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Abstract and Keywords

This chapter provides a synthetic review of a long-term effort to produce an internally 
consistent theory of the neural basis of human cognition, the Leabra cognitive 
architecture, which explains a great deal of brain and behavioral data. In a highly 
influential commentary, Allen Newell first issued a call for a more comprehensive, 
principled approach to studying cognition, saying “You can’t play 20 questions with 
nature and win.” His point was that cognition, and the brain that gives rise to it, are too 
complex and multidimensional a system for a series of narrowly framed experiments and/
or models to succeed in characterizing it. Instead, a single cognitive architecture should 
be used to simulate a wide range of data at many levels in a cumulative manner. However, 
these cognitive architectures tend to be complex and difficult to fully comprehend. In an 
attempt to most clearly and simply present the Leabra biologically based cognitive 
architecture, the authors articulate 20 principles that motivate its design at multiple 
levels of analysis.
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function
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The Leabra cognitive architecture described in this chapter is one of several cognitive 
architectures that have been developed over the past several decades. As we elaborate 
herein, a cognitive architecture can be defined as a comprehensive, mechanistically 
detailed theory of how cognition operates across a wide range of domains and tasks, as 
implemented in a working computer simulation system. Cognitive architectures are 
fundamentally concerned with characterizing how cognition works at a mechanistic level, 
as opposed to descriptive or abstract theorizing. More than perhaps any other proposed 
cognitive architecture, Leabra is based directly on the underlying biology of the brain, 
with a set of biologically realistic neural processing mechanisms at its core. In many 
ways, it represents a natural evolution of the neural network/parallel distributed 
processing/connectionist models that were popular in the late 1980s and 1990s—an 
evolution that grounds the mechanisms in the biology (e.g., by using a biologically 
plausible version of error-driven learning; O’Reilly, 1996; O’Reilly, Munakata, Frank, Hazy, 
& Contributors, 2012) and also makes strong commitments to specific ideas about the 
large-scale functional organization of the brain. This functional organization has 
converged to a remarkable extent with the functional architecture of a more purely 
cognitively derived architecture, the ACT-R framework (Anderson et al., 2004), as we 
discuss in Jilk, Lebiere, O’Reilly, and Anderson (2008).

We proceed as follows. First, we discuss the motivations for creating cognitive 
architectures, their advantages in creating accurate theories of cognition, and the 
difficulties that prevent many researchers from working within them. We then describe a 
set of principles that provide a high-level view of the current state of the Leabra cognitive 
architecture project, starting from the principles of neural function in general and moving 
to specific theories of neural function in specialized brain areas that support sensory 
processing and semantic knowledge (posterior cortex), episodic memory (the 
hippocampus), working memory and executive function (the prefrontal cortex [PFC] and 
basal ganglia [BG]), and reward processing and motivational systems (from the medial 
frontal cortex down to the brainstem).

Motivating Cognitive Architectures

Why should one be interested in the Leabra cognitive architecture and in cognitive 
architectures more generally? What can such a thing offer that other more focused 
cognitive models or theories cannot—for example, why is it worth the effort to understand 
a complicated theoretical framework when perhaps one only cares about more specific 
issues? Is it premature or presumptuous to offer some kind of comprehensive cognitive 
theory when there is so much we do not yet understand about how the mind/brain 
functions? These are some of the important questions that we attempt to address here.

Cognitive architectures generally lie at the complex end of a spectrum of computational 
modeling frameworks. Why would anyone favor a more complex model over a simpler one 
when Occam’s famous razor clearly directs us to favor simpler models over more complex 
ones (not to mention the practical issues in thinking about, implementing models of, and 

(p. 92) 
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sharing credit for a more complex theory)? Clearly, if there really is a simple model that 
can account for all of the complexity of human cognition, that would be ideal. However, 
every indication is that the brain, evolved as it has over millions of years across the great 
chain of being preceding human beings, is not likely to be described with a single, simple 
homogeneous algorithm. Instead, as we elaborate herein, cognition appears to require 
the interaction of a number of specialized processing systems. Thus, the central question 
is: what are the potential problems of using overly simple models that fail to capture the 
full set of relevant cognitive mechanisms?

Allen Newell made the case that there are significant risks to using narrow, simpler 
models in his famous “You can’t play 20 questions with nature and win” commentary 
(Newell, 1973). He suggested that a comprehensive, principled, and constrained 
approach to cognitive modeling will be more likely to bear fruit than making a bunch of 
one-off models of specific phenomena using simpler modeling tools, which he likens to 
answering the individual binary questions posed in the classic “20 questions” game (e.g., 
is visual search parallel or serial?). In that paper, and later in his influential book Unified 
Theories of Cognition (1990), Newell advocated developing a strongly constrained and 
comprehensive framework, one that has come to be known as a cognitive architecture, 
and applying it to many different cognitive phenomena, each of which tests the theory/
architecture in different ways. If a cumulative theory can successfully do that, then there 
is good reason to believe in its validity as a model of human cognition. Otherwise, it is 
simply too easy to fit any given small subset of phenomena with any theory of limited 
scope.

Newell’s argument is really just an instance of the basic idea that scientific theories that 
account for more data are better than those that account for less. But, in the context of 
cognition, the point is particularly pressing because the brain/mind is such a powerful 
and complex thing: any given small window onto it will fail to reveal the global principles 
that operate across all of the windows. This is particularly important for integrating 
across the biological and cognitive levels of analysis, which each provides very different 
kinds of constraints. This is similar to the parable of the blind men describing different 
parts of an elephant. You need the big picture to put all these parts into proper 
perspective. A good cognitive architecture can provide this kind of big-picture 
framework.

In summary, Occam’s razor cuts between two opposing tensions: simplicity and 
accounting for increasingly larger quantities of relevant data—often people neglect the 
importance of this latter constraint. Realistically, covering a broad scope of complex 
phenomena will probably require a more complex theory than coverage of a narrow scope 
of phenomena. And Newell argues that this breadth constraint is more important than the 
simplicity one in the context of understanding human cognition; thus, we should be 
willing to embrace more complex cognitive architectures if they allow us to understand a 
great breadth of cognition.
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One important way to mitigate against the perceived complexity of a given theory is to 
provide the clearest and most strongly principled account of it, to eliminate as 
much as possible any sense of arbitrariness in the framework. Hence, this chapter is an 
attempt to articulate 20 clear principles that strongly constrain the nature of the Leabra 
architecture. The goal is to ultimately arrive at a computational model of the brain/mind 
that is as simple and clear as possible but that still accounts for a wide range of cognitive 
and neuroscience phenomena.

Introduction to the Leabra Architecture

The Leabra framework started with a neural network algorithm intended to capture the 
core computational properties of the neurobiology of the neocortex, which supports many 
different cognitive functions (O’Reilly, 1996, 1998). There was a progressive elaboration 
of these neural mechanisms to account for the specialized properties of different areas of 
the brain, including the hippocampus (McClelland, McNaughton, & O’Reilly, 1995; 
O’Reilly & Rudy, 2001; Norman & O’Reilly, 2003; O’Reilly, Bhattacharyya, Howard, & 
Ketz, 2011; O’Reilly & McClelland, 1994), PFC and BG (Frank, Loughry, & O’Reilly, 2001; 
Hazy, Frank, & O’Reilly, 2006, 2007; O’Reilly, 2006; O’Reilly, Braver, & Cohen, 1999; 
O’Reilly & Frank, 2006), and subcortical reward-processing areas (Hazy, Frank, & 
O’Reilly, 2010; O’Reilly, Frank, Hazy, & Watz, 2007). The first attempt to articulate a 
broad cognitive-architecture level theory based on Leabra was in a textbook covering a 
wide range of cognitive phenomena (O’Reilly & Munakata, 2000). This text has been 
updated to include the most recent developments in a freely available online format at 
http://ccnbook.colorado.edu (O’Reilly et al., 2012), so this is an opportune time for 
summarizing the current state of the architecture. We refer the reader to this resource 
for the specific equations used in Leabra, along with many implemented models 
illustrating its behavior.

To give a brief sense of some of the most recent, cutting-edge Leabra models, Figure 5.1
shows the model from the ICArUS project, which is attempting to develop integrated 
cognitive-neuroscience architectures for understanding sense-making in a work that 
represents a collaboration among several different labs. The model can simulate human 
behavior on a series of complex sense-making tasks while providing insights into the 
biological basis of cognitive biases in these domains. This model represents the most 
complex, integrated cognitive functionality simulated in Leabra to date—it can coordinate 
multiple reasoning processes over a number of individual steps, performing a series of 
tasks that people take around an hour to complete in total. The development of this model 
has proceeded with a progressive removal of initial “scaffolding” that was needed to keep 
everything moving on track over time. Overall, this model has given us many insights into 
how the architecture needs to develop to address this level of complex cognition in 
increasingly realistic ways.

(p. 93) 
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Figure 5.2 shows a model of an embodied cognitive agent, called emer (after the 

emergent software in which Leabra is implemented), that performs basic visual saccades 
using coordinated head and eye movements via a simulated cerebellar system. It can then 
recognize the object in the focus of attention with high levels of accuracy for 100 
different object categories, even novel objects from these categories (more than 90% 
generalization accuracy; O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013). Ongoing work is 
developing the ability to use a wide range of cues and gestalt principles to separate 
figure from ground, to enable robust object recognition even in cluttered visual scenes.

Before we start playing “20 principles with nature” to motivate the Leabra architecture, it 
is useful to characterize the nature of these principles. These principles span many 
different levels (Figure 5.3) and domains that describe the Leabra cognitive architecture, 
and, we argue, they capture some important truths about how the brain and cognition 
operate (see O’Reilly, 1998, for an earlier attempt to articulate some of these principles). 
Although 20 principles may sound like a lot, because these principles are organized at 
different levels of analysis, there are fewer principles per each level. As with 20 
questions, we start with very broad principles that shape the overall approach (the 

metalevel) and then develop a set of more specific principles of neural computation based 
on solid neuroscience data that strongly constrain our model at the microlevel (i.e., the 
microstructure of cognition; cf., McClelland & Rumelhart, 1988; McClelland, Rumelhart, 
& the PDP Research Group, 1986; Rumelhart, McClelland, & the PDP Research Group, 
1986). Next, we advance principles of large-scale brain area specializations that 
constitute a macrolevel description of the cognitive architecture. Critically, many of these 
macrolevel principles are derived directly from properties of the microlevel, which is 
essential for establishing a truly integrated, unified theory of cognition as opposed to 
simply a laundry list of isolated ideas.

Our key criteria for elevating something to the level of a principle are: (a) it can be 
summarized briefly and makes a strong positive assertion, and (b) the truth-value of the 
assertion is directly consequential for a decision about how the architecture 
should be shaped. Thus, the reader can hopefully decide the extent to which he or she 
agrees with the various principles and thus have a better handle on evaluating the 
architecture overall. We also attempt to provide some contrasting examples to 
demonstrate that these principles are not universal platitudes.

(p. 94) 
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The Metalevel Guiding Principles in the 
Development of Leabra
The name Leabra originated as an acronym standing for Local, Error-driven and 
Associative, Biologically Realistic Algorithm to reflect its core focus on the nature of 
learning (a locally computable combination of error-driven and Hebbian associative 
mechanisms). It is pronounced “Libra,” which provides metaphorical inspiration in terms 
of striving to strike an appropriate balance between many different competing forces and 
considerations in the construction of a coherent framework for cognitive modeling (i.e., 
computational cognitive neuroscience). Thus, this approach is antithetical to “purist” 
approaches that attempt to optimize a single criterion or objective function. Here are the 
broad principles that shape the overall approach in developing the Leabra architecture:

Principle 1 (Balance): There are important tradeoffs associated with almost 
every approach, objective, or computational solution, and often the best overall 
solution represents a compromise or other form of integration of multiple different 
approaches/objectives/solutions.

Click to view larger

Fig. 5.1  An implemented Leabra cognitive 
architecture model for the Integrated Cognitive-
Neuroscience Architectures for Understanding 
Sensemaking (ICArUS) project, which has a posterior
cortex, hippocampus, prefrontal cortex, basal 
ganglia, medial frontal cortex areas (ACC, OFC), and 
various other subcortical systems.

(p. 95) 
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Although this principle 
may seem obvious, many 
computational modeling 
approaches favor purity 
and simplicity over dealing 
with the complex tradeoffs 
apparent in the brain and 
cognition. Simple, single-
principle models can be 
the best way to convey a 
specific idea, but often 
that idea must be 
tempered against various 
other constraints and 
considerations to 
understand in 

detail how people actually 
behave in a variety of 
contexts.

Principle 2 (Biology 
is important): The 
brain is our one 
working “reference 
implementation” of a 
successful cognitive 
system, so trying to 
understand in detail 
how it works may be 
the one nearly 
guaranteed path to a 
cognitive architecture 
that accurately models 
the human mind.

As noted earlier, Leabra is 
one of the few cognitive 
architectures that is based 
so directly on biology and 
only recently have we 
implemented models that 

incorporate much of the full architecture (e.g., Figure 5.1)—most of the published models 
have explored the components separately. Of course, there are significant practical 

Click to view larger

Fig. 5.2  The emer virtual robot simulation, with a 
detailed and high-functioning visual pathway 
including figure-ground processing in area V2, 
supported by top-down connections from V4 and area
MT, which provide higher level gestalt constraints to 
the figure-ground problem of identifying objects in 
the presence of background clutter. The glass brain 
visualization on the upper left projects simulated 
neural activity into the anatomical locations of 
simulated brain areas for easier direct comparison 
with neuroimaging and other data.

Click to view larger

Fig. 5.3  Four levels of analysis of the cognitive 
architecture, which organize and frame our 
discussion. The metalevel is a catch-all for any kind 
of abstract analysis that is not directly tied to the 
structure of the brain, and the remaining three levels 
represent different structural levels of analysis going 
from the level of individual neurons (micro) to 
networks of neurons (meso) to large-scale brain area 
organization (macro).

(p. 96) 
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barriers to implementing detailed biological models at a large scale, and it is only 
recently that computers have become powerful enough to even begin to make this 
feasible. This practical constraint converges with our next principle.

Principle 3 (Occam’s Razor): Scientifically, we seek the simplest model that is 
sufficient to account for the relevant aspects of neuroscience and cognition 
because this will be the easiest to understand and the least likely to go astray by 
overfitting the available data.

Intuitively, replicating every single biological detail would get us no closer to 
understanding how the brain works—we already have the full complexity of the real brain 
and any functionally irrelevant details just get in the way of understanding the underlying 
computational principles. Many computational neuroscience models focus on capturing as 
much biological detail as possible, and one project that has received quite a bit of 
notoriety explicitly assumes that in so doing the magic of cognition will simply emerge 
from all those details (Markram, 2006). In contrast, the Leabra approach is predicated on 
the idea that trying to understand what is going on at the psychological and mechanistic 
levels simultaneously is key to meaningful progress. This necessarily entails the discovery 
and imposition of constraints at multiple levels and, combined with a considered effort to 
include only as much mechanistic detail as is absolutely necessary to explain function, is 
the most direct path toward understanding the principles by which the brain/mind works.

Principle 4 (Convergent multilevel modeling): The optimal balance among 
biological, cognitive, and computational constraints is likely to be different 
depending on the nature and level of the questions being addressed.

Given this principle, it makes sense to develop a family of models at different levels of 
abstraction that are nonetheless mutually compatible and serve to constrain one another, 
ultimately aiming to arrive at a convergent, multilevel description of the system as a 
whole. There are many different optional switches in the Leabra simulation software that 
can dial up or down the level of abstraction of any given model, and there are bridging 
simulations that specifically test the convergence and mutual compatibility of 
abstractions at different levels of abstraction. At the highest level of abstraction, the ACT-
R framework shares many of the same architectural features as Leabra, and we are 
currently working to develop a Synthesis of ACT-R and Leabra (SAL; Jilk et al., 2008) 
architecture that explicitly integrates features from both architectures to yield an even 
more convergent higher level abstract architecture. In this overview, we focus on the 
middle level of abstraction provided by the “default” version of Leabra while noting the 
options for increasing or decreasing biological detail.

Principle 5 (Learning is critical): Within the context of ontogenetic 
developmental processes, much of cognitive function is acquired via experience-
driven learning mechanisms that sculpt the raw neural material of the cortex into 
highly functional neural systems
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The human brain learns to read and write and a host of other novel skills that couldn’t 
possibly be directly coded by our genetics. To capture this kind of pervasive learning, the 
system must be capable of developing entirely new representations and cognitive 
abilities, not just tune a set of parameters within an otherwise preconfigured system. This 
principle is central to the Leabra approach—everything that a typical Leabra model can 
do involves a substantial learning component, using mechanisms that are intended to 
capture the essential properties of cortical learning and supported by a critical bridging 
simulation (described later) that grounds Leabra learning in known biological 
mechanisms. The ability to develop complex cognitive functions through learning has 
always been one of the most important features of neural network models, and, to this 
day, no other framework has been developed that is as capable of such general-purpose, 
powerful learning. Indeed, there has recently been somewhat of a resurgence of interest 
in these neural network learning mechanisms within the statistical computing and 
machine learning communities (Ciresan, Meier, Gambardella, & Schmidhuber, 
2010; Hinton & Salakhutdinov, 2006; Koller & Friedman, 2009).

One possible explanation for the unique suitability of neural networks for learning is that 
the ability to learn entirely new cognitive functions requires an equipotential, 
homogenous substrate to start from so that it can be shaped over time through learning—
a neural network provides just such a substrate. In contrast, it is difficult to reconcile this 
equipotentiality demand with the need to have intricate, highly differentiated structures 
in the system, as is typically required to achieve sensible symbolic processing abilities, 
for example. The Leabra framework does allow for various forms of built-in structure and 
parameter differences across areas, but these serve to constrain and shape the properties 
and outcome of the learning mechanism, not to provide initial cognitive functionality. 
Another important factor is that learned functionality must go through many intermediate 
stages during the learning process, so whatever is learned will typically be sufficiently 
robust to support partial functionality when partially developed. But many cognitive 
models with more elaborated, interdependent processing mechanisms do not function at 
all in a partially learned state (e.g., imagine the functionality of a partially implemented 
CPU chip). Thus, we believe that learning provides considerable constraints on the nature 
of the system and a deep understanding for why the brain is made of networks of 
neurons.

The central role of learning in Leabra is a point of contrast with many other cognitive 
architectures, most of which focus more on modeling the performance aspects of 
cognition using various forms of task-relevant knowledge representations provided by the 
modeler. The ACT-R architecture has a strong focus on learning and includes a number of 
important learning mechanisms in its declarative memory and procedural production 
system, but, even here, the modeler has to build in a considerable amount of starting 
knowledge. There must be a sufficient basis set of initial productions to drive the 
sequence of cognitive operations performed, as well as the explicit specification of things 
like the allowed forms of memory representation for any given task (i.e., the memory 

(p. 97) 
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chunk types). Learning in ACT-R then operates within these initial parameters to optimize 
the flow of productions and acquire new declarative memories.

Interestingly, a connectionist implementation of ACT-R was developed (Lebiere & 
Anderson, 1993) that influenced further developments of the architecture. However, this 
connectionist implementation required extensive prestructuring of the same form as 
required in regular ACT-R and did not employ generic learning from a homogenous 
substrate in the way that Leabra does. Another interesting point of contrast is the Neural 
Engineering Framework of Eliasmith and Anderson (2003), which can create impressive 
neural systems through a powerful parameter-setting mechanism (see http://nengo.ca). 
But this mechanism is a purely engineering process that does not represent an 
experience-driven learning mechanism like that operating in the human brain.

Next, we describe more detailed principles and their implications for the Leabra model, 
beginning with basic neural network-level principles and algorithms that define the 

microstructure of cognition (cf., McClelland et al., 1986; McClelland & Rumelhart, 1988; 
Rumelhart, McClelland, et al., 1986), followed by a discussion of the macrostructure of 
cognition in terms of architectural principles governing our understanding of the 
specializations of different brain areas for different cognitive functionality (see Figure 

5.3).

The Microstructure of Cognition: Principles of 
Neural Computation
We begin this section with a set of four principles about how information processing is 
thought to arise in the brain and which specific types of neurons are most important for 
understanding cognition. With the possible exception of Principle 9, these are largely 
consistent with most neural network/parallel distributed processing/connectionist models 
(McClelland, 1993; McClelland et al., 1986; McClelland & Rumelhart, 1988; O’Reilly, 
1998; Rumelhart, McClelland, et al., 1986) but not directly implemented in more abstract 
cognitive architectures such as ACT-R.

Principle 6 (Networks of neurons are the fundamental information 
processors in the brain): Neurons integrate many different synaptic input 
signals from other neurons into an overall output signal that is then 
communicated to other neurons, and this provides the core information processing 
computation of cognition. Simplistically, each neuron can be considered as a 
detector, looking for particular patterns of synaptic input and alerting others when 
such patterns have been found.
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Principle 7 (Synaptic weights encode knowledge and adapt to support 
learning): Synaptic inputs vary in strength as a function of sender and receiver 
neuron activity, and this variation in strength can encode knowledge by shaping 
the pattern that each neuron detects.

There is now copious empirical evidence supporting this principle, and it can 
probably be considered uncontroversial in the neuroscience community at this point.

Principle 8 (Pyramidal neurons in neocortex are the primary information 
processors of relevance for higher cognition): The neocortex is the primary 
locus of cognitive functions such as object recognition, spatial processing, 
language, motor control, and executive function, and all of the long-range 
connectivity between cortical areas is from excitatory pyramidal neurons.

Pyramidal neurons constitute the primary information processing neurons in cortex. They 
are excitatory and predominantly bidirectionally connected with each other. Many other 
subcortical brain areas make important contributions to cognition, but the neocortex 
performs the bulk of the information processing, particularly for the higher functions that 
are most studied in current cognitive neuroscience.

Principle 9 (Inhibitory interneurons regulate activity levels on neocortex 
and drive competition): This inhibitory dynamic gives rise to competition among 
neurons, producing many beneficial effects on learning and performance.

The other major neuron type in neocortex are locally projecting inhibitory interneurons, 
of which there are a great variety, and they generally serve to regulate overall activity 
levels through γ-aminobutyric acid (GABA) inhibition onto pyramidal neurons. Inhibitory 
interneurons produce competition among pyramidal neurons, thus allowing the many 
benefits of biased competition for attention and executive function (Desimone & Duncan, 
1995; Herd, Banich, & O’Reilly, 2006). When the inhibitory system goes awry, 
bidirectional excitation between pyramidal neurons results in runaway epileptiform 
activity. And there is evidence that individual differences in GABAergic tone in PFC can 
affect cognitive functioning. For example, Snyder, Hutchison, Nyhus, Curran, Banich, and 
Munakata (2010) showed that people with lower levels of inhibition in ventral-lateral PFC 
had a more difficult time selecting among alternative words, and lower inhibitory tone 
was also associated with difficulty in decision making in anxious individuals.

The foregoing set of principles translate directly into a set of specific questions that must 
be addressed in the Leabra framework, questions that may have multiple answers 
depending on level of abstraction:

• How is it best to simulate the dynamic properties of the neocortical pyramidal 
neuron (i.e., the neural activation function) to achieve a computationally tractable 
model that captures the most important properties of neural function without 
unnecessary biological baggage?

(p. 98) 
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• How is it best to simulate the change in synaptic strength as a function of neural 
activity (i.e., the neural learning rule) in a way that captures what is known biologically 
about these synaptic plasticity mechanisms while also enabling a network to learn to 
solve the kinds of difficult cognitive problems known to be solved in different cortical 
brain areas?

• How is it best to simulate the effects of inhibitory interneurons on network dynamics 
(i.e., the inhibition function) in a way that again balances biological fidelity with 
computational efficacy?

A variety of different answers to each of these questions have been proposed in the 
literature. For example, the standard feed-forward back-propagation network uses a 
simple sigmoidal rate-code equation for the neural activation function, simulating 
discrete neural spiking in terms of a real-valued number representing something like the 
rate of firing over time, and it uses a biologically implausible learning rule that requires 
error signals to somehow propagate backward down dendrites, across the synapse, and 
down the axon of the sending neuron. There is no inhibition function at all, and the 
critical feature of bidirectional excitatory connectivity among pyramidal neurons is 
similarly missing. Thus, we can reasonably argue that a feed-forward back-prop network 
abstracts rather far away from the known biology. On the other end of the spectrum, 
there are many computational neuroscience models with highly detailed 
multicompartment pyramidal neurons employing various forms of biologically grounded 
Hebbian-style learning rules and detailed inhibitory interneurons with appropriate 
connectivity to balance out bidirectional excitatory feedback loops among the pyramidal 
neurons (e.g., Izhikevich & Edelman, 2008; Markram, 2006; Traub, Miles, & Wong, 1989). 
But these latter models do not actually solve complex cognitive tasks (e.g., object 
recognition in the ventral visual stream), and they take a long time to simulate the 
dynamics of even a single neuron, thus limiting the ability to simulate the extended time 
course of learning in a large-scale model.

Consistent with the emphasis on balance, the Leabra architecture seeks a middle ground 
between these two extremes—computationally and cognitively powerful, but one 
more closely tied to the biology and capable of exhibiting more complex excitatory and 
inhibitory dynamics that very likely play a significant role in many cognitive phenomena. 
Within this target space, there are still likely to be a range of different implementational 
choices that will result in generally similar cognitive functionality. Indeed, we know that 
within the Leabra framework different choices have been developed over time and are 
available as options in the simulator. Nevertheless, our current best answers are 
described in the following sections (see Figure 5.4 for a summary).

(p. 99) 
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Neural Activation Function

We borrow the adaptive exponential (AdEx) model of the pyramidal neuron (Brette & 
Gerstner, 2005), which has won competitions for best predicting cortical neural firing 
patterns and is on the same computational order as other abstract neural equations. 
Conveniently, it represents just a few additions to the basic conductance-based point 
neuron equations used in the original Leabra model—these add spike frequency 
adaptation and an exponential spike initiation dynamic. The AdEx model produces 
discrete spiking outputs, but often this level of detail incurs too much computational 
overhead, so we also (frequently) employ a rate code version of these spiking dynamics 
that enables a single neuron to approximate the behavior of a population of spiking 
neurons. We recently discovered that our prior approach to capturing spiking behavior 
using a rate code model could be improved by driving the activation output from a 
different neural variable. Previously, we used the membrane potential, but now we 
recognize that the rate of spiking in AdEx is best captured using the level of excitatory 
conductance directly (g ), in relationship to a threshold that reflects the inhibitory and 
leak currents. We call this new activation function gelin, for “linear in g ,” and it results in 
more stable, systematic, and informative rate code activation dynamics while preserving 
the same qualitative properties of the previous activation function and therefore 
the underlying computational principles.

Click to view larger

Fig. 5.4  The core microstructural properties of the 
Leabra architecture.

e

e

(p. 100) 
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Learning Rule

A defining feature of Leabra is its integration of both error-driven and Hebbian 
(“associative”) learning mechanisms, reflecting an attempt to balance several tradeoffs 
between these two mechanisms and obtain the “best of both worlds” from models that 
have demonstrated the importance of each of these types of learning for different 
cognitive phenomena. Error-driven learning has proved indispensible for learning the 
complex cognitive mappings required for tasks such as object recognition, word 
pronunciation, and other similar challenging problems (O’Reilly, 1996, 1998; O’Reilly & 
Munakata, 2000). Hebbian learning alone can account for some statistical learning in 
various domains, such as extracting the statistics of visual images in primary visual 
cortex (Olshausen & Field, 1996, 1997). The combination of these two forms of learning 
was originally achieved by simply adding together both learning algorithms (O’Reilly & 
Munakata, 2000). In what we consider an important new development, the latest version 
of the learning rule implements a much more integrated way of achieving this same 
objective using an elegant single learning rule that is directly and deeply grounded in the 
known biology of synaptic plasticity, and naturally results in both error-driven and 
Hebbian learning within a single framework.

Specifically, we leveraged a compellingly detailed and highly recommended model of 
spike-timing dependent plasticity (STDP) by Urakubo, Honda, Froemke, and Kuroda 
(2008) to extract a more comprehensive learning rule that is operative over longer time 
scales and larger neuronal populations. When initially discovered using spike pairs, it was 
found that STDP displayed an intriguing causal learning dynamic, where synaptic weights 
go up when the sending neuron fires before the receiving one, and down otherwise. 

Click to view larger

Fig. 5.5  The XCAL weight change function, plotting 
change in synaptic weight against total synaptic 
activation (sender times receiver activation).
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However, it is becoming increasingly clear that this causal regime is not really very 
relevant for the kinds of complex extended spike trains that are typical within cortical 
networks (Froemke & Dan, 2002; Rubin, Gerkin, Bi, & Chow, 2005; Shouval, Wang, & 
Wittenberg, 2010; Wang, Gerkin, Nauen, & Bi, 2005). For example, increasing spike 
complexity to just triplets or quadruplets shows that the simple causal pairwise dynamic 
does not generalize (Froemke & Dan, 2002; Rubin et al., 2005; Wang et al., 2005). We 
wondered what would happen if we presented temporally extended spike trains of 
different frequencies and durations to the Urakubo et al. (2008) model. To find out, we 
presented a wide range of Poisson spike trains of sending and receiving activity to the 
model, and measured the pattern of synaptic plasticity that resulted. Somewhat to our 
surprise, we were able to fit the results with a simple piecewise-linear function that 
captured roughly 80% of the variance in the synaptic plasticity in terms of the product of 
the sending and receiving net activity (spiking frequency times duration; Figure 5.5).

This function is essentially a linearized version of the Bienenstock, Cooper, and Munro 
(1982) learning rule (BCM). BCM also introduced a floating threshold that imposes a 
long-term homeostatic dynamic on top of a fast Hebbian-like learning dynamic: weight 
changes fundamentally track the co-activation of the receiving and sending neurons 
(“neurons that fire together wire together”). If a receiving neuron is overly active over a 
long time scale, then the threshold moves proportionally higher, causing weights to be 
more likely to go down than up and thus preventing neurons from “hogging” the 
representational space. A reverse dynamic obtains for chronically underactive neurons, 
causing their threshold to move down and making their weights more likely to increase, 
and thus bringing them back into the game.

Thus, a simple piecewise-linear learning rule initially extracted from the Urakubo et al. 
(2008) model immediately captured a sophisticated and high-performing version of 
Hebbian learning. What about the error-driven component? We realized that error-driven 
learning could be obtained from this equation if the floating threshold also moved on a 
much more rapid time scale, such that the threshold reflects an expectation state 
in comparison to an outcome state reflected in the synaptic net activity value that drives 
learning. To illustrate how this achieves error-driven learning, consider two neurons that 
together are activated as part of a network encoding an incorrect dishtowel. Huh? You 
probably didn’t expect that word—hopefully, you were expecting to read the word 

expectation. There is considerable evidence that we are constantly forming these 
expectations, and we exhibit characteristic brain activity patterns when they are violated. 
Anyway, we assume that these two neurons were encoding the word expectation, and they 
would have high synaptic activity for a while as the expectation of this word develops, 
only to become inhibited by the activation of the actual outcome “dishtowel” neurons, 
resulting in subsequent low synaptic activity. The expectation activity causes the floating 
threshold to move up proportionally, and, when the actual outcome activation comes in, it 
is below this expectation. This results in a reduction of synaptic weights and thus a 
reduced tendency to make this expectation in this situation next time around. In contrast, 
the actual outcome “dishtowel” neurons have a low expectation activity, so their 
subsequent outcome activity exceeds this threshold and the weights increase, thus 

(p. 101) 



The Leabra Cognitive Architecture: How to Play 20 Principles with Nature 
and Win!

Page 16 of 41

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: University of Colorado at Boulder; date: 22 September 2017

increasing the expectation of this word next time around. Despite the silly nature of this 
example (typically, the outcomes we experience in the world are more predictable and 
useful sources of learning), one can hopefully see how this achieves robust error-driven 
learning, which is known to be capable of learning cognitively challenging problems.

To achieve an integration of this error-driven learning dynamic with a Hebbian self-
organizing learning dynamic, one only needs to combine the BCM-like slowly adapting 
threshold with the error-driven fast-adapting threshold to result in a single overall 
threshold value. Thus, the threshold moves at multiple different superimposed time 
constants and hence achieves a balance of both error-driven and Hebbian learning. 
Furthermore, consistent with the extensive work with the BCM algorithm, this form of 
Hebbian learning is actually more powerful and robust than the standard form of Hebbian 
learning used in Leabra previously (Blair, Intrator, Shouval, & Cooper, 1998).

Another way of thinking about this process is in terms of attractor dynamics and long-
term potentiation and depression (LTP/LTD). Essentially, the synaptic states associated 
with later activation states (settled fixed point attractors) always and continuously train 
synaptic states associated with activations immediately prior during the earlier stages of 
settling. For this reason, and because of the different time scales used in the equations, 
we call this new learning mechanism the temporally eXtended Contrastive Attractor 
Learning (XCAL) rule.

Inhibition Function

Beyond its importance for keeping the bidirectional excitatory loops between pyramidal 
neurons in check, inhibition in the neocortex has important computational implications. 
For example, it causes pyramidal neurons to compete with each other for the opportunity 
to represent the current inputs. This competition in turn produces many of the effects of 
Darwinian evolution: neurons learn to specialize on representing a specific “niche” of 
input patterns, thus producing more differentiated and informative overall 
representations (Edelman, 1987). This competitive learning dynamic has been leveraged 
in a number of neural network models (Jacobs, Jordan, Nowlan, & Hinton, 1991; 
Kohonen, 1977, 1984; Nowlan, 1990; Rumelhart & Zipser, 1986), but it is notably absent 
in the back-propagation framework (although a recent model was able to add it, with 
some difficulty: Laszlo & Plaut, 2012).

Five major paradigms of competitive inhibition have been developed, including the null 
case:

• Independence (fully distributed): The activation of each neural unit is completely 
independent of the others; that is, there is no inhibitory competition at all—this is easy 
to analyze mathematically and automatically allows for complex distributed, 
overlapping patterns of neural activity to encode information, which has numerous 
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computational advantages in efficiency, generalization, and the like (Rumelhart, 
Hinton, & Williams, 1986). However, it obviously foregoes any of the advantages of 
competitive inhibition in creating more specialized, finely tuned representations.

• Winner-takes-all (WTA): A single neural unit within a layer (pool) of competing 
units is selected to be active (typically, the one with the highest level of excitatory 
input). This is easy to implement computationally but greatly restricts the power of the 
representation—a single unit cannot encode similarity in terms of relative degree of 
overlap, and it cannot easily support generalization to novel instances, which typically 
requires novel combinations of distributed neural activity.

• WTA with topography: The neighboring units around the winning one are also 
activated, typically with a gaussian normal “bump.” This was pioneered by Kohonen 
(1984) and produces a topographically organized distribution of representations. But 
because the active units are not independent, it does not allow for differential 
activation of the units in a different context and thus is not nearly as powerful as a 
distributed pattern of activity for encoding similarity in a high-dimensional space or 
generalization to novel instances.

• Normalization with contrast enhancement (softmax): The activations of all units 
in a layer are normalized to sum to a constant value (typically 1), often with a contrast-
enhancing nonlinearity (e.g., an exponential function) applied to produce a more 
differentiated pattern of resulting activity. This can also be thought of as a “soft” form 
of the WTA function (Nowlan, 1990), and sometimes a single winning unit is selected 
by using the normalized values as a probability distribution instead of using the raw 
normalized values as rate-code-like activations. This fundamentally has the same 
constraints as WTA, even though the activity distributions can be more graded across 
units—it is difficult to obtain a stable distributed pattern of activation across the units 
to encode high-dimensional similarity and generalize to novel cases.

• kWTA (sparse distributed, used in Leabra): A target number k ≥ 1 of neural units 
within a layer are allowed to be active, thus enabling a sparse but still distributed 
pattern of activity within the layer. This represents a balance between fully distributed 
and fully competitive dynamics and is another example of a balance employed in the 
Leabra algorithm to obtain the best of both worlds. The multiple active neural units 
can encode high-dimensional similarity and support generalization in the form of novel 
combinations of active units, but there is also a competitive pressure that causes 
neurons to specialize more than in the fully independent case. The computational 
advantages of sparse distributed representations have been explored in depth by 
Olshausen and Field (1996, 1997).

• Inhibitory interneurons: The inhibitory circuits in neocortex can be simulated 
directly, resulting in more complex and potentially realistic dynamics than kWTA. Such 
a biologically detailed model is considerably more computationally expensive, 
requiring significantly slower rate constants to avoid oscillatory dynamics from the 
feedback loops present, in addition to the greater number of neurons and neural 
connections.

(p. 102) 
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The kWTA function in 
Leabra is implemented in a 
very computationally 
efficient manner, resulting 
in very low extra 
computational cost relative 
to having no inhibition at 

all. This is achieved with an optimized partial sort of the neurons in a layer according to 
the amount of inhibition that would be required to put each neuron exactly at its firing 
threshold, thus creating two groups: those within the top k and the remainder (Figure 

5.6). In the most commonly used kWTA variant, a global level of inhibition within a layer 
is computed as some fraction of the difference between the average of this threshold-level 
inhibition for the top k versus the average of the remainder. This tends to result in the top
k neurons being above their firing thresholds while the remainder are below, but there is 
considerable flexibility in the actual levels of activity depending on the exact distribution 
of excitation throughout the layer. This flexibility enables more appropriate 
representations to develop through learning, compared to requiring an exactly fixed level 
of activity for each input pattern.

Across many models of different cognitive phenomena, this kWTA inhibition function has 
proved to be one of the most important features of the Leabra architecture, rivaling or 
perhaps even exceeding the nature of the learning rule in importance for 
producing powerful learning that generalizes well to new situations. It is also one of the 
most distinctive aspects of the architecture—we are not aware of another major 
computational modeling framework with this form of inhibition function.

In keeping with the multilevel modeling principle, it is also possible to run Leabra 
networks with explicit inhibitory interneurons, and bridging simulations have been 
developed that establish the convergence between the more biologically detailed models 
with inhibitory interneurons and those using the kWTA inhibition function abstraction. 
However, these more detailed models also may exhibit important differences in overall 
activation dynamics; for example, there is typically more of a wave of excitation driven by 
a new input pattern that is then damped down, with some ongoing oscillations—these 
waves have been observed in recordings from neocortical neurons and may have 
important functional implications. In contrast, the kWTA dynamics are more tightly 
controlled, but we have also added the option of superimposing these wave dynamics on 
top of kWTA; these waves can improve learning in some situations (Norman, Newman, 
Detre, & Polyn, 2006), but more work remains to be done to explore the issues.

The Macrostructure of Cognition: Brain Area 
Functional Specializations

Click to view larger

Fig. 5.6  Average-based kWTA inhibition function.

(p. 103) 
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The principles and mechanisms just described characterize the microstructure of 
cognition: how cognition operates at the finest scale of individual neurons and synapses. 
There are also many important things that could be said about the mesolevel of analysis 
(network dynamics) (see Figure 5.3), but these are primarily emergent properties of the 
microlevel mechanisms (e.g., attractor dynamics, categorization), so they are not as 
essential for describing the major defining features of the Leabra architecture. Thus, we 
now turn to the macrolevel structure and how different brain areas are specialized for 
different aspects of cognitive function. Some relevant questions here include: is there any 
relationship between the micro- and macrolevels? Along what kind of dimensions are 
brain areas specialized: by content domain, by processing style, or by modular cognitive 
building blocks? In other words, what are the big chunks of cognition in the brain, the 
combined contributions of which can explain the full spectrum of cognitive abilities? To 
address these important questions, we again begin by enumerating four additional 
principles that will help clarify the stance we have taken in Leabra. The first overarching 
principle concerns the relationship between the microstructure and macrostructure:

Principle 10 (Micro-macro interactions): The microstructural principles and 
associated mechanisms characterize the fabric of cognition, so they also define 
the space over which macrostructural specializations can take place—in other 
words, we should be able to define different specialized brain areas in terms of 
different parameterizations of the microstructural mechanisms. Furthermore, the 
system is fundamentally still just a giant neural network operating according to 
the microstructural principles, so brain areas are likely to be mutually interactive 
and interdependent upon each other in any given cognitive task.

This principle implies a more subtle form of specialization than is typically offered in 
cognitive theorizing: parametric differences typically do not lead to the kinds of discrete 
cognitive functions popular in traditional box-and-arrow information processing models of 
cognition.

The broadest macrostructural organization of the Leabra architecture is shown in Figure 

5.7, where each of the three major components of the system (posterior cortex, PFC, and 
hippocampus) are defined by parametric specializations relative to the generic 
microstructural mechanisms described earlier. The posterior cortex is characterized by 
coarse-coded, distributed, overlapping representations that learn slowly over time to 
encode the world in an efficient way using hierarchically structured, specialized neural 
pathways. These pathways support basic functions such as object recognition, 
perceptually guided motor control, auditory processing, language comprehension, and 
higher level semantic knowledge. This system is well captured by a “generic” Leabra 
neural network with roughly 15–25% activity levels in the kWTA inhibition function and 
relatively slow learning rates that enable the system to integrate over many different 
experiences to extract these useful representations.
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Relative to this posterior cortical baseline, the hippocampus and PFC each have different 
parametric specializations that enable them to do things that the posterior cortex cannot 
because of important fundamental tradeoffs (cf., Principle 1) that are enumerated in the 
principles described next.

Learning and Memory Specializations: Hippocampus Versus Cortex

We can identify a set of functional tradeoffs in learning and memory that motivate the 
understanding about how the hippocampus (Figure 5.8) is specialized for episodic 
memory relative to the more semantic forms of memory supported by the posterior 
cortex.

Principle 11 (Interference and overlap): Learning new information can 
interfere with existing memories to the extent that the same neurons and 
synapses are reused—this directly overwrites the prior synaptic knowledge. 
Hence, the rapid learning of new information with minimal interference requires 
minimizing the neural overlap between memories.

Principle 12 (Pattern separation and sparseness): Increasing the level of 
inhibitory competition among neurons, which produces correspondingly more 
sparse patterns of activity, results in reduced overlap (i.e., increased pattern 
separation; Figure 5.9).

Click to view larger

Fig. 5.7  The macrostructure of the Leabra 
architecture, with specialized brain areas interacting 
to produce overall cognitive function.

(p. 104) 



The Leabra Cognitive Architecture: How to Play 20 Principles with Nature 
and Win!

Page 21 of 41

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2015. All Rights 
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in 
Oxford Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: University of Colorado at Boulder; date: 22 September 2017

Intuitively, pattern 
separation arises because 
the odds of a neuron 
exceeding a high threshold 
twice (assuming statistical 
independence) is like 
squaring a low probability
—it goes down 
quadratically (Marr, 1971). 
For example, with a 1% 
chance of becoming active, 
the probability of doing it 

twice is 0.012 = 0.0001—a very small number.

Principle 13 (Tradeoffs in separation versus overlap): Although increasingly 
sparse representations result in decreased interference through pattern 
separation, they also reduce the ability to generalize knowledge across 
experiences for the same reason: when different neurons and synapses encode 
each experience, then there is no opportunity to integrate across them (e.g., to 
extract statistical patterns).

This tradeoff implies that 
achieving both of these 
learning goals 
(memorizing specifics and 
extracting generalities) 
requires two different 
systems, one with sparse 
representations for 
memorizing specifics and 
another with overlapping 
distributed 
representations for 
extracting generalities 
(McClelland et al., 1995; 
Sherry & Schacter, 1987).

These principles provide a 
compelling explanation for 
the properties of the 

hippocampus for memorizing specific information, including specific episodes (i.e., 
episodic memory), in contrast to a neocortical network that uses overlapping distributed 
representations to extract more generalized semantic information about the world. The 
CA3, CA1, and especially DG layers of the hippocampus have very sparse levels of 
activity, and corresponding pattern separation has been demonstrated through a variety 

Click to view larger

Fig. 5.8  Structure of the hippocampal memory 
system and associated medial temporal lobe cortical 
structures.

Click to view larger

Fig. 5.9  Pattern separation as a result of sparse 
activity levels in hippocampus relative to cortex.

(p. 105) 
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of techniques (Gilbert, Kesner, & Lee, 2001; Leutgeb, Leutgeb, Moser, & Moser, 2007; 
McHugh et al., 2007; Bakker, Kirwan, Miller, & Stark, 2008). See O’Reilly et al. (2011) for 
a recent review of all the evidence consistent with this complementary learning systems
account of the difference between hippocampus and neocortex.

In the latest version of the Leabra architecture, we developed a more powerful version of 
hippocampal learning that leverages the different θ-phase relationships of the 
hippocampal layers to drive error-driven learning (Ketz, Morkonda, & O’Reilly, 2013) 
instead of relying on purely Hebbian learning, which has been a feature of most 
computational models of the hippocampus. In brief, this new model contrasts the 
retrieved pattern with the pattern to be encoded and uses the difference as an error 
signal. This trains subsequent retrieval in just the ways it needs to be modified to be more 
accurate without the less selective and therefore more interference-prone Hebbian 
associative learning. In addition, these θ-phase dynamics also drive error-driven learning 
of the invertible decoder pathway lying between CA1 and EC, which is necessary for 
recalling hippocampal memories back into the “language” of the cortex. This model has 
significantly higher capacity than a comparable Hebbian model (Ketz et al., 2013).

There are many important implications of the combined hippocampal and neocortical 
learning systems for behavior of the overall Leabra architecture. The hippocampus 
enables rapid (as fast as a single trial) encoding of arbitrary combinations of information. 
It also automatically contextualizes information, binding everything occurring at a given 
point in time together (because it receives information from most higher cortical areas). 
This enables behavior to be appropriately context-sensitive, thus preventing 
overgeneralization. For example, negative outcomes can be appropriately contextualized 
via the hippocampus to prevent a generalized state of anxiety from pervading the system. 
In addition, the hippocampal system is also constantly and automatically retrieving prior 
memories as triggered by the current inputs—this provides an important source of 
constraint and background knowledge for many situations.

Active Maintenance and Executive Function Specializations: Frontal 
and Basal Ganglia Versus Posterior Cortex

Another critical tradeoff motivates the architectural distinction between the frontal 
cortex versus the posterior cortex in terms of the neural specializations required to 
sustain information in an active state (i.e., ongoing neural firing). First, we note that 
maintenance of information in a neural network (over at least a short time period) can be 
supported by either sustained neural firing of a population of neurons or by synaptic 
weight changes. What are the relative tradeoffs between these two forms of information 
maintenance, and what kinds of neural specializations are required to support 
the maintenance of active neural firing? Again, we start with two principles:

(p. 106) 
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Principle 14 (Activation-based memory is more flexible than weight-based 
memory changes and is crucial for exerting top-down control): Changes in 
neural firing can generally happen faster and have broader and more general 
effects than weight changes.

Changes in neural firing are much more flexible than weight changes because a new state 
can be rapidly activated to replace an old one, whereas weight changes typically require 
multiple iterations to accumulate before there is a measurable impact. Furthermore, 
active neural firing can immediately and directly influence the activity states of other 
neurons in the network (top-down biasing), whereas weight changes are latent most of 
the time and require the (re)activation of those same neurons to exert a biasing effect 
(Morton & Munakata, 2002).

We can distinguish the frontal cortex (especially the PFC) from the posterior cortex in 
terms of an ability to robustly maintain information using active neural firing over time. 
There are multiple specialized neural mechanisms in the PFC relative to posterior cortex 
that support this ability (Wang et al., 2006), and it is long-established that PFC neurons 
exhibit this active maintenance property (Fuster & Alexander, 1971; Goldman-Rakic, 
1995; Kubota & Niki, 1971; Miller, Erickson, & Desimone, 1996; Miyashita & Chang, 
1988). This specialization for active maintenance is then consistent with the observed 
importance of the PFC in supporting cognitive flexibility (e.g., in task shifting, 
overcoming prepotent responding, and other similar such cases) and for providing top-
down excitatory biasing over processing in the posterior cortex to guide behavior in a 
task-relevant manner (Braver & Cohen, 2000; Cohen, Dunbar, & McClelland, 1990; Cohen 
& Servan-Schreiber, 1989; Herd et al., 2006; Miller & Cohen, 2001). All of these functions 
of the PFC can be summarized with the term executive function, and an important 
contribution of the Leabra approach is to show how all of these different aspects of 
executive function can derive from a single set of neural specializations. This is an 
instance in which the use of a big-picture cognitive architecture provides an important 
and unique perspective, in contrast to developing specific models for different aspects of 
executive function.

Principle 15 (Tradeoff between updating and maintenance): There is a 
tradeoff between the neural parameters that promote the stable (robust) active 
maintenance of information over time and those that enable activity patterns to be 
rapidly updated in response to new inputs.

Robust maintenance requires strong recurrent excitation among maintaining neurons 
and/or strong intrinsic excitatory currents relative to the drive from other inputs so that 
the maintained information is not overwritten by new inputs. In contrast, rapid updating 
requires that those maintenance factors be weakened for external inputs to outcompete 
existing representations. Thus, there can be no static setting of parameters that will make 
a system capable of doing both robust maintenance and rapid updating in a general-
purpose and ecologically adaptive way (although it would be possible to set parameters 
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so as to rapidly update some information easily and robustly maintain other information, 
based on specific weight patterns, the rigidity of that approach would not be very useful).

Principle 16 (Dynamic gating): A dynamic gating system can resolve the 
fundamental tradeoff between rapid updating and robust maintenance by 
dynamically switching between these two modes.

The fundamental tradeoff between maintenance and updating makes it clear, however, 
that the PFC cannot do everything by itself—some kind of dynamic gating system is 
required (O’Reilly et al., 1999). We and others have argued that the BG is ideally situated 
to provide a dynamic gating signal to the frontal cortex (e.g., Frank et al., 2001). When 
the direct or Go pathway neurons fire, this (indirectly) triggers a burst of activation 
through the frontal-thalamic loop that results in a rapid updating of information in frontal 
cortex. Otherwise (e.g., when the indirect or NoGo pathway neurons fire), the frontal 
cortex can robustly maintain activity states over time. But how does the BG know when to 
fire Go? We have shown that the phasic dopamine signals associated with reward 
prediction errors can drive learning in the BG to solve this learning problem (O’Reilly & 
Frank, 2006). Thus, capturing the overall contributions of the PFC to executive function 
requires a complex interactive system (Figure 5.10), which we have implemented as the 

PFC BG working memory (PBWM) system (Hazy et al., 2006, 2007; O’Reilly & Frank, 
2006).

We placed the BG in the center of the macrostructural architecture (Figure 5.7) in part as 
a result of our collaboration with the ACT-R developers—the central engine driving the 
sequencing of cognitive actions in ACT-R is the production system component of 
the architecture, which they have associated with the BG. Interestingly, this notion of a 
production system (which chooses the next “cognitive action” based on the current 
context) as the core of the cognitive architecture was central to Newell’s original 20-
questions paper (Newell, 1973), and this idea does appear to have stood the test of time.

Click to view larger

Fig. 5.10  The prefrontal cortex basal ganglia 
working memory (PBWM) component of the Leabra 
architecture, capturing the dynamic gating of 
prefrontal cortex active maintenance by the basal 
ganglia, which is in turn modulated by phasic 
dopamine signals to learn what is important to 

(p. 107) 
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Thus, the model of 
executive function that 
emerges from this picture 

is a continuous sequence of dynamic and highly selective gating actions exquisitely 
modulated by the BG and continually updating the states of selected regions of neurons in 
the frontal cortex. These in turn provide an updated context and top-down biasing on 
other cortical areas, including much of the posterior cortex, according to whatever goals 
or plans are currently activated. Finally, at the brain-wide scale of the tripartite 
organization (Figure 5.7), the hippocampus is constantly encoding and retrieving 
information cued by this ongoing flow and thus providing relevant knowledge and context 
to inform ongoing processing. There are also multiple mechanisms by which the PFC can 
provide more directed control over the encoding and retrieval processes in the 
hippocampus to better deploy its considerable powers of learning and recall.

One critical piece missing from this picture is the origin of these goal and plan 
representations: how does the system decide what it wants to do and develop overall 
plans of action to accomplish its goals? To understand more about this, we first provide 
an overarching picture about the organization of different representational content in the 
system.

What Versus How Content Specialization: 
Ventral Versus Dorsal Pathways
Complementing the parametric specializations just described, we can also try to identify 
content-based specializations in the cognitive architecture—ways in which different parts 
of the neocortex are organized to process specific kinds of information. We begin with 
some motivating principles for thinking about why and how such a content-based 
organization might occur. To contextualize the first principle, it seems that people have 
an irrepressible urge to anthropomorphize and think of neurons as tiny people who 
communicate using some kind of language, like two old ladies sitting on a park bench 
discussing the passersby. For example, some researchers are engaged in a quest to 
discover the “neural code”—a putative language that neurons use to communicate with, 
typically thought to involve complex sequences of spikes (e.g., Rieke, Warland, de Ruyter 
van Steveninck, & Bialek, 1996). A consequence of this kind of thinking is that people 
tend to assume that it is no problem for neurons to rapidly change what they are 
encoding (e.g., Miller, 2000; Duncan, 2001); that is, that neurons can simply change the 
words that they send to the other neurons to effect this change.

Contrary to the anthropomorphic image, every indication is that pyramidal neurons 
simply aggregate over the vast pool of incoming information in a very generic way, like 
raindrops in a bucket, thus preventing the use of any kind of specialized neural language. 
This is certainly how the Leabra model operates. And yet it can perform very powerful 

maintain. The primary value, learned value (PVLV) 
system provides a biologically based model of the 
dopaminergic system.
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forms of information processing under this strong constraint. Our next principle helps 
articulate how this happens, and, after that, we see how this constrains the large-scale 
functional organization of the brain relative to a perspective that assumes that neurons 
use a form of language and can rapidly change what they are encoding.

Principle 17 (Meaning is in the activity pattern across neurons, not in the 
individual neural messages): Meaning in a neural network is entirely derived 
from the patterns of activity across the population of input neurons (“receptive 
field”) to a receiving neuron—each individual neuron only has meaning in 
relationship to other neurons, and this meaning must be learned over time by each 
neuron.

Thus, we reject the notion of a neural code that posits meaning in individual neural 
signals, and we accept the consequence that it is not possible for neurons to rapidly 
change what they encode—that would just confuse the other neurons (O’Reilly, 
2010). Instead, neural representations must be relatively stable over time to enable a 
given receiving neuron to properly learn the statistics of the patterns of activity over its 
inputs.

Principle 18 (Hierarchical stages are required for complex processing): 
Given the relatively simple detector-like functionality of individual neurons, 
multiple hierarchically organized stages of processing are typically required to 
extract high-level information out of sensory input streams. Each stage of 
processing detects patterns of an incremental increase in complexity relative to 
the previous stage, and this incremental decomposition of the problem can enable 
information to be extracted in ways that single-stage transformations simply 
cannot support.

These two principles together imply that there should be a relatively stable structural 
organization of information in the brain where nearby populations of neurons process 
similar kinds of information so that they can present an informative overall pattern of 
activity to other downstream neurons in a hierarchically organized processing pathway. 
This conclusion converges with considerable empirical data on the nature of the 
pathways in the brain that process visual information in different ways. Two major 
pathways have been identified: one progressing through successive layers of the ventral 
visual pathway into the inferotemporal cortex (IT) and the other progressing through the 
dorsal pathway into the parietal cortex. The ventral pathway produces invariant 
representations of object identity over a succession of layers from V1, V2, V3, V4, and aIT 
to pIT. Computational models of this pathway, including a Leabra model called LVis, have 
shown how this hierarchy is important for computing complex object feature detectors 
that are also invariant to many irrelevant sources of variance in input images, such as 
position, rotation, size, illumination, and the like (Fukushima, 1980, 2003; Mutch & Lowe, 
2008; O’Reilly et al., 2013; Riesenhuber & Poggio, 1999; Serre, Wolf, Bileschi, 
Riesenhuber, & Poggio, 2007; Wallis & Rolls, 1997). Other models of the parietal cortex 

(p. 108) 
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demonstrate hierarchies that transform retinotopic visual inputs into the proper 
reference frames for driving motor control (Pouget, Deneve, & Duhamel, 2002; Pouget & 
Sejnowski, 1997).

Goodale and Milner (1992; Milner & Goodale, 1995, 2006) used other data, including 
striking dissociations in patients with brain damage, to argue for an overall What (ventral 
object recognition) versus How (dorsal perception-for-action) division in posterior cortex, 
which is a refinement to the influential What versus Where division suggested by 

Ungerleider and Mishkin (1982; perception-for-action relies extensively, but not 
exclusively, on spatial representations). This what versus how distinction is very broad, 
encompassing many more specialized subpathways within these overall divisions. Other 
pathways of content-specific information exist as well (e.g., pathways for the other 
sensory modalities), and it is likely that additional high-level semantic pathways, such as 
those involved in representing plots and story schemas, also exist.

Principles 17 and 18 also suggest that it would make sense for the brain to carry these 
specialized content processing pathways forward into the PFC, as we recently argued 
(O’Reilly, 2010; Figure 11). In this way, the prefrontal top-down control pathways can 
continue the hierarchical processing stages, resulting in even higher level “executive” 
encodings of the different specialized pathways, which then provide a more effective 
basis for targeting top-down control. For example, we have shown that the active 
maintenance properties of the PFC, along with the dynamic gating mechanism provided 
by the BG, shapes PFC representations to encode more abstract rules or regularities 
(Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005). Under this what versus how 
organization in PFC, the dorsal lateral PFC (DLPFC) is specialized for executive control 
over sensory-motor processing, including likely sequencing and organization of motor 
plans. In contrast, ventral lateral PFC (VLPFC) is more specialized for executive control 
over sensory processing that takes place in the IT cortex. Within both of these areas, 
increasingly anterior PFC areas are likely to contain higher order, more abstracted 
representations because the hierarchical connectivity continues through this axis. 
Overall, this organizational scheme is consistent with a wide range of data (O’Reilly, 
2010), and it helps to integrate findings across many different specific task paradigms 
and constrain one’s interpretation of the functional contributions of these areas—exactly 
the kind of benefit a cognitive architecture should provide.

One of the more intriguing aspects of this what versus how organizational theory comes 
in its application to motivational and affective systems, which include the medial surface 
of the frontal cortex, as discussed next. (p. 109) 
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Motivational and Affective Systems

The last missing piece from our overall cognitive architecture comes in the form of 
motivational and affective systems, which are critical for driving the system toward 
certain goals and regulating overall behavioral state and learning processes in response 
to different kinds of environmental feedback. It is these systems that help to establish the 
goals that the executive function system works to achieve. Biologically, these systems are 
evolutionarily ancient, and there are many complex interacting systems that all seem at 
least partially redundant, thus making it extremely difficult to arrive at clear, compelling 
computational models. We begin with a few principles that can help organize our thinking 
to some extent.

Principle 19 (Interact and override): Because newer brain areas evolved on 
top of older ones, they generally have strong bidirectional interactive connections 
with the older areas and leverage the more robust signals from the older areas to 
help train up the more flexible newer systems, while also having the ability to 
exert top-down control over the older systems through either directed or 
competitive inhibition ( Munakata et al., 2011).

Principle 20 (Motivation and reward must be grounded): As higher order 
motivational and affective areas evolved to be more flexible and adaptive to the 
specific environmental context an individual finds himself in, the risk of 
motivations becoming maladaptive over the course of an individual’s development 
emerged. The prevalence of suicide in humans is evidence that we have pushed 
this balance to the limit. Thus, there must be strong grounding constraints on the 
learning processes in these higher order motivational systems—it is crucial that 
we cannot just make ourselves happy by willing it to be so.

Click to view larger

Fig. 5.11  The What versus How content organization 
of the brain, showing a map of the lateral surface of 
the cortex on the left and half of a coronal slice 
through the frontal cortex on the right to label the 
corresponding medial portions of the frontal cortex 
(ACC, anterior cingulate cortex; OFC, orbital frontal 
cortex). Numbers on the lateral surface represent 
Brodmann areas for the frontal cortex.
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To explore the implications of these principles, we can start at the top and move down 
through the evolutionary layer cake of affective systems, beginning with the medial 
frontal areas that provide executive control over affective and motivational systems lower 
down. As a general rule in brain anatomy, the medial brain areas are associated with the 
“limbic system” and are primarily involved in motivational and affective activation, 
learning, and control, and this is the case with the medial frontal areas. As shown in 
Figure 5.11, the dorsal medial frontal cortex contains the anterior cingulate cortex (ACC), 
whereas the ventral medial frontal areas (spreading over into ventral lateral) include the 
orbital frontal cortex (OFC). There are also non-OFC areas generically labeled ventral 
medial PFC (VMPFC). According to the what versus how dorsal/ventral distinction, we 
would expect the ACC to be important for motivational and affective control associated 
with motor control, whereas the OFC should be involved in motivational and affective 
control associated with objects, language, and other ventral pathway information.

Matthew Rushworth and colleagues have accumulated considerable data consistent with 
this what versus how account, showing that ACC encodes “value” representations 
associated with different motor actions that an animal is considering, whereas OFC 
encodes more stimulus-driven value representations (Rushworth, 2008; Rushworth, 
Behrens, Rudebeck, & Walton, 2007). This division is also consistent with considerable 
data showing that the ACC is important for encoding error, conflict (uncertainty), 
and effort information—these are the affective states most relevant for evaluating 
different action choices. In contrast, OFC neurons have been shown to encode both 
unconditioned stimulus (US; i.e., reward outcome) information along with conditioned 
stimuli (CS) that have been associated with these US’s. Thus, it appears that the broad 
what versus how dissociation can also help make sense of the medial frontal cortical 
organization.

Moving down a level in the hierarchy, the equivalent of posterior cortex in the affective 
domain is the basolateral amygdala (BLA), which is anatomically at the same level as the 
hippocampus in what is known as the “archicortex” or ancient cortex. The BLA is densely 
interconnected with the OFC and the ACC, and it is known to encode both US and CS. 
Some models of the BLA and OFC interactions suggest that the BLA helps train 
corresponding representations in the OFC while OFC provides top-down biasing over 
BLA, resulting in enhanced flexibility during reversal learning, for example (Frank & 
Claus, 2006; Pauli, Hazy, & O’Reilly, 2012). This dynamic is consistent with the principles 
outlined earlier. The BLA also interacts with a deeper structure known as the central 
nucleus of the amygdala (CNA), which then has extensive connectivity with ancient 
midbrain nuclei involved in all manner of basic bodily functions and states of arousal, 
pain, pleasure, and the like.

One pathway through the CNA is involved in driving phasic dopamine bursts in response 
to CS, and this forms a central part of the Learned Value (LV) system in our Primary 
Value, Learned Value (PVLV) model (Hazy et al., 2010; O’Reilly et al., 2007). This PVLV 
system explains how different brain areas contribute to the overall phenomenon of 
reward prediction error (RPE) signaling in the midbrain dopamine neurons, which then 

(p. 110) 
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broadcast the neuromodulator dopamine throughout the brain. Dopamine has many 
effects on neurons in different brain areas, but rapid phasic changes in dopamine are 
highly likely to affect learning in the striatum of the BG in a manner consistent with its 
gating role in the PBWM model described earlier (Frank, 2005). Contrary to the popular 
impression, dopamine itself is unlikely to convey an affective pleasure signal throughout 
the brain and should be thought of more as a learning or salience signal.

To summarize, the Leabra architecture at this point has a strong implementation of the 
dopaminergic system and its involvement in learning and includes some initial 
implementations of the BLA/OFC system (Pauli et al., 2012). We are currently elaborating 
and refining these models, and we are developing an ACC model, to provide a more 
complete motivational and affective system. Interestingly, one of the most important 
functions we attribute to the ACC and OFC is an ability to track the rate of progress 
toward a goal and to trigger the adoption of new strategies when the system becomes 
“frustrated” with its current progress. This system would account for similar functionality 
that is the cornerstone of Allen Newell’s SOAR architecture, which has a universal 
subgoaling system that activates whenever the production system reaches an impasse. 
We also think that the motivational system will play a critical role in selecting goals and 
action plans that are within the current “zone of proximal development” of the system, 
corresponding in effect to a state of “curiosity” about things that the system would like to 
explore further (Herd, Mingus, & O’Reilly, 2010). Given our current experience with the 
PBWM system lacking these motivational control systems, we are convinced that they are 
essential for enabling the system to be more robust and effective in solving problems. For 
example, the current system will continue to select actions that lead, on average, to 
suboptimal rewards without properly exploring other options, despite the fact that it is 
making no progress overall in achieving greater levels of success. The network needs to 
experience some frustration for what it’s currently doing and curiosity for underexplored 
avenues.

Finally, coming back to Principle 20, we follow Michael Tomasello in believing that much 
of the flexibility and power of human cognition comes from our strong social motivational 
systems (Tomasello, 2001). If you try to understand human motivations in terms of 
satisfying a desire for basic survival factors such as food and water, or even money, it 
doesn’t really add up. There is no way someone would be a starving artist or grad student 
under such a scenario. However, once you think in terms of social motivation, it all starts 
to make sense. We basically want to both share knowledge and experiences with others 
and also show off for others. Furthermore, we have a strong in-group/out-group 
motivational dichotomy in our heads that essentially aligns with the love/hate axis. And 
these groups can be high dimensional, encompassing everything from family, friends, 
school, sports teams, political party and nation to species. These social motivations 
provide grounded primary reward signals but are also highly flexible on a cultural level, 
thus enabling people as a group to adapt to different demands. There is much (p. 111) 
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that remains to be understood in this area, but we believe that it is important for any 
accurate model of human cognition to take these social factors into account.

Conclusion
We hope that the explicit enumeration of a set of core principles underlying the Leabra 
cognitive architecture provides a clear sense of the motivations, priorities, and defining 
features of the architecture. As noted earlier, we refer the reader to our online textbook 

http://ccnbook.colorado.edu (O’Reilly et al., 2012) for a more complete development of 
these ideas and their specific implementation in computational models.

You may have some lingering questions about the precise relationships among the 
principles articulated here, the more specific theoretical instantiation of the Leabra 
architecture as reflected in specific models and papers, and the detailed implementation 
of Leabra in the current version of the simulation software. Which is the official definition 
of the architecture? What happens when the architecture changes over time—does that 
invalidate earlier models? Can anyone contribute to the development of the architecture? 
Is Leabra just a label for an ever-expanding theory of human cognition, or do the existing 
principles set clear limits on how it might expand in the future?

As is implicit in the principles enumerated herein, there is not one privileged level of 
description, and hence we seek convergent multilevel descriptions of the nature of the 
Leabra architecture as well—it is simultaneously and at different levels all of the above 
three things (principles, specific theories, and implementation), each of which mutually 
informs and constrains the others. Thus, principles shape the overall structure of the 
architecture while specific models and theories about particular brain areas or cognitive 
functions test the applicability of the principles and provide new insights that can be 
incorporated back into the overall architecture. Many times, important questions are 
raised in the process of the software implementation, and computational results strongly 
inform us about what works and what does not work to actually solve particular 
problems. And, similarly, important questions and solutions are discovered in the process 
of trying to understand the actual biological mechanisms. Thus, in many ways, the 
architecture represents a kind of aggregation and clearinghouse for integrating new 
advances into a coherent and competent framework.

Returning to the overarching question raised in the introduction: why would anyone 
invest the effort to understand this complex cognitive architecture? We hope to have 
convinced you that it does account for a wide range of data at multiple levels of analysis 
in a principled and internally consistent manner, building on a small set of 
microstructural principles up to a macrostructural organization of the brain. But, even if 
you are not moved to build models in Leabra yourself, you can nevertheless benefit by 
borrowing from the various ideas and models that have been developed. For example, 
many people cite the Leabra work on error-driven learning to support their use of error 
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back-propagation models. This is reasonable, given that such models do provide a rough 
approximation to the learning that we argue is actually supported by the neocortex. 
Similarly, there are many different abstract computational implementations of the core 
ideas behind the PBWM model of PFC/BG working memory (O’Reilly, Herd, & Pauli, 2010) 
that can leverage the biological connections that the PBWM model makes.

Future Directions
Clearly, Leabra is a work in progress, one with many important challenges ahead, and we 
welcome contributions from anyone—as should be evident, we gladly steal the best ideas 
wherever we can find them (giving proper attribution of course). We do think that the 
existing set of principles, theories, and software provides a solid foundation upon which 
to build—one that will strongly inform and constrain future progress. Some specific areas 
where we see development going in the next few years include:

• Embodied robotics: A powerful neural architecture for a robot can be achieved by 
combining an improved version of our existing object recognition model (O’Reilly et 
al., 2013), which is capable of robust figure-ground segregation, with neurally driven 
motor control systems based on the biology of the cerebellum, parietal cortex, and 
frontal cortex. We are working on all of these components and are excited to discover 
how much of cognition can be grounded in the kinds of learning that can occur in the 
realistic sensory-motor interaction of a robot with its environment.

• Emotion, motivation, and control: As described earlier, there is much to be done 
to understand how the “limbic” brain areas interact with the cognitive processing that 
we have primarily focused on to date. We are excited to understand more 
about the contributions of the ACC and OFC to decision making, goal setting, and 
action planning through the development of detailed Leabra-based models of these 
areas and their interactions with associated subcortical areas.

• Temporal processing: To simplify and enable more rapid progress, we have tended 
to simplify many aspects of the complex temporal dynamics that are undoubtedly 
important for neural processing in the brain. It is time to circle back and revisit some 
of these issues to see where tractable progress can be made. For example, we are 
currently exploring the idea that interconnectivity between the deep layers of the 
neocortex and the thalamus could produce a dynamic much like that present in a 
simple recurrent network (SRN; Elman, 1990). This would provide a powerful 
mechanism for integrating information over time, leveraging learned synaptic weights 
and high-dimensional coarse-coded distributed representations to determine how to 
integrate prior context and current inputs. In contrast, many models put a simple 
parameter on how sluggish versus responsive the neurons are, which inevitably leads 
to difficult tradeoffs and unsatisfactory parameter dependence.

(p. 112) 
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There are many other important challenges ahead in addition to these specific ones, and, 
again we welcome contributions!
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