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The ability to directly transfer existing knowledge to 
new situations by applying learned rules to new content 
(systematicity) and thereby generate an open-ended 
number of different behaviors (generativity) is particu-
larly advanced in humans relative to other animals. 
However, this ability is nevertheless shared in a limited 
but instructive way with even relatively simple com-
puter programs. For example, it is easy to write a func-
tion that takes two arbitrary strings as arguments and 
systematically returns the concatenation of those two 
strings. With just a bit more logic, calling such a func-
tion repeatedly can easily construct an open-ended 
number of sentences. However, learning to do some-
thing like this in a neurally plausible manner is much 
more challenging, and neural network models continue 
to be criticized as lacking in these signature human 
abilities; much of their recent success is potentially 
attributable to something closer to rote memorization 
of increasingly large data sets (Fodor & Pylyshyn, 1988; 
Lake & Baroni, 2017; Marcus, 2018; O’Reilly et al., 2014; 
Plaut et al., 1996). Likewise, empirical cognitive neuro-
science is only beginning to uncover the brain areas 
involved in these abilities (Constantinescu et al., 2016; 
Frankland & Greene, 2020; Park et al., 2020; Summerfield 
et al., 2020).

The essential trick employed by the simple concat-
enation function is that arbitrary content can be routed 
into it and operated upon generically, independently of 
any details of the content, through the ability to bind 
variables to any content. The cognitive equivalent of 
this, which is widely recognized as critical for human 
systematic behavior (Fodor & Pylyshyn, 1988), is a sepa-
ration of structure (i.e., the rule-processing system, 
which is akin to the function) from content. In language, 
syntax has traditionally been thought of as an example 
of content-independent structure, and people’s ability 
to accurately judge grammatical correctness of language 
with arbitrary content is demonstrated by Chomsky’s 
(1957) famous example: “Colorless green ideas sleep 
furiously” (p. 15). Understanding how something like 
content-independent syntactic structure can be learned 
and represented via known biological mechanisms is 
thus a critical step toward advancing understanding of 
the neural basis of signature human abilities.
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Abstract
A hallmark of human intelligence is the ability to adapt to new situations by applying learned rules to new content 
(systematicity) and thereby enabling an open-ended number of inferences and actions (generativity). Here, we 
propose that the human brain accomplishes these feats through pathways in the parietal cortex that encode the 
abstract structure of space, events, and tasks and pathways in the temporal cortex that encode information about 
specific people, places, and things (content). Recent neural network models show how the separation of structure and 
content might emerge through a combination of architectural biases and learning, and these networks show dramatic 
improvements over previous models in the ability to capture systematic, generative behavior. We close by considering 
how the hippocampal formation may form integrative memories that enable rapid learning of new structure and 
content representations.
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In this article, we review cognitive and neural evi-
dence consistent with the separation between structure 
and content across various cognitive domains and 
recent neural network models that demonstrate how 
such a separation might emerge through a combination 
of architectural biases and learning, thereby producing 
significantly greater systematicity. Critically, structure 
and content also need to interact and be integrated in 
various ways, and certain brain areas appear to be 
specialized for this integration, enabling the brain to 
apply multiple representational strategies in parallel.

Structure and Content in Cognitive Models

The FINST (fingers of instantiation) framework of Pyly-
shyn (1989) provides an early, simple model for how 
structure can be represented independently of specific 
content and also maps well onto cognitive-neurosci-
ence data reviewed in the next section. The key idea 
is that abstract, content-independent, pointer-like “fin-
gers” can index a small set (up to about 4) of different 
visual locations at a time. These content-independent 
pointers were originally proposed to serve as place-
holders for encoding relationships among items in a 
scene (e.g., INSIDE(a,b), as a propositional encod-
ing of object a being inside b).

The core ideas in the FINST framework can be 
extended to represent any kind of abstract structure that 
specifies the relationships between different indexed 
elements. For example, the action of “giving” involves 
distinct functional roles (giver, recipient, item), and each 
of these could be represented using a separate FINST-
like thematic role pointer, instead of using the semantic 
content specific to a particular situation (e.g., “Ashley 
gave Alan a gift”). If “giving” is encoded in terms of 
content-independent roles indexed by FINST-like point-
ers, these representations can automatically generalize 
to new contents, and additional inferences could be 
made about the properties and implications of the struc-
tural relationship (e.g., the giver no longer has the item 
and may have some expectation of reciprocity depend-
ing on the nature of the transaction and relationship). 
Encoding structural knowledge sufficiently rich for such 
inferences requires much more than FINST-like repre-
sentations, but additional mechanisms to encode this 
knowledge in a relatively content-independent manner 
would clearly support systematic reasoning.

In short, FINST-like indexes provide a plausible 
attention-based neural mechanism for role-filler vari-
able slots in the context of classical symbolic represen-
tational frameworks. At a cognitive level, the kinds of 
elaborated structural representations and processes that 
have been studied cover a range of different levels of 
complexity, from verb-based (action-based) elements, 

as in the “giving” example (Boylan et al., 2015), to more 
elaborated schemas or scripts describing longer 
sequences of events (e.g., the schema associated with 
a child’s birthday party; see Binding of Structure and 
Content in the Medial Temporal Lobes). The ability to 
transfer structural knowledge across content domains 
is also central to established models of analogical rea-
soning (Gentner & Holyoak, 1997; e.g., the relational 
structure of “orbiting” can be transferred from the plan-
etary to the atomic scale).

Representation of Structure in  
the Human Brain

There is a well-established distinction between spatial 
and object processing in the human brain, and this 
distinction can be reframed as one example of how the 
brain separates structure and content via distinct, but 
interacting, pathways. Visual (and auditory) networks 
in the brain route sensory input into distinct dorsal- and 
ventral-stream pathways (Ungerleider & Mishkin, 1982). 
The ventral visual pathway extends from early visual 
cortex to inferotemporal cortex and is characterized  
as the “what” pathway, specialized for object or scene 
recognition (i.e., visual content). The dorsal pathway 
through the parietal lobe is specialized for spatial 
“where” processing, as indicated by extensive evidence 
that this pathway represents spatial and relational infor-
mation in a relatively content-independent manner.

The idea that the dorsal-stream pathway has the 
potential to support systematic structure-sensitive pro-
cessing was already well developed by Pylyshyn (1989) 
and has been incorporated into psycholinguistic theo-
ries (Frankland & Greene, 2020; Landau & Jackendoff, 
1993). Furthermore, there is substantial evidence that 
posterior parietal cortex encodes nonspatial structural 
information as well. First, it is clear that the parietal lobe 
plays a critical role in the sensory guidance of action 
performance (Orban et  al., 2004), as captured in the 
“what”-“how”(ventral-dorsal) framework (Goodale & 
Milner, 1992). In humans, this action coding extends to 
the representation of verb-based argument structure (as 
in the “giving” example ) in the inferior parietal area 
(angular gyrus) and supports the core of structure at the 
sentence level (Binder & Desai, 2011; Boylan et  al., 
2015; Palmer et al., 2016). More abstract structural and 
linguistic concepts, including event representations in 
higher-order parietal areas, are thought to build directly 
upon parietal action, space, and time foundations 
(Frankland & Greene, 2020; Landau & Jackendoff, 1993).

It is well established that parietal spatial and action 
representations anticipate the effects of eye, head, or 
body movements (Cavanagh et al., 2010). This suggests 
that acquisition of structure in the parietal lobe could 
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be based on predictive learning (O’Reilly et al., 2021). 
Specifically, learning driven by the difference between 
a predicted sensory outcome of an action and the sub-
sequent sensory input can drive improved predictions 
and shape the formation of more abstract structural 
representations to more efficiently generate these pre-
dictions. Although it is fairly straightforward to learn to 
predict specific sensory outcomes from motor actions, 
an important area of current research is to determine 
the extent to which more abstract, structural representa-
tions can emerge, to capture the consistent, generaliz-
able relationships that hold across a large number of 
such actions (Summerfield et al., 2020).

Even if the dorsal and ventral streams separately 
encode structure and content in the brain, fundamental 
questions remain about how these streams interact at the 
level of detailed neural mechanisms, to support system-
atic cognitive function. A recent neural network model 
provides a useful example of how FINST-like attentional 
pointers can operate on newly learned content informa-
tion in the context of separate structure and content 
representations (Russin et al., 2020). Unlike many existing 
models that have relied on various hand-coded mecha-
nisms to directly emulate programming-language-like 
variable-binding functionality in neural hardware, this 
model learned entirely via error-driven learning, with 
only very broad, biologically plausible architectural con-
straints between two processing pathways.

One pathway had full access to the temporal order-
ing of words within a sentence, whereas the other was 
able to process only the single word that was current 
at any given time (Fig. 1). Furthermore, the pathway 
that was sensitive to temporal order could influence 
the network output only via attentional modulation of 

the other pathway (thus functioning similarly to the 
FINST-like attentional pointers). Distinctions between 
pathways such as these could plausibly derive from 
evolved differences in the initial wiring of the neural 
architecture, providing affordances upon which subse-
quent learning operates.

With these constraints in place, the network learned 
syntax-like structural representations in the temporal-
order pathway and semantics-like content information 
in the other pathway, and in so doing, exhibited sig-
nificantly more systematic behavior on challenging out-
of-domain generalization tests than unstructured models 
did (Lake & Baroni, 2017). Specifically, when the model 
was trained on proper action outputs for examples 
generated from a simple phrase structure grammar 
(e.g., “turn left twice”), the syntax-like pathway was able 
to direct attention to the proper sequence of content 
items in new commands (e.g., “jump twice”). This atten-
tional indexing of the novel content items is consistent 
with the simple FINST framework described above and 
with the central importance of such mechanisms in the 
neural basis of structure-content dynamics. Further-
more, this model demonstrates how learned, distributed 
neural representations can take on a syntax-like role 
without traditional explicit symbolic grammar trees. 
However, this model and other related ones are simpli-
fied, and more work is needed to understand the nature 
of structure representations in the brain that support 
the more complex and sophisticated forms of human 
cognition.

A similar distinction between structure and content 
pathways was achieved in a fairly different way using 
a variable-binding system based on an explicit slot-filler 
(key-value) lookup table mechanism (Webb et  al., 
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Fig. 1.  Diagram depicting a neural network model (Russin et  al., 2020) with separate 
pathways for learning structure (syntax) and content (semantics). The input command on 
the left (“turn left and jump twice”) was mapped to a sequence of corresponding actions 
(LTURN, JUMP, JUMP), using a modeling framework developed originally for translating 
between languages (Lake & Baroni, 2017). The structure pathway (in blue) had full access 
to the temporal ordering of the words in the command. However, it could influence the 
output actions taken at each time step only through an attention mechanism (indicated by 
the blue dashed line and open circle). The character of the representations in these differ-
ent pathways facilitated systematic generalization, but was not built in, and emerged as a 
result of the architectural constraints imposed by the separation of the pathways.
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2021). In this model, the structure-processing pathway 
learned to control this lookup table independently of 
the specific content stored there, while the content 
pathway learned representations of individual items. 
This architectural separation of structure and content 
enabled the model to exhibit much more systematic 
behavior than comparison models without such a sepa-
ration. (See Akyürek & Andreas, 2021, for discussion 
of other related architectures.)

Although these models provide important initial 
demonstrations of how a separation between structure 
and content can support systematicity, it is critical to 
appreciate that many real-world situations also require 
strong interactions between the two. This has perhaps 
been most extensively studied in the case of the pro-
nunciation of English words: As everyone learning Eng-
lish as a second language knows too well, the number 
of exceptions and subregularities is mind-spinning, and 
monolithic neural network pathways (i.e., pathways 
without separation of structure and content) may pro-
vide the most appropriate mechanism for learning these 
mappings (Plaut et al., 1996). Likewise, the difference 
between parsing “Fruit flies like a banana” and “Time 
flies like an arrow” requires an interaction between 
syntax and semantics. In the visual domain, these inter-
actions can be illustrated by the case of viewing a 
kitchen scene: Incoming content information may acti-
vate structural representations of typical kitchens, 
which then guide visual attention and semantic process-
ing (Hayes & Henderson, 2019). In other words, human 
cognition likely represents a combination of separated 
and interacting streams (Franklin et al., 2020; O’Reilly 
et al., 2014).

Structure and Content in  
Episodic Memory

So far, we have used the classic model of the dorsal 
and ventral streams as one example of the separation 
of structure and content, but structure exists across 
multiple scales. For example, structural knowledge is 
required to parse and comprehend individual sen-
tences, but comprehending a sentence within the con-
text of a larger text passage often requires a mental 
representation of the structure of events depicted in 
that passage. Recent functional MRI (fMRI) research has 
uncovered a candidate set of brain regions that may 
represent the abstract structure of events—the posterior 
medial (PM) network—and regions that may represent 
the characteristics of the specific people, places, and 
things that serve as event content—the anterior tempo-
ral (AT) network (Fig. 2). The PM and AT networks can 
be considered as anatomically higher up from the clas-
sic dorsal and ventral streams, respectively (Kravitz 

et al., 2011; Ranganath & Ritchey, 2012). Although these 
networks are distinct, the hippocampus is in a key posi-
tion to integrate information across them. Regions in 
the AT network project predominantly to the lateral 
entorhinal cortex, and regions in the PM network mostly 
project to the medial entorhinal cortex (MEC). The 
hippocampus proper then binds information from 
these streams together into unitary episodic memories 
(Ranganath & Ritchey, 2012). Considerable evidence 
suggests that the PM and AT networks differentially 
represent information about structure and content at 
higher, more complex levels and over longer spatio-
temporal scales than the more posterior dorsal and 
ventral streams. For example, the PM network encodes 
the structure of events and spatial contexts and partici-
pates in the reconstruction of past events and the simu-
lation of future events (Ranganath & Ritchey, 2012), and 
it is also central for discourse comprehension (Martín-
Loeches et al., 2008).

One can think of the hippocampus, PM network, and 
AT network as complementary learning systems (Russin 
et al., 2021). The PM and AT networks are specialized 
for slow, integrative learning leading to highly gener-
alizable representations and complement the rapid 
context-specific memory supported by the hippocam-
pus. By capturing states of PM and AT network regions 
at critical moments in time, the hippocampus is in a 
unique position to rapidly form memories that combine 
information about structure and content that is encoun-
tered during a specific period of time (i.e., an episode). 
When a similar item or situation is encountered later 
on, hippocampal pattern completion can lead to rein-
statement of previous states in the PM and AT networks, 
thereby facilitating the generation of a mental model 
of the current situation in a new or ambiguous context 
(Franklin et al., 2020).

Other computational models (Stachenfeld et  al., 
2017; Whittington et al., 2020) embody principles that 
are largely consistent with the ones proposed here but 
have placed more emphasis on the role of the hexago-
nally tiled grid cells in the MEC, which are thought to 
represent the topological structure of spatial environ-
ments, and hippocampal place cells, which are thought 
to encode specific locations within an environment. 
These models suggest that the MEC and hippocampus 
can represent any kind of task in a 2D state-space and 
are consistent with fMRI studies showing MEC activity 
patterns characteristic of grid cells during the perfor-
mance of novel tasks (Constantinescu et  al., 2016). 
Notably, however, these and other studies of humans 
suggest that grid cells are present and grid cell–like 
fMRI activity patterns occur throughout the PM net-
work and in the medial prefrontal cortex ( Jacobs 
et al., 2013).
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Further work is needed to disentangle the unique 
contributions of the MEC, relative to earlier parietal-
lobe pathways, in structure representation. One pos-
sibility is that the use of structural knowledge to guide 
flexible behavior is driven by the PM network, and that 
the MEC plays an important role in the use of episodic 
memory to support rapid structure learning by the PM 
network. For instance, it is possible that the MEC’s 
network of grid cells performs an initial step of pattern 
separation on parietal inputs from the PM network, 
moving them apart in representational space and thus 
making them easier to learn without interference 
(Frankland & Cohen, 2022). This idea is consistent with 
results from lesion studies suggesting that hippocampal 
or MEC lesions can significantly impair spatial learning, 
while generally sparing navigation in familiar environ-
ments (Hales et al., 2014; Kolarik et al., 2016).

Conclusions

There is good reason to believe that the architecture of 
the neocortex is optimized to support systematic and 
generative behavior by bifurcating sensory information 
into separate structure and content pathways along the 
dorsal and ventral streams, respectively. The hierarchi-
cally organized pathways through the parietal lobe gen-
erate different levels of representations that encode 
structural relationships reliably associated with different 
actions and events. Such representations capture the 
general “logic” of actions and events—how things 
move, transform, and interact over space and time—in 
a way that can be readily applied to novel content. 
Significant work remains to be done in order to estab-
lish the nature of representations of structure. By under-
standing the evolution of learning and dynamics across 
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interacting brain networks, researchers can make sig-
nificant progress toward understanding the nature of 
the representations that give rise to uniquely human 
intelligence.
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