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Abstract

A hallmark of human intelligence is the ability to adapt to new situations by applying learned rules to new content
(systematicity) and thereby enabling an open-ended number of inferences and actions (generativity). Here, we
propose that the human brain accomplishes these feats through pathways in the parietal cortex that encode the
abstract structure of space, events, and tasks and pathways in the temporal cortex that encode information about
specific people, places, and things (content). Recent neural network models show how the separation of structure and
content might emerge through a combination of architectural biases and learning, and these networks show dramatic
improvements over previous models in the ability to capture systematic, generative behavior. We close by considering
how the hippocampal formation may form integrative memories that enable rapid learning of new structure and

content representations.
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The ability to directly transfer existing knowledge to
new situations by applying learned rules to new content
(systematicity) and thereby generate an open-ended
number of different behaviors (generativity) is particu-
larly advanced in humans relative to other animals.
However, this ability is nevertheless shared in a limited
but instructive way with even relatively simple com-
puter programs. For example, it is easy to write a func-
tion that takes two arbitrary strings as arguments and
systematically returns the concatenation of those two
strings. With just a bit more logic, calling such a func-
tion repeatedly can easily construct an open-ended
number of sentences. However, learning to do some-
thing like this in a neurally plausible manner is much
more challenging, and neural network models continue
to be criticized as lacking in these signature human
abilities; much of their recent success is potentially
attributable to something closer to rote memorization
of increasingly large data sets (Fodor & Pylyshyn, 1988;
Lake & Baroni, 2017; Marcus, 2018; O’Reilly et al., 2014;
Plaut et al., 19906). Likewise, empirical cognitive neuro-
science is only beginning to uncover the brain areas
involved in these abilities (Constantinescu et al., 2016;
Frankland & Greene, 2020; Park et al., 2020; Summerfield
et al., 2020).

The essential trick employed by the simple concat-
enation function is that arbitrary content can be routed
into it and operated upon generically, independently of
any details of the content, through the ability to bind
variables to any content. The cognitive equivalent of
this, which is widely recognized as critical for human
systematic behavior (Fodor & Pylyshyn, 1988), is a sepa-
ration of structure (i.e., the rule-processing system,
which is akin to the function) from content. In language,
syntax has traditionally been thought of as an example
of content-independent structure, and people’s ability
to accurately judge grammatical correctness of language
with arbitrary content is demonstrated by Chomsky’s
(1957) famous example: “Colorless green ideas sleep
furiously” (p. 15). Understanding how something like
content-independent syntactic structure can be learned
and represented via known biological mechanisms is
thus a critical step toward advancing understanding of
the neural basis of signature human abilities.
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In this article, we review cognitive and neural evi-
dence consistent with the separation between structure
and content across various cognitive domains and
recent neural network models that demonstrate how
such a separation might emerge through a combination
of architectural biases and learning, thereby producing
significantly greater systematicity. Critically, structure
and content also need to interact and be integrated in
various ways, and certain brain areas appear to be
specialized for this integration, enabling the brain to
apply multiple representational strategies in parallel.

Structure and Content in Cognitive Models

The FINST (fingers of instantiation) framework of Pyly-
shyn (1989) provides an early, simple model for how
structure can be represented independently of specific
content and also maps well onto cognitive-neurosci-
ence data reviewed in the next section. The key idea
is that abstract, content-independent, pointer-like “fin-
gers” can index a small set (up to about 4) of different
visual locations at a time. These content-independent
pointers were originally proposed to serve as place-
holders for encoding relationships among items in a
scene (e.g., INSIDE (a, b), as a propositional encod-
ing of object a being inside b).

The core ideas in the FINST framework can be
extended to represent any kind of abstract structure that
specifies the relationships between different indexed
elements. For example, the action of “giving” involves
distinct functional roles (giver, recipient, item), and each
of these could be represented using a separate FINST-
like thematic role pointer, instead of using the semantic
content specific to a particular situation (e.g., “Ashley
gave Alan a gift”). If “giving” is encoded in terms of
content-independent roles indexed by FINST-like point-
ers, these representations can automatically generalize
to new contents, and additional inferences could be
made about the properties and implications of the struc-
tural relationship (e.g., the giver no longer has the item
and may have some expectation of reciprocity depend-
ing on the nature of the transaction and relationship).
Encoding structural knowledge sufficiently rich for such
inferences requires much more than FINST-like repre-
sentations, but additional mechanisms to encode this
knowledge in a relatively content-independent manner
would clearly support systematic reasoning.

In short, FINST-like indexes provide a plausible
attention-based neural mechanism for role-filler vari-
able slots in the context of classical symbolic represen-
tational frameworks. At a cognitive level, the kinds of
elaborated structural representations and processes that
have been studied cover a range of different levels of
complexity, from verb-based (action-based) elements,

as in the “giving” example (Boylan et al., 2015), to more
elaborated schemas or scripts describing longer
sequences of events (e.g., the schema associated with
a child’s birthday party; see Binding of Structure and
Content in the Medial Temporal Lobes). The ability to
transfer structural knowledge across content domains
is also central to established models of analogical rea-
soning (Gentner & Holyoak, 1997; e.g., the relational
structure of “orbiting” can be transferred from the plan-
etary to the atomic scale).

Representation of Structure in
the Human Brain

There is a well-established distinction between spatial
and object processing in the human brain, and this
distinction can be reframed as one example of how the
brain separates structure and content via distinct, but
interacting, pathways. Visual (and auditory) networks
in the brain route sensory input into distinct dorsal- and
ventral-stream pathways (Ungerleider & Mishkin, 1982).
The ventral visual pathway extends from early visual
cortex to inferotemporal cortex and is characterized
as the “what” pathway, specialized for object or scene
recognition (i.e., visual content). The dorsal pathway
through the parietal lobe is specialized for spatial
“where” processing, as indicated by extensive evidence
that this pathway represents spatial and relational infor-
mation in a relatively content-independent manner.
The idea that the dorsal-stream pathway has the
potential to support systematic structure-sensitive pro-
cessing was already well developed by Pylyshyn (1989)
and has been incorporated into psycholinguistic theo-
ries (Frankland & Greene, 2020; Landau & Jackendoff,
1993). Furthermore, there is substantial evidence that
posterior parietal cortex encodes nonspatial structural
information as well. First, it is clear that the parietal lobe
plays a critical role in the sensory guidance of action
performance (Orban et al., 2004), as captured in the
“what”-“how”(ventral-dorsal) framework (Goodale &
Milner, 1992). In humans, this action coding extends to
the representation of verb-based argument structure (as
in the “giving” example ) in the inferior parietal area
(angular gyrus) and supports the core of structure at the
sentence level (Binder & Desai, 2011; Boylan et al.,
2015; Palmer et al., 2016). More abstract structural and
linguistic concepts, including event representations in
higher-order parietal areas, are thought to build directly
upon parietal action, space, and time foundations
(Frankland & Greene, 2020; Landau & Jackendoff, 1993).
It is well established that parietal spatial and action
representations anticipate the effects of eye, head, or
body movements (Cavanagh et al., 2010). This suggests
that acquisition of structure in the parietal lobe could
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Fig. 1. Diagram depicting a neural network model (Russin et al., 2020) with separate
pathways for learning structure (syntax) and content (semantics). The input command on
the left (“turn left and jump twice”) was mapped to a sequence of corresponding actions
(LTURN, JUMP, JUMP), using a modeling framework developed originally for translating
between languages (Lake & Baroni, 2017). The structure pathway (in blue) had full access
to the temporal ordering of the words in the command. However, it could influence the
output actions taken at each time step only through an attention mechanism (indicated by
the blue dashed line and open circle). The character of the representations in these differ-
ent pathways facilitated systematic generalization, but was not built in, and emerged as a
result of the architectural constraints imposed by the separation of the pathways.

be based on predictive learning (O’Reilly et al., 2021).
Specifically, learning driven by the difference between
a predicted sensory outcome of an action and the sub-
sequent sensory input can drive improved predictions
and shape the formation of more abstract structural
representations to more efficiently generate these pre-
dictions. Although it is fairly straightforward to learn to
predict specific sensory outcomes from motor actions,
an important area of current research is to determine
the extent to which more abstract, structural representa-
tions can emerge, to capture the consistent, generaliz-
able relationships that hold across a large number of
such actions (Summerfield et al., 2020).

Even if the dorsal and ventral streams separately
encode structure and content in the brain, fundamental
questions remain about how these streams interact at the
level of detailed neural mechanisms, to support system-
atic cognitive function. A recent neural network model
provides a useful example of how FINST-like attentional
pointers can operate on newly learned content informa-
tion in the context of separate structure and content
representations (Russin et al., 2020). Unlike many existing
models that have relied on various hand-coded mecha-
nisms to directly emulate programming-language-like
variable-binding functionality in neural hardware, this
model learned entirely via error-driven learning, with
only very broad, biologically plausible architectural con-
straints between two processing pathways.

One pathway had full access to the temporal order-
ing of words within a sentence, whereas the other was
able to process only the single word that was current
at any given time (Fig. 1). Furthermore, the pathway
that was sensitive to temporal order could influence
the network output only via attentional modulation of

the other pathway (thus functioning similarly to the
FINST-like attentional pointers). Distinctions between
pathways such as these could plausibly derive from
evolved differences in the initial wiring of the neural
architecture, providing affordances upon which subse-
quent learning operates.

With these constraints in place, the network learned
syntax-like structural representations in the temporal-
order pathway and semantics-like content information
in the other pathway, and in so doing, exhibited sig-
nificantly more systematic behavior on challenging out-
of-domain generalization tests than unstructured models
did (Lake & Baroni, 2017). Specifically, when the model
was trained on proper action outputs for examples
generated from a simple phrase structure grammar
(e.g., “turn left twice”), the syntax-like pathway was able
to direct attention to the proper sequence of content
items in new commands (e.g., “jump twice”). This atten-
tional indexing of the novel content items is consistent
with the simple FINST framework described above and
with the central importance of such mechanisms in the
neural basis of structure-content dynamics. Further-
more, this model demonstrates how learned, distributed
neural representations can take on a syntax-like role
without traditional explicit symbolic grammar trees.
However, this model and other related ones are simpli-
fied, and more work is needed to understand the nature
of structure representations in the brain that support
the more complex and sophisticated forms of human
cognition.

A similar distinction between structure and content
pathways was achieved in a fairly different way using
a variable-binding system based on an explicit slot-filler
(key-value) lookup table mechanism (Webb et al.,
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2021). In this model, the structure-processing pathway
learned to control this lookup table independently of
the specific content stored there, while the content
pathway learned representations of individual items.
This architectural separation of structure and content
enabled the model to exhibit much more systematic
behavior than comparison models without such a sepa-
ration. (See Akylrek & Andreas, 2021, for discussion
of other related architectures.)

Although these models provide important initial
demonstrations of how a separation between structure
and content can support systematicity, it is critical to
appreciate that many real-world situations also require
strong interactions between the two. This has perhaps
been most extensively studied in the case of the pro-
nunciation of English words: As everyone learning Eng-
lish as a second language knows too well, the number
of exceptions and subregularities is mind-spinning, and
monolithic neural network pathways (i.e., pathways
without separation of structure and content) may pro-
vide the most appropriate mechanism for learning these
mappings (Plaut et al., 1996). Likewise, the difference
between parsing “Fruit flies like a banana” and “Time
flies like an arrow” requires an interaction between
syntax and semantics. In the visual domain, these inter-
actions can be illustrated by the case of viewing a
kitchen scene: Incoming content information may acti-
vate structural representations of typical kitchens,
which then guide visual attention and semantic process-
ing (Hayes & Henderson, 2019). In other words, human
cognition likely represents a combination of separated
and interacting streams (Franklin et al., 2020; O’Reilly
et al., 2014).

Structure and Content in
Episodic Memory

So far, we have used the classic model of the dorsal
and ventral streams as one example of the separation
of structure and content, but structure exists across
multiple scales. For example, structural knowledge is
required to parse and comprehend individual sen-
tences, but comprehending a sentence within the con-
text of a larger text passage often requires a mental
representation of the structure of events depicted in
that passage. Recent functional MRI (fMRD) research has
uncovered a candidate set of brain regions that may
represent the abstract structure of events—the posterior
medial (PM) network—and regions that may represent
the characteristics of the specific people, places, and
things that serve as event content—the anterior tempo-
ral (AT) network (Fig. 2). The PM and AT networks can
be considered as anatomically higher up from the clas-
sic dorsal and ventral streams, respectively (Kravitz

et al., 2011; Ranganath & Ritchey, 2012). Although these
networks are distinct, the hippocampus is in a key posi-
tion to integrate information across them. Regions in
the AT network project predominantly to the lateral
entorhinal cortex, and regions in the PM network mostly
project to the medial entorhinal cortex (MEC). The
hippocampus proper then binds information from
these streams together into unitary episodic memories
(Ranganath & Ritchey, 2012). Considerable evidence
suggests that the PM and AT networks differentially
represent information about structure and content at
higher, more complex levels and over longer spatio-
temporal scales than the more posterior dorsal and
ventral streams. For example, the PM network encodes
the structure of events and spatial contexts and partici-
pates in the reconstruction of past events and the simu-
lation of future events (Ranganath & Ritchey, 2012), and
it is also central for discourse comprehension (Martin-
Loeches et al., 2008).

One can think of the hippocampus, PM network, and
AT network as complementary learning systems (Russin
et al., 2021). The PM and AT networks are specialized
for slow, integrative learning leading to highly gener-
alizable representations and complement the rapid
context-specific memory supported by the hippocam-
pus. By capturing states of PM and AT network regions
at critical moments in time, the hippocampus is in a
unique position to rapidly form memories that combine
information about structure and content that is encoun-
tered during a specific period of time (i.e., an episode).
When a similar item or situation is encountered later
on, hippocampal pattern completion can lead to rein-
statement of previous states in the PM and AT networks,
thereby facilitating the generation of a mental model
of the current situation in a new or ambiguous context
(Franklin et al., 2020).

Other computational models (Stachenfeld et al.,
2017; Whittington et al., 2020) embody principles that
are largely consistent with the ones proposed here but
have placed more emphasis on the role of the hexago-
nally tiled grid cells in the MEC, which are thought to
represent the topological structure of spatial environ-
ments, and hippocampal place cells, which are thought
to encode specific locations within an environment.
These models suggest that the MEC and hippocampus
can represent any kind of task in a 2D state-space and
are consistent with fMRI studies showing MEC activity
patterns characteristic of grid cells during the perfor-
mance of novel tasks (Constantinescu et al., 2016).
Notably, however, these and other studies of humans
suggest that grid cells are present and grid cell-like
fMRI activity patterns occur throughout the PM net-
work and in the medial prefrontal cortex (Jacobs
et al., 2013).
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Fig. 2. Two cortico-hippocampal networks. The surface renderings at the top depict the
neocortical regions in the posterior medial (PM) network (cyan), implicated in schema
representation, and the anterior temporal (AT) network (magenta), implicated in representa-
tions of people and things. The diagram at the bottom schematically depicts the pathways
by which information from the AT and PM networks is directed to parallel pathways in the
medial temporal lobes before fully converging in the hippocampus. PRC = perirhinal cortex;
PHC = parahippocampal cortex; RSC = retrosplenial cortex; LEC = lateral entorhinal cortex;

MEC = medial entorhinal cortex.

Further work is needed to disentangle the unique
contributions of the MEC, relative to earlier parietal-
lobe pathways, in structure representation. One pos-
sibility is that the use of structural knowledge to guide
flexible behavior is driven by the PM network, and that
the MEC plays an important role in the use of episodic
memory to support rapid structure learning by the PM
network. For instance, it is possible that the MEC’s
network of grid cells performs an initial step of pattern
separation on parietal inputs from the PM network,
moving them apart in representational space and thus
making them easier to learn without interference
(Frankland & Cohen, 2022). This idea is consistent with
results from lesion studies suggesting that hippocampal
or MEC lesions can significantly impair spatial learning,
while generally sparing navigation in familiar environ-
ments (Hales et al., 2014; Kolarik et al., 2016).

Conclusions

There is good reason to believe that the architecture of
the neocortex is optimized to support systematic and
generative behavior by bifurcating sensory information
into separate structure and content pathways along the
dorsal and ventral streams, respectively. The hierarchi-
cally organized pathways through the parietal lobe gen-
erate different levels of representations that encode
structural relationships reliably associated with different
actions and events. Such representations capture the
general “logic” of actions and events—how things
move, transform, and interact over space and time—in
a way that can be readily applied to novel content.
Significant work remains to be done in order to estab-
lish the nature of representations of structure. By under-
standing the evolution of learning and dynamics across
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interacting brain networks, researchers can make sig-
nificant progress toward understanding the nature of
the representations that give rise to uniquely human
intelligence.
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