).
These principles include the use of error-driven learning based on
task demands, Hebbian learning that is sensitive to the co-
occurrence of features, and inhibitory competition for producing
sparse distributed representations. In this model, the hippocampus
and cortex lie on a parametric continuum, with the hippocampus
having both greater inhibitory competition and thus sparser repre-
sentations, and a somewhat greater reliance on Hebbian as opposed
to error-driven learning.

It is worth reiterating that, using one basic model, we were able
to successfully simulate the results of experiments from a wide
range of paradigms that have been used to evaluate the role of the
hippocampus. These tasks range from complex nonlinear discrim-
ination problems to the relatively simple paradigms of fear condi-
tioning and habituation. We were also able to simulate the results
of the complex transitive inference tasks that have been used to
demonstrate memory flexibility. Indeed, our model suggests that
basic pattern completion processes can provide the basis for the
logical operations hypothesized to underlie transitive inference in
animals. We now highlight some of the insights gained from this
exercise and then consider a set of other important issues in
subsequent sections, concluding with a discussion about other
perspectives on the hippocampus.

Insights

Perhaps one of the most important insights gained from this
exercise is the importance of differentiating between representa-
tions of stimulus conjunctions that are constructed in the service of
solving discrimination problems (and thus influenced by error-
driven learning pressures) and conjunctive representations that
emerge automatically, rapidly, and incidentally from exposure to

the environment. Failure to distinguish between these two cases
has led to some of the past difficulties encountered in understand-
ing the primary role of the hippocampus.

Although the contribution of the hippocampus in nonlinear dis-
crimination problems is relatively small and the empirical data some-
what inconsistent, we nevertheless achieved useful insights into the
critical features of different nonlinear discrimination problems that
cause them to be more or less sensitive to hippocampal function. In
addition to highlighting the importance of whether stimuli appear
alone or in combination, we found that blocked versus interleaved
training plays an important role in whether conjunctive representa-
tions are actually required, and thus whether the hippocampus makes
an important contribution. We were able to make the novel prediction
that hippocampal damage should not substantially impair learning of
the blocked version of the NP problem.

In contextual fear conditioning, we verified a number of earlier
suggestions about the role of the hippocampus in constructing a
unitary representation of context. Some of these suggestions (e.g.,
Rudy & O’Reilly, 1999) were based on our theoretical framework
and constitute important insights into both the conjunctive nature
of the hippocampal context representations and the role of pattern
completion in producing generalized fear conditioning.

We found that the purported importance of the hippocampus in
enabling flexible behavior (e.g., Eichenbaum, 1992; O’Keefe &
Nadel, 1978) appears to be explainable in terms of the pattern com-
pletion abilities of the hippocampus. Specifically, we showed that the
transitivity tests performed on rats by Bunsey and Eichenbaum (1996)
and Dusek and Eichenbaum (1997) conld be simulated by hippocam-
pal pattern completion in our model. We achieved several important
insights into the influence of the training procedures on producing the
“flexible” behavior and generated several novel predictions regarding
the effects of manipulations of these procedures.

We suggest that it may be more productive to focus on the more
mechanistic principle of pattern completion instead of the more
abstract notion of flexibility in conceptualizing the unique behav-
ioral contributions of the hippocampus. Furthermore, we also note
that models of slow, integrative cortical learning are capable of
demonstrating flexibility in the form of generalizing to novel
inputs (e.g., pronouncing novel nonwords; Plaut, McClelland, Sei-
denberg, & Patterson, 1996). Indeed, one of the primary advan-
tages of this slow, integrative learning is that it facilitates gener-
alization based on the regularities extracted from a large number of
prior experiences. Thus, the overall behavioral flexibility of an
organism can presumably be subserved by multiple underlying
mechanisms, each with different properties.

Human Hippocampal Function

We have focused the present applications of the model on the
animal literature because it provides fertile ground for testing
mechanistic theories of hippocampal function, but we believe that
our general framework also will be useful for understanding the
nature of human memory. Consistent with this view, we note that
Squire (1992) has suggested that the conjunctive learning mecha-
nism supported by the hippocampus underlies human declarative
memory. The notion of a conjunctive binding mechanism is also
implicit in Tulving’s (1972) model of human episodic memory
(see Mishkin et al., 1998). Moreover, it is generally appreciated
that the basic anatomy of the hippocampus is preserved across
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rodents as well as primates, including humans, so aside from
differences in overall numbers of neurons and perhaps some scal-
ing of different areas, the human hippocampal circuit appears to be
consistent with the basic principles of our framework. Thus, we are
optimistic that the general principles captured in our model can be
successfully applied to a range of different human memory phe-
nomena; such efforts are underway (Norman, O’Reilly, & Huber,
2000; O’Reilly et al., 1998).

Cortical Contributions to Memory Phenomena

The assumption that the cortex learns gradually is central to our
model. However, there are preserved memory functions in human
amnesics such as the single trial priming effect (Graf, Squire, &
Mandler, 1984; Schacter & Graf, 1986) that appear to violate our
key assumption about cortical learning. We suggest that such
effects reflect the impact that small incremental changes can have
on existing representations. In support of this position, several
different neural network models have shown that slow learning
rates can exhibit measurable effects on existing representations.
Such effects result from slightly facilitating the processing of a
stimulus or by shifting the balance of strength among a set of
existing representations (e.g., Becker, Moscovitch, Behrmann,
& Joordens, 1997, McClelland & Rumelhart, 1986; O’Reilly &
Munakata, 2000).

Furthermore, we have recently shown that these same small
effects can result in good recognition memory performance (Nor-
man et al., 2000), which can account for findings of relatively
preserved recognition memory with selective hippocampal damage
(Aggleton & Brown, 1999; Aggleton & Shaw, 1996; Holdstock et
al., in press; Murray & Mishkin, 1986; Squire & Zola-Morgan,
1991; Vargha-Khadem et al., 1997; Zola-Morgan, Squire, Amaral,
& Suzuki, 1989). Our current work shows many important differ-
ences between the cortical and hippocampal contributions to rec-

ognition memory (Norman et al., 2000; O’Reilly et al.,, 1998), .

suggesting that this domain will be particularly informative for
further tests of our general framework.

Finally, other examples of rapid learning, such as taste aversion
learning or fear conditioning, also appear to violate the slow
cortical learning hypothesis. However, the rapid learning seen in
these domains is generally believed to be the product of special-
ized evolutionary adaptations (Bolles, 1970; Garcia, McGowan, &
Green, 1972; Seligman, 1970).

Other Perspectives on the Hippocampus

We have discussed a number of different perspectives on the
hippocampus and showed how many of them are generally con-
sistent with our framework. Nevertheless, some important similar-
ities and differences should be highlighted (also see McClelland et
al., 1995, for other relevant comparisons).

Similarities. Our theoretical framework for understanding the
division of labor between the cortex and hippocampus is remark-
ably similar to that developed by O’Keefe and Nadel (1978) to
differentiate their local and taxon systems. We already noted that
we view their idea that the hippocampal-dependent locale system
supports the acquisition and memory of maplike representations as
being related to our idea that the hippocampus is important for
learning stimulus conjunctions. Although much of the subsequent

discussion of O’Keefe and Nadel’s ideas in the literature has
focused on this spatial representation idea, they also made distinc-
tions between the taxon and locale system along other important
dimensions:

Learning rate. The locale system is viewed as rapidly storing new
information, whereas the taxon system learns and unlearns by slow
increments.

Motivation. The two systems operate under different motivational
conditions. The locale system is fundamentally connected to explo-
ration and much of what it encodes occurs as a result of novelty
directed behavior. Taxon learning, however, is motivated to learn in
the service of problem solving or achieving goals and is therefore
sensitive to the reinforcement contingencies associated with behavior.

Susceptibility 1o interference. The two systems are differentially sus-
ceptible to associative interference. The locale system is suited to
reduce interference because it encodes experiences in unitary maplike
formats that emphasize the uniqueness of the episode, preventing
interference from other similar experiences.

Each of these dimensions apply to our distinctions between the
cortical and hippocampal systems: (a) The cortical system learns
slowly compared with the hippocampal system; (b) the hippocam-
pus is biased to automatically form conjunctive representations,
whereas the cortex must generally be forced by task demands to
develop such representations; and (c) the hippocampus uses pat-
tern separation to enable rapid learning of arbitrary information
without suffering from undue interference. Thus, although we
developed our framework largely from computational principles,
we have arrived at similar conclusions. To the degree that our
model has captured many important findings in the modern liter-
ature, O’Keefe and Nadel (1978) clearly anticipated the critical
features of a successful mechanistic model. Nevertheless, we differ
importantly from O’Keefe and Nadel because they restricted the
content encoded by the hippocampus to spatial information
whereas our view is more inclusive, allowing for the storage of
nonspatial and spatial conjunctions.

We also noted that the ideas of Sherry and Schacter (1987) are
very similar to the complementary learning systems framework of
McClelland et al. (1995). Again, this demonstrates that our com-
putational principles have converged on ideas that can also be
motivated by other considerations. Also, a number of computa-
tional models of hippocampal function have embraced some of the
assumptions that are central to our models (e.g., Alvarez & Squire,
1994; Burgess & O’Keefe, 1996; Hasselmo, 1996; Moll & Miik-
kulainen, 1997; Touretzky & Redish, 1996; Treves & Rolls, 1994,
Wu, Baxter, & Levy, 1996).

Differences. Perhaps the clearest contrast between our per-
spective and some others centers on the learning capacities of the
cortex. Several mechanistic accounts of the hippocampus assume
that the cortex is a repository for knowledge and must rely on other
brain structures such as the hippocampus to acquire its impressive
cognitive functions {Gluck & Myers, 1993; Rolls, 1990; Schmajuk
& DiCarlo, 1992; Wickelgren, 1979). For example, Gluck and
Myers (1993) assumed that the hippocampus uses a relatively
powerful learning mechanism (error backpropogation) and that the
cortex is effectively a slave to this hippocampal mechanism for
anything but the most simple forms of learning. In a related view,
Schmajuk and DiCarlo (1992) assumed that the hippocampus
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plays an essential role in enabling error-driven modifications of
cortical representations to occur.

This codependent view of cortical learning, however, does not
appear to be tenable. There is impressive evidence of sophisticated
learning by amnesic humans (e.g., Knowlton, Squire, & Gluck,
1994; Squire & Knowlton, 1995; Vargha-Khadem et al., 1997). In
addition, the animal literature reviewed here and elsewhere (Rudy
& Sutherland, 1995) indicates that the cortex does not depend on
the hippocampus to solve many complex nonlinear discrimination
tasks. A strength of our model is that it assumes that the cortex,
without the hippocampus, is capable of quite sophisticated learn-
ing. Thus, it can account for the fact that animals with damage to
the hippocampus can solve complex nonlinear discriminations and
is positioned to explain other complex learning phenomena dis-
played by patients with damage to the hippocampus.

Conclusion

The idea that the hippocampus encodes representations of stim-
ulus conjunctions is common to many theories. Our analysis of the
literature, however, indicated that, unconstrained, this idea cannot
be correct. To resolve the tension created by this analysis, we
placed this idea into a broader framework that addressed funda-
mental differences in cortical and hippocampal learning systems.
This framework recognizes that both systems can support the
learning of stimulus conjunctions but that the hippocampus does so
rapidly and automatically simply as a consequence of the organism

exploring and attending to its environment, whereas the cortex .

does so gradually when driven by the demands of the task. We
embedded these ideas into a biologically based computational
model. This mode! was able to simulate a wide range of findings
and appears to resolve the problems created by the finding that the
hippocampus is not necessary to solve problems that require con-
junctive representations. Nevertheless, much work needs to be
done to fully explore the ideas laid out in this article. We hope that
this first step provides a solid foundation for future research.
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Appendix

Computational Mechanisms

This appendix describes the computational details of the Leabra algo-
rithm that was used in the simulations.

Pseudocode

The pseudocode for Leabra is given here, showing exactly how the
pieces of the algorithm described in more detail in the subsequent sections
fit together.

Outer loop: Iterate over events (trials) within an epoch. For each event:

I. Iterate over minus and plus phases of settling for each event.
(a) At start of settling, for all units:
1. Imtialize all state variables (activation, v_m, etc).
ii. Apply external patterns (clamp input in minus, input & output
in plus).
(b) During each cycle of settling, for all nonclamped units:
i. Compute excitatory netinput, g.(r) or n; (Equation A3).
ii. Compute KWTA inhibition for each layer, based on g (Equa-
tion A6):
A. Sort units into two groups based on g: top & and remaining
k+1ton
B. Set inhib conductance g, between gf* and gt , (Equation
AS).
iii. Compute point-neuron activation combining excitatory input
and inhibition (Equation Al).
(c) After settling, for all units: Record final settling activations as
either minus or plus phase (v, or ¥).

2. After both phases update the weights (based on linear current weight

values), for all connections:

(a) Compute error-driven weight changes (Equation A7) with soft
weight bounding (Equation A9).

(b) Compute Hebbian weight changes from plus-phase activations
(Equation AR).

(¢) Compute net weight change as weighted sum of error-driven and
Hebbian changes (Equation A10).

(d) Increment the weights according to net weight change, and apply
contrast-enhancement (Equation All).

Point-Neuron Activation Function

Leabra uses a point-neuron activation function that models the electro-
physiological properties of real neurons while simplifying their geometry
to a single point. This function is nearly as simple computationally as the
standard sigmoidal activation function, but the more biologically based
implementation makes it considerably easier to model inhibitory competi-
tion, as described. Further, using this function enables cognitive models to
be more easily related to more physiologically detailed simulations,
thereby facilitating bridge building between biology and cognition.

The membrane potential V,, is updated as a function of ionic conduc-

tances g with reversal (driving) potentials £ as follows:

v,
*.;t(_’). =7 S G OTLE - Vo0)] (AD

with three channels (¢) corresponding to e excitatory input, / leak current,
and / inhibitory input. Following electrophysiological convention, the
overall conductance is decomposed into a time-varying component g.(r)
computed as a function of the dynamic state of the network and a constant
g, that controls the relative influence of the different conductances. The
equilibrium potential can be written in a simplified form by setting the

excitatory driving potential (E,) to 1 and the leak and inhibitory driving
potentials (£, and E) of 0:
V:, = _—geg:—*_ N (A2)
8.8. % 881+ 8i&

which shows that the neuron is computing a balance between excitation
and the opposing forces of leak and inhibition. This equilibrium form of the
equation can be understood in terms of a Bayesian decision-making frame-
work (O’Reilly & Munakata, 2000).

The excitatory net input/conductance g,(f) or 7, is computed as the
proportion of open excitatory channels as a function of sending activations
times the weight values:

1
m; = g1 = Gxwy) =~ > xw, (A3)

The inhibitory conductance is computed via the kWTA function described
in the next section, and leak is a constant.

Activation communicated to other cells (y;) is a thresholded (8) sigmoi-
dal function of the membrane potential with gain parameter y:

1

yo = , (Ad)

(”mﬁz)

where (x] . is a threshold function that returns O if x < 0 and x if X > 0.
This sharply thresholded function is convolved with a Gaussian noise
kernel (o = .005), which reflects the intrinsic processing noise of biolog-
ical neurons. This produces a less discontinuous deterministic function
with a softer-threshold that is better suited for graded learning mechanisms
(e.g., gradient descent).

kWTA Inhibition

Leabra uses a kWTA function to achieve sparse distributed representa-
tions. Although two different versions are possible (see O’Reilly & Mu-
nakata, 2000, for details), only the simpler, more rigid form was used in the
present simulations. A uniform level of inhibitory current for all units in the
layer is computed as follows:

8= gl + q(g — gl (A5)

where 0 < g <1 is a parameter for setting the inhibition between the upper
bound of g and the lower bound of g2, ,. These boundary inhibition
values are computed as a function of the level of inhibition necessary to
keep a unit right at threshold:

o _ §r8E. — ©) + gg(E — 8)
8 = - s

(A6)

where g2 is the excitatory net input without the bias weight contribution—
this allows the bias weights to override the KkWTA constraint.

In the basic version of the kWTA function used here, which is relatively
rigid about the kWTA constraint, g and g2, , are set to the threshold
inhibition value for the kth and k + Ith most excited units, respectively.
Thus, the inhibition is placed exactly to allow k units to be above threshold
and the remainder below threshold. For this version, the ¢ parameter is
almost always .25, allowing the kth unit to be sufficiently above the
inhibitory threshold.

Activation dynamics similar to those produced by the kWTA function
have been shown to result from simulated inhibitory interneurons that
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project both feedforward and feedback inhibition (O’Reilly & Munakata,
2000). Thus, although the kXWTA function is somewhat biologically im-
plausible in its implementation (e.g., requiring global information about
activation states and using sorting mechanisms), it provides a compu-
tationally effective approximation to biologically plausible inhibitory
dynamics.

Error-Driven Learning

Leabra uses the symmetric midpoint version of the GeneRec algorithm
(O’Reilly, 1996a), which is functionally equivalent to the deterministic
Boltzmann machine and contrastive Hebbian learning (Hinton, 1989;
Movellan, 1990). The network settles in two phases, an expectation (mi-
nus) phase, where the network’s actual output is preduced. and an outcome
(plus) phase, where the target output is experienced, and then computes a
simple difference of a pre- and postsynaptic activation product across these
two phases:

Aerrw'gr = (XTY;‘) - (xtA_Vj_) (A7)

for sending unit x; and receiving unit y; in the two phases.

Hebbian Learning

The simplest form of Hebbian learning adjusts the weights in proportion
to the product of the sending (x,) and receiving (y,) unit activations: Aw; =
xy, The weight vector is dominated by the principal eigenvector of the
pairwise correlation matrix of the input, but it also grows without bound.
Leabra uses essentially the same learning rule used in competitive learning
or mixtures-of-Gaussians (Nowlan, 1990; Rumelhart & Zipser, 1986),
which can be seen as a variant of the Oja normalization (Oja, 1982):

Aperpwy = x; )',+ - ,V; Wi = Yf (- wi). (A8)
Rumelhart and Zipser (1986) and O’Reilly and Munakata (2000) showed
that, when activations are interpreted as probabilities, this equation con-
verges on the conditional probability that the sender is active given that the
receiver is active.

Combining Error-Driven and Hebbian Learning

Error-driven and Hebbian learning are combined additively at each
connection to produce a net weight change. Two equations are needed, a

soft weight bounding equation to keep the error-driven component within
the same 0—1 range of the Hebbian term and the combination equation.

Soft weight bounding with exponential approach to the 0-1 extremes is
implemented using

Ashcrrw:A = [Acrr]+(1 - er) + [Ac(r]—wib (A9)

where A, is the error-driven weight change, A, . is the soft-bounded
weight change, and the [x], operator returns x if x > 0 and O otherwise,
while [x]_ does the opposite, returning x if x < 0 and 0 otherwise.

The net weight change equation combining error-driven and Hebbian
learning (which also includes the learning rate parameter €) uses & nor-
malized mixing constant k.,

Awy = €[kpepp(Dpery) + (1 — Kpebo) (Agpers) ]- (A10)

To increase the intluence of Hebbian learning in the hippocampus relative
to the cortex, k.., for the hippocampus was .05, while it was .02 for the
cortex.

Weight Contrast Enhancement

One limitation of the Hebbian learning algorithm is that the weights
linearly reflect the strength of the conditional probability. This linearity can
limit the network’s ability to focus on only the strongest correlations while
ignoring weaker ones. To remedy this limitation, we introduce a contrast
enhancement function that magnifies the stronger weights and shrinks the
smaller ones in a parametric, continuous fashion. This contrast enhance-
ment is achieved by passing the linear weight values computed by the
learning rule through a sigmoidal nonlinearity of the following form:

1
Wy =———"—"—""~1= (ALl)

M w, \77
1+ (9—’)
I —wy

where ¥, is the contrast-enhanced weight value, and the sigmoidal function
is parameterized by an offset 6 and a gain vy (standard defaults of 1.25
and 6, respectively, used here).
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