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Cognitive control refers to the ability to perform task-relevant
processing in the face of other distractions or other forms of
interference, in the absence of strong environmental support. It
depends on the integrity of the prefrontal cortex and associated
biological structures (e.g., the basal ganglia). Computational
models have played an influential role in developing our
understanding of this system, and we review current
developments in three major areas: dynamic gating of
prefrontal representations, hierarchies in the prefrontal cortex,
and reward, motivation, and goal-related processing in
prefrontal cortex. Models in these and other areas are
advancing the field further forward.
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Introduction

Computational models are important for making explicit
links between biological mechanisms and the cognitive
and behavioral phenomena that they produce. In the
domain of research on cognitive control (e.g., the ability
to perform task-relevant processing in the face of other
distractions or in the absence of strong environmental
support), there is a rich history of computational modeling
that has served to focus empirical and other theoretical
work on specific biological mechanisms and their func-
tional roles. For example, early models showed how
active maintenance of information in a working memory
system could be accounted for in terms of reverberatory
excitation among a set of interconnected neurons [1,2],
and how this actively maintained information can provide
a strong ‘top down bias’ to influence processing through-
out the brain [3-6]. These models resonated with a
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growing body of data from many methodologies, and
associated theoretical ideas, to provide a coherent account
of the involvement of the prefrontal cortex (PFC) in
cognitive control [7-9]. This work has been highly influ-
ential in the field, and represents one of the most
significant success stories for the contributions of the
computational modeling approach.

Building upon this first wave of synthesis, a new gener-
ation of computational models have been extending the
theoretical and computational frameworks to include
multiple other systems that the PFC interacts with to
achieve cognitive control, and elaborating the contri-
butions that the PFC itself makes. Some particularly
active areas of research include:

e Monitoring and feedback mechanisms that can
regulate the application of PFC-mediated cognitive
control, associated with the anterior cingulate cortex
[10-12].

e Dynamic gating mechanisms that can influence the
updating and active maintenance of information in
PFC, associated with the basal ganglia [13—-15] and the
neuromodulator dopamine [16,7].

e The hierarchical organization of PFC representations
as a means of efficiently performing complex cognitive
tasks [17,18°°,19].

e The interactions between PFC and subcortical areas
involved in reward and motivation, to organize
cognitive control around desired goals, and provide
higher level control and integration of reward and
punishment signals [20,21°°,22,23].

We review some key ideas from the last three of these
areas below.

Dynamic gating of PFC representations

A remarkable consensus across multiple different levels
of analysis has converged on the general idea that an
important element of cognitive control is a dynamic
gating mechanism that can determine when PFC repres-
entations are updated to reflect new information, versus
when they continue maintaining older information. From
a purely computational perspective, the LSTM (Long
Short-Term Memory) model advanced this gating idea to
provide a more robust active memory system [24]. From a
biological perspective, the notion that the basal ganglia
act as a gating system in the context of motor control has
long been accepted [25-27], and this can be directly
extended to account for a dynamic gating role in working
memory [13,14]. Interestingly, these neurally based ideas
have converged with more top-down driven cognitive
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modeling work in the ACT-R framework, which postu-
lates a gating-like role for the basal ganglia as well [15].
The ACT-R modeling work shows how basal ganglia
gating can initiate the firing of cognitive productions,
as in the classical production system models from sym-
bolic Al. Thus, it seems that several major threads of
computational modeling work are on the verge of a
significant new integration [28°°9].

Several recent models have explored the dynamically
gated working memory system in the context of rich
mathematical frameworks such as bilinear mappings
and partially observable markov decision processes
(POMDP), which provide important insights into the
computational properties of these models [21°%,29,30].
The recent work of Dayan [21°°,29] is particularly inter-
esting in attempting to bridge between basic gating-like
working memory updating mechanisms and the ability of
the system to perform arbitrary tasks rapidly through
verbal instruction. Dayan draws nice connections be-
tween the ACT-R work and the habit versus goal-directed
action framework in animal learning [31]. In this context,
most existing neural models can be considered to be
performing according to a complex habit that is inflexible
and cognitively impenetrable, whereas much of human
performance is more goal-directed or rule-governed (flex-
ible and cognitively driven). Dayan shows how this rule-
governed behavior can emerge from more basic gating-
like mechanisms, though many difficult problems remain
to be solved in this area.

At a more cognitive level, the work of Ashby and col-
leagues has shown how a PFC/BG system can explain
important findings in the categorization literature, adding
further empirical avenues for testing such models [32].
More generally, the empirical data on biological and
cognitive neuroscience studies of this PFC/BG system
are growing rapidly, and providing considerable support
for the central ideas behind these computational models
[33,34°°,35,36]. Thus, this area of research and modeling
represents another important emerging success story for
the computational modeling approach.

One outstanding question in this area is the relative role
of dopamine as a gating signal in the basal ganglia and
PFC. Some models focus on the role of dopamine in
training a selective gating signal in BG that is capable of
gating new information into some regions of PFC, while
leaving others to actively maintain older information
[9,37]. Other models focus on the role of a global dopa-
mine signal in PFC for gating [16,38]. Future work should
examine the interplay between a global dopamine signal,
and more focal gating signals from BG.

Hierarchies in PFC
Models of behavioral control have long involved hierar-
chies [39]. Only recently, however, have hierarchical

models made explicit contact with relevant neuroscien-
tific data, which are accumulating quickly [40,18°°,41°°].
Convergent findings suggest a hierarchy organized along
the posterior—anterior anatomical axis of the PFC, with
more anterior areas providing higher level control repres-
entations, consistent with the original ideas of Fuster [42].
However, the best way to characterize this hierarchy is
still a matter of considerable debate, and computational
models are providing some important insights.

Botvinick [17] showed how learning hierarchically struc-
tured tasks in a network with connectivity similar to PFC
can give rise to a semi-hierarchical organizational struc-
ture. The shortest route from stimulus to response in the
model was directly from stimuli to premotor areas, with
increasingly more indirect routes available through more
anterior PFC areas (consistent with anatomical data
[40,42]). When this network learned several complex
behavioral tasks, such as making tea or coffee, repres-
entations of more temporally protracted task elements
developed in higher level layers. Critically, however, the
model was not strictly hierarchical, and thus can capture
important subtleties in human performance, such as the
context sensitivity of subordinate actions.

Biologically detailed models of PFC active maintenance
with basal ganglia gating mechanisms have also been
shown to develop hierarchical task representations [19],
in the context of the hierarchically structured 12-AX task
[14]. Two architectural variations of the model were used.
In the first, a posterior region of PFC received input
directly from sensory areas, and was projected to motor
areas, while an anterior PFC region received only from
posterior PFC, similar to the architecture used by [17].
The second architectural manipulation made the BG
connectivity hierarchical, with anterior PFC driving
posterior BG gating, but not vice versa. 'This manipula-
tion is consistent with findings that PFC/BG loops exhibit
a spiral-like structure [43,44]. Both manipulations caused
specialization for more temporally extended (‘outer loop”’)
representations in anterior PFC, with additive effects of
each.

These studies show how initial connectivity, combined
with learning, can explain some aspects of a hierarchical
organization in PFC, within an overall framework of
common underlying mechanisms across the PFC. How-
ever, the empirical literature is unclear about the precise
nature of the PFC hierarchical structure: e.g., is it about
rule complexity and relational integration [45,46,18°%], or
is it more about abstract representations [47,48°,49], or
both? One intriguing prospect for future research is that
basic differences in duration of active maintenance across
PFC areas (e.g., because of more anterior areas being
further removed from sensory perturbations) may interact
with learning mechanisms to naturally produce a gradient
of abstraction [9,50].
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Reward, motivation, and goals

The PFC is considered the ‘executive’ of the brain for
multiple reasons, among them that it is strongly con-
cerned with the ‘bottom line’—satisfying the basic needs
and goals of the organism. This occurs through bidirec-
tional interactions with subcortical and other ‘limbic’
brain areas that are known to be involved in processing
basic affective signals such as reward, punishment, and
fear. The ventral and medial areas of the PFC are most
directly involved in these interactions, and considerable
attention has been focused on the roles of the orbital
prefrontal cortex (OFC), and the anterior cingulate cortex
(ACC).

The OFC is strongly interconnected with the basolateral
amygdala (BLLA), which is known to be important for
processing a range of basic emotions. From a compu-
tational perspective, the OFC may play a similar role in
this system as PFC does more generally: active mainten-
ance and top down biasing, but in this case maintenance
of reward-related information, and biasing of function in
the BLA. Also, because subcortical areas may have rela-
tively slow synaptic learning, rapid working memory
updates in the OFC may be required to keep track of
the recent changes in outcome probabilities and magni-
tudes [51,22,52]. Models implementing this idea have
been able to account for a range of different data [22,52].
For example, patients with OFC damage have been
shown to exhibit poor decision making in gambling tasks,
which seems to be due to an underlying difficulty in
integrating reward magnitude with its probability, and/or
reversing initial positive reward associations [53]. The
OFC model of Frank and Claus [22] was able to account
for these data in terms of a reduced active maintenance
system that otherwise facilitates reversal learning of
emotional associations, in a manner consistent with other
such reversal learning models [49,54], and OFC lesions in
rats [55,52].

Although the anterior cingulate cortex (ACC) is often
thought of as a conflict monitoring area [12], a growing
body of data suggest that this may be a subset of a more
general computational function as an OFC-like area that
is concerned with associations between motor actions and
reward/punishment outcomes [56°] (whereas OFC is
concerned with associations between stimuli and
reward/punishment outcomes). One recent model of
ACC suggests that it arbitrates between model-based
and model-free responses encoded in the dorsomedial
versus  dorsolateral — striatum, respectively [20,21°°].
Model-based responding is goal directed, and is sensitive
to manipulations such as devaluation of the uncondi-
tioned stimulus, whereas model-free responding is more
habitual and insensitive to outcome-related manipula-
tions [57]. A neural network model of instrumental and
Pavlovian conditioning shows how widely accepted bio-
logical learning mechanisms can result in a shift from

dorsomedial goal-directed behaviors early in skill acqui-
sition to dorsolateral stimulus-response solutions during
consolidation of a skill [52].

More work is needed in this area to explore how different
types of affective and goal-related signals are encoded
and processed in different PFC areas—the ventral and
medial areas of PFC are extensive, and the current
research has focused somewhat narrowly on reward-
related processing within a restricted range of behavioral
paradigms.

Conclusions

In effect, computational models act like very precise
theories, working along with other theoretical ideas at
various levels of description. A crucial benefit of compu-
tational models as theoretical tools is that they enable
simulation of complex cognitive processes, and principled
generation of novel hypotheses for testing. The models
reviewed above, covering a wide range of different levels
of abstraction, contribute important insights and predic-
tions that are being actively tested. This new body of data
is then informing new versions of the models, perpetuat-
ing the classic cycle of theory development, testing, and
revision that underlies all good science.

In addition to the domains mentioned above that have
received significant coverage in the literature, we suggest
that there are several important areas that are ripe for
future exploration, including models exploring the inter-
actions between hippocampal episodic memory and PFC
working memory [58-60], and more work examining the
nature of learning and rapid versus slow adaptation of PFC
representations over time—the prevalent focus on active
maintenance as the main form of memory in the PFC may
be causing us to miss out on a range of other important
memory mechanisms that may have important explana-
tory roles in a wide range of cognitive control phenomena,
especially as one considers the developmental spectrum
[61°,62].
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