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We presenta novel hypothesisoncerninghe nature
and developmentof working memory representations
andsomeinitial computationalnvestigationf this hy-
pothesis. Working memoryrefersto the active mainte-
nanceof informationin theserviceof comple« cognition,
suchas languagecomprehensionspatial thinking, and
problemsolving (Miyake & Shah,1999). We propose
thatthe uniguedemandsplacedon the working memory
systemshapéts representationsverlearninganddevel-
opmentaffectingtheuseof workingmemoryby thecog-
nitive systemasa whole. Our primary sourceof insight
into this processcomesfrom a computationaknalysis,
which is usedto integrateandexplore relevantfindings
from neurobiologyas well as developmentaland adult
cognition.

Our specifichypothesids that to maintaininforma-
tion in anactive stateover delaysandin thefaceof inter-
ference(e.g., from incoming stimuli, ongoingprocess-
ing, andnoise),working memoryrepresentationshould
bediscretein nature.A discreterepresentatioadmitsto
only afinite setof possiblestatesratherthanrepresent-
ing continuousstates.For example,the integersfrom 1
to 100 form a discreteset, in contrastto the real num-
bersin this range.Discretenessnpartsa measuref ro-
bustnesgo the representatiobecausesmall amountsof
noisecanbe overcomeby interpretingan obseredstate
asthe nearestdiscretestate(Figure1). Many different
processingnechanismsould achieve this remappingof
perturbedstates,including attractordynamicsin neural
networks (Hopfield, 1984; Smolensk, 1986), nearest-
neighborclassifier§Cover & Hart, 1967),winnertake-
all networks,andrule-basedystems.

We suggesthatbecausénformationmustbeactively
maintainedover relatively long time periodsin work-
ing memoryto completecomplex cognitive tasks(e.g.,
10sof secondgo minutes),it is in a uniquepositionto
benefitfrom discretenessThis discretenessomesat a
cost,however, becausét limits thelevel of fine detailor
gradednformationthatcanbeencodedThus,therepre-
sentationsinderlyingothercognitive functionsmay uti-
lize lessdiscrete gradedrepresentationsecause¢hey do
notrequireasmuchnoisetoleranceandcanthereforeen-
codefiner detailandmoregradednformation.

Fromthe centralpropertyof discretenessa number
of other propertiesfollow. For example, discreterep-
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Figure 1: (a) Two-dimensionalactivity spacewith discrete
representationsvhereonly a subsetof statesare meaningful,
indicatedby the small squares.The “X” denotesa corrupted
versionof one of the discretestates. (b) Discreterepresenta-
tionsallow the spaceto be caned up into equivalenceclasses,
and corruptedstates(e.g., X) treatedas equialentwithin the
boundarie®f thediscretestate.

resentationshould be: more categorical, more easily
verbalizableand generallyaccessibleo other parts of
the cognitive system,betterfor perceving or perform-
ing a sequencef steps,and more “symbolic” in some
respects. All thesepropertieshave generallybeenat-
tributedto working memoryrepresentationaswell, and
animportantcomponenbf our researchs to explorethe
ideathatthey all follow from the morebasicpropertyof
discreteness.

Existing Behavioral Data

A numberof findingsin the behaioral literatureare
consistentwith the implicationsof our discretenesfy-
pothesisjncluding:

e Continuousspatiallocationinformationis encodedn
a categorical fashionin taskswhere participantsare
asledto encodehelocationof adotwithin alargecir-
cle (HuttenlocherHedges& Duncan,1991). Partici-
pantsexhibit a systematidias, shifting the dot closer
to the centerof the nearestjuadranof thecircle. Our
interpretationis that the categorical bias reflectsthe
involvementof working memory This interpretation
is consistenwvith their finding thatthis biaseffectin-
creasesn magnitudewhena delay of 10 secondss
imposedbetweenstimuluspresentatiorand response
selection,therebynecessitatingvorking memoryin-
volvement.

e Catgorizationbecomeganore dimensionallyfocused



Figure2: Ambiguousduck/rabbitfigure.

and sensitve to exact identity matching with both
increasing developmental age (Smith, 1989) and
increasingamounts of processingtime (Lamberts,
1995). In young toddlers and under speededre-
sponseconditions, cateyorizationtendsto be based
on overall similarity regardlessof differential simi-
larities along different dimensions. However, older
children and adults given sufiicient processingtime
will placestrongemveighton stimuli sharingthe same
valuealonga givendimensionevenwhenthesestim-
uli arelesssimilar alongotherdimensionge.g.,two
red stimuli thatarevery differentin sizewill be cate-
gorizedtogetherinsteadof anorangeandared stimu-
lus of similar but notidenticalsizes).Thus,it appears
that, underconditionswhenworking memoryis po-
tentially engagedcateyorizationbecomesnuchmore
discretein both its dimensionafocus and sensitvity
to identity.

Interpretatiorof ambiguoudiguresbhecomesnoreun-
ambiguous(discrete)when they are held in work-
ing memoryinsteadof being perceptuallyavailable.
Chambersand Reisbeg (1985) shaved that partici-
pantswereableto generatalifferentinterpretationof
ambiguoudfigures(e.g., Figure 2) on direct viewing,
but could typically generateonly one interpretation
whenthefigurewasheldin working memory Thein-
ability to generat@nalternatve interpretatiorwasnot
dueto alack of maintaineddetailin working memory
becaus@articipantscoulddraw thefigurefrom mem-
ory. Rather we suggesthe inability wasdueto the
strongselectionof onediscreteinterpretatiorin work-
ing memory

In tasks that require a comparisonof alternatves
that vary in fine-graineddistinctions, such as faces
or wines, verbalizationimpairs performance(e.g.,
Melcher & Schooler 1996; Schooler & Engstler
Schooler1990). We suggesthatrequiringsubjectgo
usediscreteverbal representationfor encodingwill
engagethe use of the working memoryto maintain
thepropertieof oneitem while comparingt with an-
other, insteadof relying on more gradedfamiliarity-
like mechanismghat could be mediateddirectly by
perceptuakepresentations.Thus, we interpretthese
resultsas suggestie evidencethat discreteworking
memoryencodinghasa deleteriouseffect on the abil-

Figure3: lllustration of
an attractor state and its
surroundingbasin. Net-
work updatingcauseghe
activationstate(simplified
by 2 variables,x & y) to
corverge on the attractor
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ity to make fine-grainedlistinctionsamongstimuli.

Computational Models

We have developeda seriesof computationamodels
to exploreworking memory(including previouswork by
Munakata,McClelland, Johnson& Siegler, 1997; Mu-
nakata,1998). One line of researchusesan abstract
framework developedoy Mozer(1998; Mathis& Mozer,
1996),andhasdemonstratethatdiscretaepresentations
are more robust to noise,are more easily processedy
otherprocessingpathways,andaremoreinfluentialover
theseother pathways. Further we were able to char
acterizethe circumstancesinderwhich discreterepre-
sentationsarelikely to be important,ascontrastedwvith
othersituationswhenthey arelesslik ely to beimportant.
Theseresultsprovide theoreticaleveragein understand-
ing whatdistinguishesvorkingmemorytasksfrom other
taskswhereworking memoryis notnecessary

Recently we have useda more biologically-based
framawvork (O'Reilly, 1998; O'Reilly, Braver, & Co-
hen, 1999)to explore someof the waysin which dis-
creterepresentationsanbemanifestedn biologicalsys-
temssuch as the prefrontal cortex (PFC). Thesemod-
els take advantageof the attractors that form among
recurrently-interconnectedhits to refreshand maintain
active memoriesover time (Braver, Cohen,& Senan-
Schreibey 1995; Dehaene& Changeux,1989; Zipser,
Kehoe Littlewort, & Fuster1993).Attractors(Figure3)
are so-namedbecausehey are statesof activation that
the network is dravn towardsasactivationsare updated
overtime (settling). Attractorscanmaintaininformation
by keepingthe network stablein the attractorstateover
time.

Thefirst seriesof threesimulationsreportechereex-
plore how differentlevels of discretenessanbe mani-
festedin termsof differentpatternsof interconnectiity
amonga setof neuralunits. Theseconnectvity patterns
resultin differentwidths of the attractorbasins (regions
of activationspacesurroundingheattractor from which
thenetwork will reliably settleinto theattractorstate see
Figure 3), andthereforethe level of discretenessf the
representationadpace. Theseattractorbasinsproduce
theequivalenceclasseshawn in Figurel.



Figure4: Distributedfeatural
representationssedfor explor-

ing active maintenance Three
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Figure5: a) Network for simulation1, with input providing
activationto PFC(prefrontalcortex) unitsrepresentindgeatures
asshawn in previousfigure. Thefeatureunitsareall intercon-
nectedwith eachotherto supporthemaintenancef activation.
b) Activation spreadsacrossthe interconnection®ncethe in-
putis removed,asis shavn by the PFCactivationstateglotted
overtime (lighter= moreactie).

Thefinal simulationexploresthe useof a dopamine-
baseddynamicgatingmechanisnthatis thoughtto ac-
tively regulatethe strengthof a subsetof neuronalcon-
nectionsin the PFC (Cohen,Braver, & O’Reilly, 1996;
Braver & Cohen,1999). Thisgatingmechanisnimposes
discretenes@ the switching betweenmaintenanceand
updatingof working memoryrepresentationandis thus
likely to contributeto the overall discretenessf working
memoryrepresentations.

Simulation 1: Spreading Activation in Continuous
Distributed Representations

In thisfirst simulation,we shav thataworking mem-
ory network with only pairwise (lateral) excitatory in-
terconnectionsimongdistributedunits (with global sur
roundinhibition) exhibits virtually no ability to maintain
informationovertime aftertheinputis removed. There-
fore, analternatve architecturas required,asdiscussed
in Simulation2. The simulationusesdistributedrepre-
sentationsgas shavn in Figure 4, andits goalis simply
to maintaintherepresentationf anobject(e.g.,"televi-
sion” asencodedby the actiity of the distributed fea-
turesof “monitor” and“spealers”) aftertheinput pattern
for thatobjectis removed. Thenetwork is shavn in Fig-
ure 5a. Although the PFC working memory units can
encodea specificobjectusingadistributedfeature-based
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Figure6: Network
with  higherorder rep-
resentations encoding
3 objectsindividually. This
\ \ produces more discrete
representations  with
wider attractorbasinsand
correspondingly  better
active maintenance.
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codewhile externalinputsarepresente.g.,whensuchan
objectis within view; shovnin thetop partof Figure5b),
oncemaintenancef thisinformationis requiredwithout
externalinput, theactivationspreadscrosgheintercon-
necteddistributed feature units and the object-specific
encodingis lost (bottom part of Figure 5b). Thus, the
network cannolongerdistinguish‘television” from “ter-
minal” or “synthesizer"basedon the maintainedinfor-
mation.

Thisresultsuggestshatalthoughoverlapping.inter-
connectedlistributedrepresentationsanbe very useful
for perceptuaprocessingwhile inputsarepresent)they
are not suitablefor the active maintenancef informa-
tion over time. Thesedistributed representationpro-
ducea kind of representationatontinuumdefinedover
the differentcombination=of unit activationswithin the
spaceandbecausall suchcombinationsare supported
by the distributed interconnectionsthe network is un-
ableto lock onto andmaintainonly oneof them. Thus,
this exampleconstitutesan extremeversionof continu-
ous (non-discreteyepresentationshereactive mainte-
nancefails evenin theabsenc®f noise.

Simulation 2: Wider, MoreDiscrete, Attractor Basins

Next, we explore the effects of addinghigherorder
representationshat encodethe specific objectsto be
maintained(e.g., “television”). Theserepresentations
amountto a secondlayer of units that connectto spe-
cific subsetof unitsin the first layer (Figure 6). With
theserepresentationshe network is ableto maintainin-
formationover time, evenwith smallamountsof noise,
becaus¢hereis adiscreteattractorstatecorrespondingp
eachobjectto be maintained.However, whenthe noise
level is increasedthe informationis rapidly corrupted,
becausé¢hedistributedoverlapin thefeaturelayermakes
the attractorbasinsrelatively narrov. Thelevel of noise
robustnessn the model can be predictedas a function
of the distinctivenessof the working memoryrepresen-
tations(i.e., the extentto which units are sharedacross
multiple different representations). This suggestshe
ideaexploredin the next simulation.



Figure7: Network
with completely isolated
representationsencoding
featuresndividually. This
produces discrete repre-
sentationswith wide and
robust attractor basins,
and correspondingly
betteractive maintenance.

[ L]
[ L] ]

Input

Simulation 3: Isolated Representations

This simulationexploresthe mostrobust configura-
tion of the network, which is whenthe units are com-
pletely isolatedfrom eachother andactivationis main-
tained through excitatory self-connectiongFigure 7).
The completeisolation of the featureunits from each
other preventsary spreadof activation betweenthem,
producingthe robustnesf actve maintenance When
units are individually self-connectedlike this, their
gradedactiationsare transformednto discrete,binary
activation states.Specifically if the unitis active above
a threshold(determinedby a numberof factorsinclud-
ing strengthof the selfconnection)thenit activatestself
stronglyenoughto maintainits activationovertime, even
in the absenceof bottom-upinput. This self-actvation
corvergeson a specificactivation value, producingthe
“on” caseof thetwo binarystates|If theunit'sactivation
is below thethreshold activationwill dissipatevhenthe
inputis removed,producingthe“off” binarystate.Thus,
the width of the attractorbasinsin this network areen-
hancedby the discrete,binary characternof the isolated
units,whichis consistentvith our overallhypothesishat
working memorybenefitsfrom the useof suchdiscrete
representations.

Interestingly there is evidence that the PFC may
have moreisolatedpatternsof connectvity — neurons
thereappearto be interconnectedvithin self-contained
“stripe” patterns (Levitt, Lewis, Yoshioka, & Lund,
1993).Recentlectrophysiologicatvidencefurthersup-
portsthis notion,suggestinghatthe PFCis composeaf
small groups (“microcolumns”) of iso-codingneurons,
which are presumablytightly interconnectedvith each
other(Rao,Williams, & Goldman-Rakic1999).

Simulation 4: Dynamic Gating for Rapid Updating
and Robust Maintenance

Evenwith the mostrobustisolatedconnectvity pat-
terns,thereremainghefollowing fundamentaproblem:
fixedlevelsof excitatoryinputweightsinto thesimulated
PFCworking memorysystemcannotsimultaneoushal-
low informationto be rapidly encodedwhile also pro-

Trial | Input Maint Output
1 STORE-A A A
2 IGNORE-B A B
3 IGNORE-C A C
4 IGNORE-D A D
5 RECALL A A

Tablel: A sequencef trialsin the simpleactive maintenance
task,shawing theinput(controlcueandstimulus),whatshould
bemaintainedn actve memory andwhatshouldbe output.

Input

Output

Figure 8: Dynamic updatingand maintenancenodel. Input
containstask control units (S=store,l=ignore, R=recall) and
stimulusunits (A-D). The outputcontainsthe stimulusunits.
Thehidden(posteriorcortex) andPFChave simpleone-to-one
representationsf theinputstimuli. The AC unit andtheoutput
hiddenlayer learnthe significanceof the cuesfor taskperfor
manceandhow to producethe appropriateoutputs.

tecting maintainedinformation from the interfering ef-

fectsof otherinputsthatshouldnotbemaintained Rapid

encodingrequiresrelatively stronginput weights,while

protectedmaintenanceequiresweak ones. Thus, we

suggestthat a successfulworking memory systemre-

quiresdynamicmodulationof theseinput weights,and

it appearsthat the dopamineneuromodulatiorof PFC

couldaccomplistthis (e.g.,Williams & Goldman-Rakic,
1993). Furthermoremanipulationsf frontal dopamine
have beenshavn to affectworking memoryperformance
(e.g.,Kimberg, D’Esposito,& Farah,1997).

We have arguedthat the control of working mem-
ory updatingvia dopamines synegistic with therole of
dopaminen reinforcement-base@arning(Cohenetal.,
1996; O'Reilly et al., 1999). This learningmechanism
providesa meansof adaptiely controlling the working
memorysystemwhich is essentiato avoid the needfor
somekind of homunculus-like controlling mechanism.
The simulationdescribedchereshavs how this learning
mechanisntanlearnto discretelyupdateworking mem-
ory basemdnasetof controlsignalsthatit initially knows
nothingabout.



The task we usedto test the active maintenance
mechanisminvolves storing a stimulusitem in active
memoryin the faceof a variable numberof interven-
ing distractoritems, andthenrecalling the storeditem.
Thenetwork is providedwith inputsthatexplicitly mark
when a stimulus should be stored,ignored, or recalled
(Table1), but it doesnot initially know the meaningof
thesesignals.Thenetwork (Figure8) learnsby trial-and-
error— noisein thedopamineggatingsystemenablest to
storeinformationrandomly andwhenit storesthe stim-
ulus identity on the storetrial, it can producethe cor
rectansweron therecalltrial. This correctperformance
resultsin a reward signal, andthe learningmechanism
learnsto associatethis reward with the stimuli main-
tainedin actve memory Becausdhe storesignalis one
of themaintainedstimuli, it becomesssociatedavith re-
ward, andthusit will tendto activatea predictionof fu-
turereward on subsequertrials. This reward-prediction
activation, which is thoughtto correspondo a burst of
dopaminetriggerstheupdatingof workingmemory and
thusthe storageof the stimulusinformation.

In summary this simulation demonstrateshe effi-
cag/ of the learneddynamic control mechanism. Be-
causethis mechanismworks by discretely switching
working memorybetweerupdatingand maintenanceit
is consistentwith our overall hypothesisthat working
memory employs discreterepresentationsWe plan to
explore the implicationsof this discretecontrol mecha-
nismfor the developmentof working memoryrepresen-
tationsin futureresearch.

Conclusion

Working memory plays a centralrole in most ac-
countsof complex cognitive function, becausevorking
memoryis requiredin ary task that involves multiple
stepsor a temporally extendedfocus of attention. It
is essentiato understandhe natureof the representa-
tionsin this systemandto understandchow peoplelearn
to useworking memoryin the serviceof complex cog-
nition. Our computationalinvestigationshelp advance
our knowledgein this importantareaby exploring the
consequencesf various biologically-motivatedfactors
(connectvity patternsdopamine-modulatedontrol) on
thediscretenessf workingmemoryrepresentationgnd
the resulting effectivenessof the working memorysys-
tem for maintaininginformationin an active stateover
time.
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