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1  Introduction

In this chapter, we address the claims made by Fodor and Pylyshyn (1988) 
(FP88 hereafter). We strike a middle ground between classic symbolic and 
connectionist perspectives, arguing that cognition is less systematic than 
classicists claim, but that connectionist, neural-processing-based theories 
have yet to explain the extent to which cognition is systematic. We offer 
a sketch of an emerging understanding of the basis of human systematicity 
in terms of interactions between specialized brain systems, leveraging the 
computational principles identified and empirical work done in the quar-
ter-century since the target work was published. We identify a full spectrum 
of processing mechanisms, arrayed along the continuum between context-
sensitivity and combinatorial, systematic processing, each associated with 
different parts of the human brain. We find that attempting to understand 
the role of these different brain areas through the lens of systematicity 
results in a rich picture of human cognitive abilities.

FP88 make two central claims about what a classical symbol processing 
system must be capable of, which define a classical model:

1. Mental representations have combinatorial syntax and semantics. Complex 
representations (“molecules”) can be composed of other complex represen-
tations (compositionality) or simpler “atomic” ones, and these combina-
tions behave sensibly in terms of the constituents.
2. Structure sensitivity of processes. There is a separation between form and 
content, exemplified in the distinction between syntax and semantics, and 
processes can operate on the form (syntax) while ignoring the semantic 
content.

Taken together, these abilities enable a system to be fully systematic and 
compositional. Systematicity comes directly from the ability to process the 
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form or structure of something, independent of its specific contents: if you 
can process sentences with a given syntax (e.g., Noun Verb Object) then 
you can process any constituent words in such sentences—you do not have 
to relearn the syntax all over again for each new word. In Chomsky’s 
famous example, you can tell that “Colorless green ideas sleep furiously” 
is grammatically correct because you can encode its structural form, inde-
pendent of the (lack of) meaning, while “Furiously sleep ideas green color-
less” is not grammatically correct. FP88 made the point that connectionist 
models of that time failed to exhibit these features, and thus were insuf-
ficient models of the full power of human cognition (Fodor and Pylyshyn 
1988; Fodor and McLaughlin 1990; McLaughlin 1993). This debate remains 
active to this day, with various critical commentaries (Aizawa 1997; 
Cummins 1996; Hadley 1994; Horgan and Tienson 1996; Matthews 1997; 
van Gelder 1990), anthologies (Macdonald and Macdonald 1995), and a 
book-length treatment (Aizawa 2003). Recently, Bayesian symbolic model-
ers have raised similar critiques of neural network models (Kemp and 
Tenenbaum 2008; Griffiths, Chater, Kemp, Perfors, and Tenenbaum 2010), 
which are defended in return (McClelland, Botvinick, Noelle, Plaut, Rogers, 
Seidenberg, and Smith 2010).

Qualitatively, there are two opposing poles in the space of approaches 
one can take in attempting to reconcile FP88 and subsequent critiques 
with the fact that the human brain is, in fact, made of networks of 
neurons. One could argue that this systematic, compositional behavior 
is a defining feature of human cognition, and figure out some way that 
networks of neurons can implement it (the “mere implementation” 
approach). Alternatively, one could argue that the kind of systematicity 
championed by FP88 is actually not an accurate characterization of 
human cognition, and that a closer examination of actual human behav-
ior shows that people behave more as would be expected from networks 
of neurons, and not as would be expected from a classical symbol pro-
cessing system (the “dismissive” approach). Few connectionist researchers 
have shown much enthusiasm for the project of merely implementing  
a symbolic system, although proof-of-concept demonstrations do exist 
(Touretzky 1990). Instead, there have been numerous attempts to dem-
onstrate systematic generalization with neural networks (Bodén and Nik-
lasson 2000; Chalmers 1990; Christiansen and Chater 1994; Hadley 1997; 
Hadley and Hayward 1997; Niklasson and van Gelder 1994; Smolensky 
1988, 1990b; Smolensky and Legendre 2006). Also, careful examinations 
of language (Johnson 2004) and various aspects of human behavior have 
questioned whether human language, thought, and behavior really are 
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as systematic as it is commonly assumed (van Gelder and Niklasson 
1994).

An intermediate approach is to attempt to implement a symbolic system 
using neural networks with the intent of finding out which symbolic 
aspects of systematicity are plausible from a neural perspective and which 
are not (Lebiere and Anderson 1993). This attempt to implement the Adap-
tive Control of Thought—Rational (ACT-R) cognitive architecture using 
standard neural network constructs such as Hopfield networks and feed-
forward networks resulted in a considerable simplification of the architec-
ture. This included both the outright removal of some of its most luxuriant 
symbolic features as neurally implausible, such as chunks of information 
in declarative memory that could contain lists of items and production 
rules that could perform arbitrarily complex pattern-matching over those 
chunks. More fundamentally, neural constraints on the architecture led to 
a modular organization that combines massive parallelism within each 
component (procedural control, declarative memory, visual processing, 
etc.) with serial synchronization of information transfers between compo-
nents. That organization in turn has been validated by localization of 
architectural modules using neural imaging techniques (Anderson 2007). 
In general, this hybrid approach has resulted in an architecture that largely 
preserves the systematicity of the original one while greatly improving its 
neural plausibility. It should be pointed out, though, that systematicity in 
ACT-R is limited by both the skills and knowledge needed to perform any 
of the tasks in which it is demonstrated, and more fundamentally by the 
combination of the symbolic level with a subsymbolic level that controls 
every aspect of its operations (procedural action selection, information 
retrieval from memory, etc.)

The reason the systematicity debate has persisted for so long is that both 
positions have merit. In this chapter, we take a “middle way” approach, 
arguing that purely systematic symbol-processing systems do not provide 
a good description of much of human cognition, but that nevertheless 
there are some clear examples of people approximating the systematicity 
of symbol-processing systems, and we need to understand how the human 
brain can achieve this feat. Going further, we argue that a careful consid-
eration of all the ways in which the human brain can support systematicity 
actually deals with important limitations of the pure symbol-processing 
approach, while providing a useful window into the nature of human 
cognition. From a neural mechanisms perspective, we emphasize the role 
that interactions between brain systems—including the more “advanced” 
brain areas, and specifically the prefrontal cortex/basal ganglia (PFC/BG) 
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system—play in enabling the systematic aspects of human cognition. In 
so doing, we move beyond the limitations of traditional “connectionist” 
neural network models, while remaining committed to only considering 
neural mechanisms that have strong biological support.

Although the overall space of issues relevant to this systematicity debate 
is quite high-dimensional and complex, one very important principal 
component can be boiled down to a trade-off between context-sensitivity 
and combinatoriality. At the extreme context-sensitivity end of the spec-
trum, the system maintains a lookup table that simply memorizes each 
instance or exemplar, and the appropriate interpretation or response to it. 
Such a system is highly context sensitive, and thus can deal with each situ-
ation on a case-by-case basis, but is unable to generalize to novel situations. 
At the other end, the system is purely combinatorial and processes each 
separable feature in the input independently, without regard for the 
content in other feature channels. Such a purely combinatorial system will 
readily generalize to novel inputs (as new combinations of existing fea-
tures), but is unable to deal with special cases, exceptions, or any kind of 
nonlinear interactions between features. It seems clear that either extreme 
is problematic and that we need a more balanced approach. This balance 
can be accomplished in two ways. First, one could envisage representations 
and information-processing mechanisms with intermediate degrees of 
context-sensitivity. Second, one could envisage a combination of process-
ing systems that specialize on each of these distinct ends of the spectrum. 
These two strategies are not incompatible and can be combined. In this 
chapter, we argue that the brain incorporates functional subsystems that 
fall along various points of the spectrum, with evolutionarily older areas 
being strongly context sensitive and newer areas, notably the prefrontal 
cortex, being more combinatorial (though still not completely combinato-
rial). This limited combinatoriality is expected to produce limited systema-
ticity in behavior. We argue that human cognition exhibits precisely this 
kind of limited systematicity.

The limits of human systematicity have been pointed out before 
(Johnson 2004; van Gelder and Niklasson 1994). Here we limit ourselves 
to three well-known examples from vision, language, and reasoning. Our 
first example is shown in figure 8.1. The context surrounding the middle 
letter of each word is critical for disambiguating this otherwise completely 
ambiguous input. A purely combinatorial system would be unable to 
achieve this level of context-sensitivity. Our second example is from the 
domain of language and illustrates the interplay between syntax and 
semantics. Consider the sentences:
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(1a) Time flies like an arrow.
(1b) Fruit flies like a banana.

Again, people automatically take the context into account and interpret 
ambiguous words such as “like” and “flies” appropriately based on this 
context. Our final example is from the domain of logical reasoning. Formal 
logic is designed to be completely context invariant and content free. Yet, 
psychological studies with the so-called Wason card selection task have 
shown that human reasoning is strongly sensitive to concrete experience. 
People can easily decide who to card at a bar given a rule such as “You can 
only drink if you are over 21,” but when given the same logical task in 
abstract terms, their performance drops dramatically (Griggs and Cox 
1982; Wason and Johnson-Laird 1972). Even trained scientists exhibit 
strong content effects on simple conditional inferences (Kern, Mirels, and 
Hinshaw 1983). More examples from other domains (e.g., the underwater 
memory experiments of Godden and Baddeley 1975) can easily be added 
to the list, but the above three suffice to illustrate the point. Human cogni-
tion is strongly context sensitive.

The standard classicist response to such empirical challenges is to refer 
to the competence–performance distinction (Aizawa 2003)—the idea that 
people are clearly capable of systematicity even if they sometimes fail to 
demonstrate it in particular circumstances. However, commercial symbolic 
AI systems are explicitly designed to have as few performance-related limi-
tations as possible, and yet they face well-known difficulties in dealing 
with commonsense knowledge and practical reasoning tasks that people 
perform effortlessly. Arguably, these difficulties stem from the fact that a 
purely syntactic, formal representational system bottoms out in a sea of 
meaningless “atoms” and is undermined by the symbol grounding problem 
(Harnad 1990).

Figure 8.1
Example of need for at least some level of context-sensitivity, to disambiguate 

ambiguous input in middle of each word. This happens automatically and effort-

lessly in people.
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On the other hand, the classicist position also has merit. In some cir-
cumstances, it is desirable to be as context insensitive as possible. Perhaps 
the strongest examples come from the domain of deductive inference. 
Changing the meaning of a term halfway through a logical proof leads to 
the fallacy of equivocation. Consider the following fallacious argument:

(2a) A feather is light.
(2b) What is light cannot be dark.
(2c) *Therefore, a feather cannot be dark.

Here the word “light” appears in two different (context-dependent) senses 
in the two premises, which breaks the inferential chain. All tokens of a 
symbol in logic must have identical meaning throughout the proof or else 
the proof is not valid. Despite their natural tendency for context specificity, 
we can appreciate Aristotle’s basic insight that the validity of deductive 
inference depends solely on its form and not on its content. We can learn 
to do logic, algebra, theoretical linguistics, and other highly abstract and 
formal disciplines. This fact requires explanation, just as the pervasive 
tendency for context-sensitivity requires explanation. Classical connec-
tionist theories explain context-sensitivity well, but have yet to provide  
a fully satisfying explanation of the limited systematicity that people 
demonstrate.

We see the trade-off between context-sensitivity and combinatoriality 
as emblematic of the systematicity debate more generally. The literature 
is dominated by attempts to defend positions close to the extremes of 
the continuum. Our position, by contrast, recognizes that human cogni-
tion seems better characterized as a combination of systems operating at 
different points along this continuum, and for good reason: it works better 
that way. Thus, FP88 are extreme in advocating that human cognition 
should be characterized as purely combinatorial. Taken literally, the pure 
symbol-processing approach fails to take into account the considerable 
context-sensitivity that people leverage all the time that makes us truly 
smart, giving us that elusive common sense that such models have failed 
to capture all these years (and indeed Fodor himself has more recently 
noted that context-sensitivity of most aspects of human cognition is 
among the clearest and most notable findings of cognitive psychology; 
Fodor 2001). In other words, FP88 focus on the sharp, pristine “compe-
tence” tip of the cognitive iceberg, ignoring all the rich contextual com-
plexity and knowledge embedded below the surface, which can be revealed 
in examining people’s actual real-world performance. On the other side, 
basic 1980s-style connectionist networks are strongly weighted toward  
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the context-sensitivity side of the spectrum, and fail to capture the  
considerable systematicity that people can actually exhibit, for example, 
when confronting novel situations or systematic domains such as  
syntactic processing or mathematics. For example, while McClelland and 
colleagues have shown that such networks can capture many aspects of 
the regularities and context-sensitivities of English word pronunciation 
(Plaut, McClelland, Seidenberg, and Patterson 1996), they also had to 
build into their network a precisely hand-tuned set of input features that 
balanced context-sensitivity and combinatoriality—in other words, the 
modelers, not the network, solved important aspects of this trade-off. 
Furthermore, such models are nowhere near capable of exhibiting the 
systematicity demonstrated in many other aspects of human cognition 
(e.g., in making grammaticality judgments on nonsense sentences, as in 
Chomsky’s example).

As an example of the need to integrate multiple aspects of human cog-
nition, Anderson and Lebiere (2003) proposed a test for theories of cogni-
tion called the Newell test. It consisted of a dozen criteria spanning the 
full range from pure combinatoriality (e.g., “behave as an almost arbitrary 
function of the environment”) to high context-sensitivity (e.g., “behave 
robustly in the face of error, the unexpected, and the unknown”). They 
evaluated two candidate theories, ACT-R and classical connectionism, and 
found them both scoring well against some criteria and poorly against 
others. Strengths and weaknesses of the two theories were mostly comple-
mentary, indicating that human cognition falls at some intermediate point 
on the combinatorial–context-sensitive spectrum.

Just as we find extremism on the context-sensitivity versus combina-
toriality dimension to be misguided, we similarly reject extremist argu-
ments narrowly focused on one level of Marr’s famous three-level 
hierarchy of computation, algorithm, and implementation. Advocates of 
symbol-processing models like to argue that they capture the computa-
tional level behavior of the cognitive architecture and that everything 
else is “mere implementation.” From the other side, many neuroscientists 
and detailed neural modelers ignore the strong constraints that can be 
obtained by considering the computational and algorithmic competencies 
that people exhibit, which can guide top-down searches for relevant 
neural-processing mechanisms. We argue for a balanced view that does 
not single out any privileged level of analysis. Instead, we strive to inte-
grate multiple constraints across levels to obtain a convergent understand-
ing of human cognitive function (Jilk, Lebiere, O’Reilly, and Anderson 
2008).
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This convergent, multilevel approach is particularly important given 
our central claim that different brain areas lie at different points on the 
context-sensitivity versus combinatoriality continuum (and differ in other 
important ways as well)—the biological data (at the implementational 
level) provide strong constraints on the nature of the computations in 
these different brain areas. In contrast, a purely computational-level 
account of this nature would likely be underconstrained in selecting the 
specific properties of a larger set of specialized processing systems. Thus, 
most purely computational-level accounts, such as that of FP88, tend to 
argue strongly for a single monolithic computational-level system as cap-
turing the essence of human cognition, whereas we argue above that such 
an approach necessarily fails to capture the full spectrum of human cogni-
tive functionality.

In the following, we present a comprehensive overview of a variety of 
ways in which neural networks in different parts of the brain can overcome 
a strong bias toward context-sensitive, embedded processing that comes 
from the basic nature of neural processing. From both an evolutionary and 
online processing perspective (processing recapitulates phylogeny?), we 
argue that more strongly context-sensitive processing systems tend to be 
engaged first, and if they fail to provide a match, then progressively more 
combinatorial systems are engaged, with complex sequential information 
processing supported by the PFC/BG system providing a “controlled pro-
cessing” system of last resort.

This is similar to the roles of the symbolic and subsymbolic levels in 
hybrid architectures such as ACT-R. The subsymbolic level is meant to 
replicate many of the adaptive characteristics of neural frameworks. For 
instance, the activation calculus governing declarative memory includes 
mechanisms supporting associative retrieval such as spreading activation, 
as well as context-sensitive pattern matching such as partial matching 
based on semantic similarities corresponding directly to distributed repre-
sentations in neural networks. A mechanism called blending (Lebiere 1999) 
aggregates together individual chunks of information in a way similar to 
how neural networks blend together the individual training instances that 
they were given during learning. Together with others that similarly control 
procedural flow, these mechanisms constitute the highly context-sensitive, 
massively parallel substrate that controls every step of cognition. If they 
are successful in retrieving the right information and selecting the correct 
action, processing just flows with little awareness or difficulty (for instance, 
when the right answer to a problem just pops into one’s head). But if they 
fail, then the mostly symbolic, sequential level takes over, deploying pains-
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taking backup procedures at considerable effort to maintain the proper 
context information and select the right processing step at each moment.

Our most systematic, combinatorial computational model of this PFC/
BG system demonstrates how an approximate, limited form of indirect 
variable binding can be supported through observed patterns of intercon-
nectivity among two different PFC/BG areas (Kriete, Noelle, Cohen, and 
O’Reilly submitted). We have shown that this model can process items in 
roles they have never been seen in before, a capability that most other 
neural architectures entirely fail to exhibit. We then argue how this basic 
indirection dynamic can be extended to handle limited levels of embed-
ding and recursion, capabilities that appear to depend strongly on the most 
anterior part of the PFC (APFC or frontopolar PFC, BA10; Christoff, Prab-
hakaran, Dorfman, Zhao, Kroger, Holyoak, and Gabrieli 2001; Bunge, 
Helskog, and Wendelken 2009; Koechlin, Ody, and Kouneiher 2003; Stocco, 
Lebiere, O’Reilly, and Anderson 2012). Thus, overall, we identify a full 
spectrum of processing mechanisms, arrayed along the continuum between 
context-sensitivity and combinatorial, systematic processing, and associ-
ated with different parts of the human brain. We find that attempting to 
understand the role of these different brain areas through the lens of sys-
tematicity results in a rich picture of human cognitive abilities.

2  Biological Neural Network Processing Constraints

Neuroscience has come a very long way in the intervening years since 
Fodor and Pylyshyn’s (1988) seminal article. Yet, fundamentally, it has not 
moved an inch from the core processing constraints that were understood 
at that time and captured in the first generation of neural network models. 
What has changed is the level of detail and certainty with which we can 
assert that these constraints hold. Fundamentally, information processing 
in the neocortex takes place through weighted synaptic connections 
among neurons that adapt through local activity-dependent plasticity 
mechanisms. Individual pyramidal neurons in the neocortex integrate 
roughly 10,000 different synaptic inputs, generate discrete action potential 
spikes, and send these along to a similar number of downstream recipients, 
to whom these hard-won spikes are just a tiny drop in a large bucket of 
other incoming spikes. And the process continues, with information 
flowing bidirectionally and being regulated through local inhibitory inter-
neurons, helping to ensure things do not light up in an epileptic fit.

Somehow, human information processing emerges from this very basic 
form of neural computation. Through amazing interventions like the ZIP 
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molecule (Shema, Haramati, Ron, Hazvi, Chen, Sacktor, and Dudai 2011), 
which resets the learned arrangement of excitatory synaptic channels (and 
many other convergent experiments), we know with high confidence that 
learning and memory really do boil down to these simple local synaptic 
changes. Just as the early neural network models captured, processing and 
memory are truly integrated into the same neural substrate. Indeed, every-
thing is distributed across billions of neurons and trillions of such syn-
apses, all operating in parallel. These basic constraints are not in dispute 
by any serious neuroscientist working today.

The implications of this computational substrate favor context-sensi-
tive, embedded processing, in contrast to the pure combinatoriality of the 
symbol processing paradigm. First, neurons do not communicate using 
symbols, despite the inevitable urge to think of them in this way (O’Reilly 
2010). Spikes are completely anonymous, unlabeled, and nearly insignifi-
cant at an individual level. Thus, the meaning of any given spike is purely 
a function of its relationship to other spikes from other neurons, in the 
moment and over the long course of learning that has established the 
pattern of synaptic weights. In effect, neurons live in a big social network, 
learning slowly who they can trust to give them reliable patterns of activa-
tion. They are completely blind to the outside world, living inside a dark 
sea, relying completely on hearsay and murmurs to try to piece together 
some tiny fragment of “meaning” from a barrage of seemingly random 
spikes. That this network can do anything at all is miraculous, and the 
prime mover in this miracle is the learning mechanism, which slowly 
organizes all these neurons into an effective team of information-process-
ing drones. Armed with many successful learning models and a clear con-
nection between known detailed features of synaptic plasticity mechanisms 
and effective computational learning algorithms (O’Reilly, Munakata, 
Frank, Hazy, et al. 2012), we can accept that all this somehow manages to 
work.

The primary constraints on neural information processing are that each 
neuron is effectively dedicated to a finite pattern-detection role, where it 
sifts through the set of spikes it receives, looking for specific patterns and 
firing off spikes when it finds them. Because neurons do not communicate 
in symbols, they cannot simply pass a symbol across long distances among 
many other neurons, telling everyone what they have found. Instead, each 
step of processing has to rediscover meaning, slavishly, from the ground 
up, over time, through learning. Thus, information processing in the brain 
is fully embedded in dedicated systems. There is no such thing as “trans-
parency”; it is the worst kind of cronyism and payola network, an immense 
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bureaucracy. Everything is who you know—who you are connected to. We 
(at least those of us who love freedom and independence) would absolutely 
hate living inside our own brains.

This kind of network is fantastic for rapidly processing specific informa-
tion, dealing with known situations and quickly channeling things down 
well-greased pathways—in other words, context-sensitive processing. 
However, as has been demonstrated by many neural network models (Plaut 
et al. 1996), exceptions, regularities, interactions, main effects—all manner 
of patterns can be recognized and processed in such a system, with suffi-
cient learning.

From an evolutionary perspective, it is not hard to see why this is  
a favored form of information processing for simpler animals. We argue 
that the three more evolutionarily ancient brain structures—the basal 
ganglia, cerebellum, and hippocampus—all employ a “separator” process-
ing dynamic, which serves to maximize context-sensitivity and minimize 
possible interference from other possibly unrelated learning experiences. 
In each of these areas, the primary neurons are very sparsely active, and 
thus tend to fire only in particular contexts. However, the most evolution-
arily recent brain area, the neocortex, has relatively higher levels of neural 
activity, and serves to integrate across experiences and extract statistical 
regularities that can be combinatorially recombined to process novel situ-
ations. In prior work, the extreme context-sensitivity of the sparse repre-
sentations in the hippocampus has been contrasted with the overlapping, 
more systematic combinatorial representations in the neocortex (McClel-
land, McNaughton, and O’Reilly 1995), yielding the conclusion that both 
of these systems are necessary and work together to support the full range 
of human cognition and memory functionality.

Next, we show how, against this overall backdrop of context-sensitive, 
embedded neural processing, information can be systematically trans-
formed through cascades of pattern detectors, which can extract and 
emphasize some features, while collapsing across others. This constitutes 
the first of several steps toward recovering approximate symbol-processing 
systematicity out of the neural substrate.

3  The Systematicity Toolkit Afforded by Different Neural Systems

Here we enumerate the various cognitive-level capabilities that contribute 
to human systematicity and discuss how we think they are deployed to 
enable people to sometimes approximate combinatorial symbol process-
ing. The crux of FP88’s argument rests on the observation that people 
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exhibit a level of systematicity that is compatible with the symbol process-
ing model, and not with traditional connectionist models. Technically, 
systematicity is a relation among entities that are internal to the cognitive 
system. The systematicity of representation is a relation among certain rep-
resentations, the systematicity of inference is a relation among the capacities 
to perform certain inferences, and so forth (Aizawa 2003; Johnson 2004). 
As these internal relations cannot be observed directly, the systematicity 
hypothesis can be tested only indirectly. Researchers have reached a broad 
consensus that generalization—the ability to apply existing knowledge to 
some kind of novel case—is the primary evidence for systematicity. As the 
structural overlap between the existing knowledge and the novel case can 
vary along a continuum, generalization comes in degrees. By implication, 
systematicity also comes in degrees (Hadley 1994; Niklasson and van 
Gelder 1994). Thus, it is counterproductive to view the systematicity debate 
as a dichotomous choice between two irreconcilable opposites. A more 
balanced view seems much more appropriate. In support of this view, the 
remainder of this chapter enumerates the sources of graded generalization 
that exist in neural networks and articulates how they contribute to the 
increasingly systematic patterns of generalization demonstrated by people.

3.1  Categorical Abstraction (Neocortex)
Networks of neurons, typically in the context of a hierarchical organization 
of representations, can learn to be sensitive to some distinctions in their 
inputs while ignoring others. The result is the formation of a categorical 
representation that abstracts over some irrelevant information while focus-
ing on other relevant dimensions of variation. When processing operates 
on top of such categorical abstractions, it can be highly systematic, in that 
novel inputs with appropriate features that drive these categorical repre-
sentations can be processed appropriately. Examples include commonsense 
categories (“dog,” “cat,” “chair,” etc.), and also less obvious but important 
categories such as “up,” “down,” and so on. We know, for example, that 
the ventral visual stream, likely common to most mammals, systematically 
throws away spatial information and focuses contrasts on semantically 
relevant visual categorization (Ungerleider and Mishkin 1982; Goodale and 
Milner 1992). The abstract “symbolic” categories of small integer numbers 
have been demonstrated to exist in at least some form in monkeys and 
other animals, including in PFC recordings (Nieder, Freedman, and Miller 
2002). In all of these cases, abstraction only works if an input has certain 
features that drive learned synaptic pathways that lead to the activation 
of a given abstract category representation. Thus, this form of generaliza-
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tion or systematicity implies a certain scope or basin of feature space over 
which it operates. But this can nevertheless be rather broad; “thing” and 
“one” are both rather severe abstractions that encompass a very broad 
scope of inputs. Categorical abstraction thus yields representations that 
can be used more systematically, since they are effectively stripped of 
context. Furthermore, it is possible to use top-down attentional processes 
to emphasize (or even create) certain feature activations in order to influ-
ence the categorization process and make it considerably more general—
this is an important “hook” that the PFC can access, as we describe later.

One key limitation of abstraction is that, by definition, it requires 
throwing away specific information. This can then lead to confusion and 
“binding errors” when multiple entities are being processed, because it can 
be difficult to keep track of which abstraction goes with which concrete 
entity. For example, perhaps you know someone who tends to use very 
general terms like “thing” and “this” and “that” in conversations—it is 
easy to lose track of what such people are actually saying.

3.2  Relational Abstraction (Neocortex)
This is really a subtype of categorical abstraction, but one which abstracts 
out the relationship between two or more items. For example, “left of” or 
“above,” or “heavier” are all relational abstractions that can be easily 
learned in neural networks, through the same process of enhancing some 
distinctions while collapsing across others (O’Reilly and Busby 2002; Hinton 
1986). Interestingly, there is often an ambiguity between which way the 
relationship works (e.g., for “left of,” which object is to the left and which 
is to the right?), which must be resolved in some way. One simple way is 
to have a dynamic focus of attention, which defines the “subject” or 
“agent” of the relationship. In any case, this relational ability is likely 
present in parietal spatial representations, and rats routinely learn “rules” 
such as “turn right” in mazes of various complexity. Indeed, it may be that 
motor actions, which often need to be sensitive to this kind of relational 
information and relatively insensitive to semantic “what” pathway infor-
mation, provide an important driver for learning these relational abstrac-
tions (Regier and Carlson 2001). Once learned, these relational representations 
provide crucial generalizable ingredients for structure-sensitive processing: 
they are abstract representations of structure that can drive further abstract 
inferences about the structural implications of some situation, irrespective 
of the specific “contents.” For example, a relational representation of physi-
cal support, such as “the glass is on the table” can lead to appropriate 
inferences for what might happen if the glass gets pushed off the table. 
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These inferences will automatically apply to any entity on a tablelike 
surface (even though it may seem that babies learn this fact purely through 
exhaustive, redundant enumeration at their high chairs).

We think these relational and inferential reasoning processes are present 
in a wide range of animals and can readily be inferred from their behavior. 
However, there are strong limits to how many steps of such reasoning can 
be chained together, without the benefits of an advanced PFC. Further-
more, the binding errors and tracking problems associated with abstract 
representations, described above, apply here as well. Thus, these relational 
abstractions support making abstract inferences about the implications of 
structural relationships, all at an abstract level, but it requires quite a bit 
of extra machinery to keep track of all the specific items entering into these 
relationships, and requires dereferencing the abstract inference back out 
to the concrete level again. Again, we see the PFC and its capacity for 
maintaining and updating temporary variable bindings as key for this latter 
ability.

3.3  Combinatorial Generalization (Neocortex)
Despite a bias toward context-sensitivity, it is possible for simple neural 
networks to learn a basic form of combinatoriality—to simply learn to 
process a composite input pattern in terms of separable, independent parts 
(Brousse 1993; O’Reilly 2001). These models develop “slot-based” process-
ing pathways that learn to treat each separable element separately and can 
thus generalize directly to novel combinations of elements. However, they 
are strongly constrained in that each processing slot must learn indepen-
dently to process each of the separable elements, because as described 
above, neurons cannot communicate symbolically, and each set of syn-
apses must learn everything on its own from the ground up. Thus, such 
systems must have experienced each item in each “slot” at least a few times 
to be able to process a novel combination of items. Furthermore, these 
dedicated processing slots become fixed architectural features of the 
network and cannot be replicated ad hoc—they are only applicable to 
well-learned forms of combinatorial processing with finite numbers of 
independent slots. In short, there are strong constraints on this form of 
combinatorial systematicity, which we can partially overcome through the 
PFC-based indirection mechanism described below. Nevertheless, even 
within these constraints, combinatorial generalization captures a core 
aspect of the kind of systematicity envisioned by FP88, which manifests 
in many aspects of human behavior. For example, when we prepare our 
participants for a novel experimental task, we tell them what to do using 
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words that describe core cognitive processing operations with which they 
are already familiar (e.g., push the right button when you see an A followed 
by an X, left otherwise); it is only the particular combination of the opera-
tions and stimuli that is novel. In many cases, a simple slot-based combi-
natorial network can capture this level of generalization (Huang, Hazy, 
Herd, and O’Reilly, in press).

3.4  Dynamic Gating (Basal Ganglia and PFC)
The basal ganglia (BG) are known to act as a dynamic gate on activations 
in frontal cortex, for example in the case of action selection, where the BG 
can “open up the gate” for a selected action among several that are being 
considered (Mink 1996). Anatomically, this gating takes place through a 
seemingly over-complex chain of inhibitory connections, leading to a 
modulatory or multiplicative disinhibitory relationship with the frontal 
cortex. In the PFC, this dynamic operates in the context of updating 
working memory representations, where the BG gating signal determines 
when and where a given piece of information is updated and maintained 
(Frank, Loughry, and O’Reilly 2001; O’Reilly and Frank 2006). In many 
ways, this is equivalent to a logic gate in a computer circuit, where a 
control channel gates the flow of information through another channel 
(O’Reilly 2006). It enables an important step of content-independent process-
ing, as in structure-sensitive processing. Specifically, the BG gate can decide 
where to route a given element of content information, based strictly on 
independent control signals, and not on the nature of that content infor-
mation. In the example shown in figure 8.2, “syntactic” form information 

“Max”

“Max” “Max”

“Max”“hit” “was hit”
(Gating) (Gating)

Agent Patient Agent Patient

Go GoNoNo

PFC

Input

BG

A B

Figure 8.2
Illustration of how the basal ganglia gating dynamic with PFC can separately control 

the functional role assignment of other information in a content-independent 

fashion.
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(passive vs. active verb, cued by presence or absence of keyword “was”) 
can determine whether the preceding word is routed into an “agent” slot 
versus a “patient” slot in working memory. As this example makes clear, 
dynamic gating also helps to resolve the problem of dedicated slots for 
combinatorial generalization: by being able to dynamically route informa-
tion into different functional slots, these slots can become more general-
ized, reducing the slot-explosion problem. However, it is essential to 
appreciate that all of this machinery must be trained up over time: the BG 
gating system learns through trial-and-error experience the gating strate-
gies that lead to reward (O’Reilly and Frank 2006; Hazy, Frank, and O’Reilly 
2006, 2007), and the PFC “slots” (anatomically referred to as “stripes”) 
must learn to encode any information that they might maintain, while 
any other brain area that uses this maintained information must also learn 
to decode it (such are the basic constraints of the neural substrate, as 
articulated above). Thus, whatever systematicity this gating system affords 
must develop slowly over extensive learning experience, consistent with 
what we know about human symbol-processing abilities.

3.5  Active Memory Juggling and Top-Down Control (PFC/BG)
The ability to “juggle” activation states in the PFC, through the dynamic 
BG-mediated gating mechanism, can lead to a form of computation that 
escapes some of the limitations of synaptic weights (while still operating 
within the general confines of learning). Specifically, active maintenance 
plays a role like random access memory (RAM) or registers in a traditional 
computer architecture: whatever is being actively maintained can be 
rapidly updated (in a matter of a few hundreds of milliseconds), instead 
of requiring slow repeated learning over time. Thus, I can tell you to “pay 
attention to the ink color” in the ubiquitous Stroop task, and you can 
dynamically gate in an active representation in PFC that will drive activa-
tion of color-processing areas in posterior cortex (Herd, Banich, and 
O’Reilly 2006; Cohen, Dunbar, and McClelland 1990). Then, on the very 
next trial, you can immediately alter your behavior by gating in a “word 
reading” PFC representation and paying attention to the letters in the word 
instead of the ink color. As noted above, these PFC representations them-
selves have to be learned slowly over time in order to have the appropriate 
impact on processing elsewhere in the brain, but dynamically they can be 
rapidly updated and deactivated, leading to a flexibility that is absent 
without this PFC/BG mechanism. In principle, this kind of activation-
based juggling can implement an abstract “state machine” where the active 
state at one point in time conditions what gets updated at the next, and 
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relatively arbitrary sequences of such state transitions can be flexibly trig-
gered. In the ACT-R architecture, production firing serves to update the 
active state of buffers, which we associate with the PFC active maintenance 
state (Jilk et al. 2008), demonstrating the power of this activation-based 
state machine for arbitrary symbolic-like processing. However, relative to 
ACT-R, the biology of the BG and PFC place stronger constraints on the 
“matching conditions” and “right-hand side” buffer update operations 
that result from production firing, as we discuss in greater detail below. 
Exactly how strong these constraints are and their implications for overall 
processing abilities in practice largely remains to be seen, pending develop-
ment of increasingly sophisticated cognitive processing models based on 
this PFC/BG architecture and relevant learning mechanisms.

We have started making some progress in bridging that gap by imple-
menting a detailed neural model of how the basal ganglia can implement 
the ACT-R procedural module in routing information between cortical 
areas associated with other ACT-R modules (Stocco, Lebiere, and Anderson 
2010). Because of prior factoring of neural constraints in the evolution of 
the ACT-R architecture, production conditions and actions had already 
become naturally parallelizable, leading to a straightforward neural imple-
mentation. However, the detailed neural model reflecting the specific 
topology and capacity of the basal ganglia has suggested new restrictions, 
such as on the amount of information transfer that can occur within a 
single production. At the symbolic level, this is accomplished by a process 
of variable binding that transfers information from the condition side of 
the production to its action side. In terms of the neural model, that vari-
able binding is simply realized by gating neural channels between cortical 
areas.

3.6  Episodic Variable Binding (Hippocampus)
The hippocampus is well known to be specialized for rapidly binding arbi-
trary information together in the form of a conjunctive representation, which 
can later be recalled from a partial cue (Marr 1971; McClelland et al. 1995; 
O’Reilly 1995; O’Reilly and Rudy 2001). This is very handy for remember-
ing where specific objects are located (e.g., where you parked your car), the 
names of new people you meet, and a whole host of other random associa-
tions that need to be rapidly learned. For symbol processing, this rapid 
arbitrary binding and recall ability can obviously come in handy. If I tell 
you “John loves Mary,” you can rapidly bind the relational and abstract 
categorical representations that are activated, and then retrieve them later 
through various cues (“who loves Mary?” “John loves who?”). If I go on 
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and tell you some other interesting information about Mary (“Mary was 
out last night with Richard”) then you can potentially start encoding and 
recalling these different pieces of information and drawing some infer-
ences, while not losing track of the original facts of the situation. However, 
hippocampal episodic memory also has limitations—it operates one 
memory at a time for both encoding and retrieval (which is a consequence 
of its voracious binding of all things at once), and it can take some work 
to avoid interference during encoding, and generate sufficiently distinct 
retrieval cues to get the information back out. But there is considerable 
evidence that people make extensive use of the hippocampus in complex 
symbolic reasoning tasks—undoubtedly an important learned skill that 
people develop is this ability to strategically control the use of episodic 
memory. Specific areas of PFC are implicated as these episodic control 
structures, including medial areas of the most anterior portion of PFC 
(Burgess, Dumontheil, and Gilbert, 2007).

3.7  Indirection-Based Variable Binding (PFC/BG)
The final, somewhat more speculative specialization we describe has the 
greatest power for advancing the kind of systematicity envisioned by FP88. 
By extending the basic BG dynamic gating of PFC in a set of two intercon-
nected PFC areas, it is possible to achieve a form of indirection or represen-
tation by (neural) address, instead of representing content directly (Kriete 
et al. submitted) (figure 8.3). Specifically, one set of PFC stripes (region A) 
can encode a pattern of activity that drives gating in the BG for a different 
set of PFC stripes (region B); region A can then act as a “puppet master,” 
pulling the strings for when the information contained in region B is 
accessed and updated. This then allows region A to encode the structural 
form of some complex representation (e.g., Noun, Verb, and Object roles 
of a sentence), completely independent of the actual content information 
that fills these structural roles (which is encoded in the stripes in region 
B). Critically, Kriete et al. showed that such a system can generalize in a 
much more systematic fashion than even networks using PFC/BG gating 
dynamics (which in turn generalized better than those without gating) 
(figure 8.4). Specifically, it was able to process a novel role filler item that 
had never been processed in that role before, because it had previously 
learned to encode the BG address where that content was stored. Thus, 
assuming that the PFC content stripes can encode a reasonable variety of 
information, learning only the addresses and not the contents can lead to 
a significant increase in the scope of generalization. Nevertheless, as in all 
the examples above, all of these representations must be learned slowly in 
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Figure 8.3
The Kriete et al. (submitted) indirection model, performing the simple sentence 

encoding task, demonstrating indirection in the PFC/BG working memory system. 

Three-word sentences are encoded one word at time, with each word associated with 

a role (“Agent,” “Verb,” or “Patient”). After encoding the sentence, the network is 

probed for each word using the associated roles (e.g., “What was the ‘Agent’ of the 

sentence?”). The shaded layers indicate currently active inputs. (A) One step of the 

encoding process for the sentence “Bob ate steak” in the PFC/BG working memory 

(PBWM) indirection model. The word “Ate” is presented to the network along with 

its current role (“Verb”) and the instruction “Store” to encode this information for 

later retrieval. In this example, the word “Ate” is stored in Stripe2 of PFC filler stripes 

(left side of figure). The identity/location of Stripe2 is subsequently stored in the 

Verb stripe of PFC role stripes (right side of figure). The same set of events occurs 

for each of the other two words in the sentence (filling the agent and patient roles). 

(B) One step of the recall process. A role (“Patient” in the example) and the instruc-

tion “Recall” are presented as input. This drives output gating of the address infor-

mation stored by that role stripe (highlighted by the dashed arrow), which in turn 

causes the BG units corresponding to that address to drive output gating of the 

corresponding filler stripe, thus outputting the contents of that stripe (“Steak”). 
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Accuracy performance of the indirection-based network juxtaposed against compari-

son networks, for three increasingly challenging generalization tasks. The results are 

grouped by task: standard, anti-correlation, and generative. Bars correspond to the 

four networks (from left to right): SRN, basic PBWM network with maintenance 

only, PBWM output gating network, and PBWMindirection network. The indirec-

tion network is the only one capable of achieving high levels of performance across 

all the tasks.
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the first place. Our model demonstrates that, with appropriate connectivity 
and the same learning mechanisms used for prior PFC/BG models (O’Reilly 
and Frank 2006), this learning can happen naturally.

4  Putting It All Together

Having enumerated a range of different mechanisms, each of which pro-
motes systematicity in a specific way, we now attempt to spell out some 
particular examples for how a complex sequence of cognitive operations, 
which achieves a limited approximation of classical symbol processing, 
could unfold through the interactions of these systems. Note that these 
examples are based on informed speculation, not hard data, and we do not 
currently have well-validated biologically based models that capture the 
behavior we describe. Nevertheless, we consider it plausible that this is how 
it is actually solved in the human brain, based on a variety of sources too 
numerous to explicate here. Moreover, this speculation is informed by 
models of similar tasks (e.g., (Lebiere 1999) in higher-level frameworks for 
which a correspondence to the neural architecture exists, such as ACT-R 
(see the section on the SAL framework below). Recently, this methodology 
of developing higher-level symbolic models to guide the structure and 
content of neural models has been applied to the complex task of sense-
making (Lebiere, Pirolli, Thomson, Paik, Rutledge-Taylor, Staszewski, and 
Anderson submitted).

First, consider the case of multidigit mental arithmetic, for example, 
multiplying 42 × 17. This requires a systematic sequence of cognitive opera-
tions and keeping track of partial products, which most adults can apply 
to arbitrary numbers (i.e., in a fully systematic, content-independent 
manner). Before we consider how this happens in the general case, it is 
important to appreciate that if the problem was 10 × 42, for example, one 
would use a much faster context sensitive special-case process to arrive at 
the answer—people automatically and effortlessly recognize and apply 
these special case solutions, demonstrating the primacy of context-sensi-
tivity as we argued above. Furthermore, in the well-studied domain of chess 
experts, much of the expertise is associated with this special-case pattern 
recognition ability and not with optimization of a fully general-purpose 
algorithm, whereas symbolic computer models of chess have the exact 
opposite profile, optimizing a general-purpose search algorithm instead of 
memorizing a bunch of special cases (Chase and Simon 1973).

This fundamental distinction between cognitive and algorithmic  
solutions arises from the hardware available to those classes of solutions. 
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Traditional CPUs are able to flawlessly execute billions of operations per 
second, but the access to the largest memory store is considerably slower 
and sequential. Thus, algorithmic solutions evolved to emphasize compu-
tation over memory. Neural hardware, on the other hand, is the mirror 
image: an excruciatingly slow and error-prone central loop (on the order 
of 20Hz, about eight times slower than off-the-shelf CPUs), but an extremely 
powerful, context-sensitive, massively parallel access to long-term memory. 
Cognitive solutions, therefore, evolved to emphasize memory over com-
putation and, when computation is necessary, attempt to cache its results 
as efficiently and automatically as possible.

To begin on the general-case multidigit multiplication problem, people 
will almost certainly start by encoding the problem into hippocampal 
episodic memory, so they can retrieve it when interference overtakes the 
system and they lose track of the original problem. The next step is to 
recall an overall strategy for such problems, and the BG gates an abstract 
encoding of this strategy into an anterior portion of dorsal-lateral PFC 
(DLPFC). This “strategy plan” representation then activates the first step 
of the strategy, in a more posterior portion of DLPFC, which then drives 
top-down perceptual biasing in the parietal cortex to focus attention on 
the ones decimal place numbers (i.e., the right-most digits). Considerable 
categorical abstraction is required to even extract a numerical value from 
a particular pattern of light and dark on the retina, and abstract relational 
representations are required to focus on the appropriate portions of the 
digits, including things like top, bottom, right, and so on.

In any case, you end up activating the sub-problem of multiplying 7 × 
2, which should activate the answer of 14 through well-learned parietal or 
perhaps temporal verbally mediated representations, perhaps even with 
support from the hippocampus depending on your educational status and 
level of recent practice. Having produced this answer, you cache away this 
partial product either by gating it into another available stripe in PFC 
(perhaps in verbal and/or numeric coding areas), or by encoding it episodi-
cally in the hippocampus (or likely both, as the hippocampus is automati-
cally encoding everything). Next, guided by the strategic plan, you move 
on to the tens position in the first number, multiplying 7 × 4, encoding 
the 28, and so on. After each step, the partial products must be tagged and 
encoded in such a way that they can later be accessed for the final addition 
step, which in itself may require multiple substeps, with carry-overs and 
so on. An indirection-based variable-binding solution may be employed 
here, where each partial product is encoded in a different stripe, and 
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“tagged” with the functional role of an ordinal list of items to add. Of 
course, items may be added incrementally in an opportunistic, context-
sensitive manner, and various permutations on an overall strategy may be 
employed. But clearly, considerable “activation-based juggling” of informa-
tion is required, along with likely several strategic hippocampal episodic 
encoding and retrieval steps to maintain the partial products for subse-
quent processing.

At some level of description, this could be considered to be a kind of 
classical symbol-processing system, with the hippocampus playing the role 
of a “tapelike” memory system in the classical Turing model and DLPFC 
coordinating the execution of a mental program that sequences cognitive 
operations over time. We do not disagree that, at that level of description, 
the brain is approximating a symbol-processing system. However, it is 
essential to appreciate that each element in this processing system has 
strong neurally based constraints, such that the capacity to perform this 
task degrades significantly with increasing number size, in a way that is 
completely unlike a true symbol-processing system, which can churn along 
on its algorithm indefinitely, putting items on the stack and popping them 
off at will. In contrast, the human equivalent of the “stack” is severely 
limited in capacity, subject to all manner of interference, and likely dis-
tributed across multiple actual brain systems. Furthermore, as noted above, 
the human brain will very quickly recognize shortcuts and special cases 
(e.g., starting with 10 × 42 as an easier problem and adjusting from there), 
in ways that no Turing machine would be able to. Thus, the bias toward 
context-sensitive processing results in very rapid and efficient processing 
of familiar cases—a perfectly sensible strategy for a world where environ-
ments and situations are likely to contain many of the same elements and 
patterns over time.

Indeed, a symbolic architecture such as ACT-R operates exactly in the 
way described above, with the hippocampus corresponding to declarative 
memory and the DLPFC corresponding to the retrieval buffer through 
which cognitive operations would flow for execution by the procedural 
system. Limitations arise through the subsymbolic level controlling the 
operations of the symbolic level. Chunks may exist perfectly crisp and 
precise at the symbolic level, but their activation ebbs and flows with the 
pattern of occurrence in the environment, and their retrieval is approxi-
mate, stochastic, and error-prone. Similarly, productions may implement 
a clocklike finite state machine, but the chaining of their individual steps 
into a complex processing stream is dependent on the stochastic, adaptive 
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calculus of utilities that makes flawless execution of long procedures 
increasingly difficult and unlikely. Other system bottlenecks at both the 
architectural and subsymbolic level include limited working memory, 
attentional bottlenecks, and limits on execution speed for every module. 
Thus, hybrid symbolic-subsymbolic architectures such as ACT-R provide us 
with an abstraction of the capacities and limitations of neural architectures 
that can guide their development.

5  Discussion

We conclude with a brief discussion of some additional points of relevance 
to our main arguments, including the importance of data on the time-
course of learning and development on understanding the nature of 
human systematicity, the importance of multilevel modeling and the spe-
cific case of relating the ACT-R and Leabra modeling frameworks, and how 
our models compare with other related models in the literature.

5.1  The Importance of Learning and Development of Systematicity
We put a lot of emphasis on the role of “learning from the ground up” as 
a strong constraint on the plausibility of a given cognitive framework. 
Empirically, one of the strongest arguments in favor of our overall approach 
comes from the developmental timecourse of symbolic processing abilities 
in people—only after years and years of learning do we develop symbolic 
processing abilities, and the more advanced examples of these abilities 
depend critically on explicit instruction (e.g., math, abstract logic). Only 
in the domain of language, which nevertheless certainly is dependent on 
a long timecourse of exposure to and learning from a rich social world of 
language producers, does systematicity happen in a relatively natural, 
automatic fashion. And as we discuss in greater detail in a moment, lan-
guage development provides many possible windows into how systematic-
ity develops over time; it is certainly not a hallmark of language behavior 
right from the start.

In short, we argue that learning processes, operating over years and 
often with the benefit of explicit instruction, enable the development of 
neural dynamics involving widely distributed interacting brain systems, 
which support these approximate symbol-processing abilities. It is not just 
a matter of “resource limitations” slapped on top of a core cognitive archi-
tecture that does fully general symbol processing, as argued by FP88; rather, 
the very abilities themselves emerge slowly and in a very graded way, with 
limitations at every turn. We think this perspective on the nature of human 



PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

Calvo—The Architecture of Cognition

R

PROPERTY OF MIT PRESS: FOR PROOFREADING AND INDEXING PURPOSES ONLY

How Limited Systematicity Emerges  215

symbolic processing argues strongly against systems that build in core 
symbol-processing abilities as an intrinsic part of the architecture. But 
unlike some of our colleagues (McClelland et al.), we nevertheless agree 
that these approximate symbol-processing abilities do develop, and that 
they represent an important feature that any neural network framework 
must account for.

One of the most famous debates between connectionists and symbol-
processing advocates took place in the context of the developmental data 
on the U-shaped curve of overregularization of past tense morphology in 
English. After correctly producing irregular verbs such as “went,” kids start 
saying things like “goed,” seemingly reflecting the discovery and applica-
tion of the regular “rule” (“add -ed”). First, this doesn’t happen until age 
three or four (after considerable exposure and productive success with the 
language), and it is a very stochastic, variable process across kids and across 
time. Rates of overregularization rarely exceed a few percent. Thus, it cer-
tainly is not the kind of data that one would uphold as a clear signature 
of systematicity. Instead, it seems to reflect some kind of wavering balance 
between different forces at work in the ever-adapting brain, which we argue 
is a clear reflection of the different balances between context-sensitivity 
and combinatoriality in different brain areas. Interestingly, single-process 
generic neural network models do not conclusively demonstrate this 
U-shaped curve dynamic, without various forms of potentially question-
able manipulations. Some of these manipulations were strong fodder for 
early critiques (Rumelhart and McClelland 1986; Pinker and Prince 1988), 
but even later models failed to produce this curve in a purely automatic 
fashion without strong external manipulations. For example, the Plunkett 
and Marchman (1993) model is widely regarded as a fully satisfactory 
account, but it depends critically on a manipulation of the training envi-
ronment that is similar to the one heavily criticized by Rumelhart and 
McClelland (1986).

5.2  Convergent Multilevel Modeling: The SAL Framework

A valuable perspective on the nature of symbolic processing can be obtained 
by comparing different levels of description of the cognitive architecture. 
The ongoing SAL (Synthesis of ACT-R and Leabra) project provides impor-
tant insight here (Jilk et al. 2008). ACT-R is a higher-level cognitive archi-
tecture that straddles the symbolic-subsymbolic divide (Anderson and 
Lebiere 1998; Anderson, Bothell, Byrne, Douglass, Lebiere, and Qin 2004), 
while Leabra is a fully neural architecture that embodies the various  
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mechanisms described above (O’Reilly et al. 2012). Remarkably, we have 
found that, through different sources of constraint and inspiration, these 
two architectures have converged on largely the same overall picture of 
the cognitive architecture (figure 8.5). Specifically, both rely on the PFC/
BG mechanism as the fundamental engine of cognitive sequencing from 
one step to the next, and this system interacts extensively with semantic 
and episodic declarative memory to inform and constrain the next actions 
selected. In ACT-R, the PFC/BG system is modeled as a production system, 
where production-matching criteria interrogate the contents of active 
memory buffers (which we associate with the PFC in Leabra). When a 
production fires, it results in the updating of these buffers, just as the BG 
updates PFC working memory in Leabra. Productions are learned through 
a reinforcement-based learning mechanism, which is similar across both 
systems.

A detailed neural model of how the topology and physiology of the 
basal ganglia can enable computations analog to the ACT-R production 
system has been developed (Stocco et al. 2010). As previously discussed, 
that model explains how the abstract symbolic concept of variable binding 
has a straightforward correspondence in terms of gating information flows 
between neural areas. Another major outstanding issue regarding symbolic 
representations is the ability to arbitrarily compose any values or struc-
tures, which in turn translates into the capacity to implement distal access 
to symbols (Newell 1990). The original implementation of ACT-R into 
neural networks (Lebiere and Anderson 1993) assumed a system of movable 
codes for complex chunks of information that could be decoded and  
their constituent parts extracted by returning to the original memory area 
where the composition was performed. Recent architectural developments 
(Anderson 2007) include the separation of the goal-related information 
into a goal buffer containing goal state information and an imaginal buffer 
containing the actual problem content. The former is associated with the 
working memory functionality of the prefrontal cortex whereas the latter 
is associated with the spatial representation and manipulation functions 
of the parietal cortex. This suggests that rather than using movable codes, 
distal access is implemented using a system of control connections that 
can remotely activate constructs in their original context.

5.3  Other Neural Network Approaches to Systematicity
A number of different approaches to introducing systematicity into neural 
network models have emerged over the years (Bodén and Niklasson 2000; 
Chalmers 1990; Christiansen and Chater 1994; Hadley 1997; Hadley and 
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Hayward 1997; Niklasson and van Gelder 1994; Smolensky 1988, 1990b; 
Smolensky and Legendre 2006). Broadly speaking, our approach is distinct 
from these others in focusing on a systems neuroscience perspective to the 
problem, both in terms of differential specializations of different brain 
areas and in terms of how overall symbol processing functionality can 
emerge through the complex interactions, over distinct time steps, between 
these specialized areas, as sketched above in our multidigit arithmetic 
example.

In terms of specific points of comparison, one of the most important 
mechanisms for achieving any kind of symbol processing is arbitrary vari-
able binding, which we have argued above depends on episodic memory 
in the hippocampus and on the indirection-based dynamics in the PFC/
BG system (Kriete et al. submitted). A number of models adopt a tensor 
product approach to variable binding (Plate 2008; Smolensky 1990a; 
Pollack 1990), which is similar in some respects to the kind of conjunctive 
binding achieved by the hippocampal episodic memory system. Another 
solution is to assume a synchrony-based binding mechanism, but we are 
skeptical that such a mechanism would be able to interleave multiple bind-
ings across a phase cycle (O’Reilly and Busby 2002; O’Reilly, Busby, and 
Soto 2003). Furthermore, if such a mechanism were in place, it would 
predict a much more pervasive ability to perform arbitrary variable binding 
than people actually exhibit. In this respect, we think that the evidence 
for a long period of learning and development being required before people 
can even begin to demonstrate symbol-processing-like abilities is consis-
tent with our focus on variable binding being a learned skill that involves 
the coordinated contributions of multiple brain areas.

As was evident in our multidigit arithmetic example, just forming a 
binding is only part of the problem: you also need to be able to manipulate 
the bound information in systematic ways. Here, we are less clear about 
the strong claims made by these other models: it seems that they mostly 
engineer various mechanisms to achieve what look to us like implementa-
tions of symbol-processing mechanisms, without a strong consideration 
for how such mechanisms would operate plausibly in the brain. What is 
conspicuously lacking is an account of how all of the complex neural 
processing required for these systems can be learned through experience-
driven plasticity mechanisms. Our own work on this challenging problem 
is still in its infancy, so we certainly cannot claim to have shown how it 
can be learned from the ground up. Nevertheless, we remain optimistic 
that a learning-based approach fits best with the available human data.
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6  Conclusion

After twenty-five years of earnest debate, considerable progress has been 
made in advancing our understanding about the nature of human syste-
maticity. We hope that our biologically based systems neuroscience 
approach to these issues may provide some further insight into the nature 
of the human cognitive architecture and how a limited form of symbol 
processing can emerge through interactions between different specialized 
brain areas. We are excited about continuing to advance this program of 
research, to the point of one day showing convincingly how neural tissue 
can achieve such lofty cognitive functions as abstract mathematics and 
abstract logical reasoning.
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