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The authors present their primary value learned value (PVLV) model for understanding the reward-
predictive firing properties of dopamine (DA) neurons as an alternative to the temporal-differences (TD)
algorithm. PVLV is more directly related to underlying biology and is also more robust to variability in
the environment. The primary value (PV) system controls performance and learning during primary
rewards, whereas the learned value (LV) system learns about conditioned stimuli. The PV system is
essentially the Rescorla–Wagner/delta-rule and comprises the neurons in the ventral striatum/nucleus
accumbens that inhibit DA cells. The LV system comprises the neurons in the central nucleus of the
amygdala that excite DA cells. The authors show that the PVLV model can account for critical aspects
of the DA firing data, making a number of clear predictions about lesion effects, several of which are
consistent with existing data. For example, first- and second-order conditioning can be anatomically
dissociated, which is consistent with PVLV and not TD. Overall, the model provides a biologically
plausible framework for understanding the neural basis of reward learning.
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An important and longstanding challenge for both the cognitive
neuroscience and artificial intelligence communities has been to
develop an adequate understanding (and a correspondingly robust
model) of Pavlovian learning. Such a model should account for the
full range of signature findings in the rich literature on this phe-
nomenon. Pavlovian conditioning refers to the ability of previ-
ously neutral stimuli that reliably co-occur with primary rewards to
elicit new conditioned behaviors and to take on reward value
themselves (e.g., Pavlov’s famous case of the bell signaling food
for hungry dogs; Pavlov, 1927).

Pavlovian conditioning is distinguished from instrumental con-
ditioning in that the latter involves the learning of new behaviors
that are reliably associated with reward, either first order (US), or
second order (CS). Although Pavlovian conditioning also involves
behaviors (conditioned and unconditioned responses), reward de-
livery is not contingent on behavior but is instead reliably paired
with a stimulus regardless of behavior. In contrast, instrumental

conditioning explicitly makes reward contingent on a particular
“operant” or “instrumental” response. Both stimulus–reward (Pav-
lovian) and stimulus–response–reward (instrumental) associations,
however, are thought to be trained by the same phasic dopamine
signal that occurs at the time of primary reward (US) as described
below. In practice, the distinction is often blurry as the two types
of conditioning interact (e.g., second-order instrumental condition-
ing and so-called Pavlovian instrumental transfer effects).

The dominant theoretical perspective for both Pavlovian and
instrumental conditioning since the seminal Rescorla and Wagner
(1972) model, is that learning is based on the discrepancy between
actual rewards received and predictions thereof (i.e., reward pre-
diction error). Currently, the temporal differences (TD) reward
prediction framework (Sutton, 1988; Sutton & Barto, 1998) is by
far the most widely adopted computational level account of Pav-
lovian (and instrumental) conditioning and dopamine firing (e.g.,
Barto, 1995; Daw, Courville, & Touretzky, 2003; Daw, Kakade, &
Dayan, 2002; Dayan, 2001; Dayan & Balleine, 2002; Houk, Ad-
ams, & Barto, 1995; Kakade & Dayan, 2002a, 2002b; Montague,
Dayan, & Sejnowski, 1996; Suri & Schultz, 1999, 2001; see
Brown, Bullock, & Grossberg, 1999; Contreras-Vidal & Schultz,
1999; Sporns & Alexander, 2002, for alternative models, and Joel,
Niv, & Ruppin, 2002, for a biologically oriented review).

One important reason for the popularity of TD is that a reward
prediction error signal has been established in the brain, in the
pattern of midbrain dopamine neuron activation (e.g., Schultz,
1998; Schultz, Apicella, & Ljungberg, 1993; see Figure 1). These
neurons initially fire short phasic bursts of activity for primary
rewards and over the course of learning come to fire similarly at
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the onset of previously neutral, reward predictive stimuli (i.e.,
conditioned stimuli; CS), and no longer to the reward itself.
Generally, there is a time period when both CS and reward-related
firing is occurring (Pan, Schmidt, Wickens, & Hyland, 2005;
Schultz, 2002).

However, it remains unclear exactly what brain mechanisms
lead to this behavior on the part of dopamine cells. Most research-
ers agree that the critical learning processes are taking place
upstream from the midbrain dopamine neurons themselves. But
which areas are doing what? Because it is an abstract, unitary (and
elegant) framework, the TD model does not map directly onto the
relatively large collection of neural substrates known to be in-
volved in reinforcement learning, including areas of the basal
ganglia, amygdala, midbrain dopamine nuclei, and ventromedial
prefrontal cortex (Cardinal, Parkinson, Hall, & Everitt, 2002).
Indeed, relatively few specific proposals have been made for a
biological mapping of the TD model (Houk et al., 1995; Joel et al.,
2002).

In this article, we offer a multicomponent model of Pavlovian
learning called PVLV, which provides a more direct mapping onto
the underlying neural substrates. PVLV is composed of two sub-
systems: primary value (PV) and learned value (LV). The PV
system is engaged by primary reward (i.e., an unconditioned
stimulus; US) and learns to expect the occurrence of a given US,
thereby inhibiting the dopamine burst that would otherwise occur
for it. The LV system learns about conditioned stimuli that are
reliably associated with primary rewards, and it drives phasic
dopamine burst firing at the time of CS onset. This decomposition
is similar to the model of Brown et al. (1999), but as we discuss
later, there are several important functional and anatomical differ-
ences between the two models.

The PV and LV systems are further subdivided into excitatory
and inhibitory subcomponents, which provide a good fit with a

wide range of data (reviewed in detail later) on three different
brain areas. The excitatory subcomponent of PV (denoted PVe) is
associated with the reward-driven excitatory projections from the
lateral hypothalamus onto midbrain dopamine neurons in the sub-
stantia nigra pars compacta (SNc) and the ventral tegmental area
(VTA) as we discuss in more detail later in the section “Biological
Mapping of PVLV.” The inhibitory subcomponent of PV (PVi) is
associated with neurons in the ventral striatum/nucleus accumbens
(VS/NAc) that have direct GABAergic projections to the SNc and
VTA and fire just in advance of primary rewards. The excitatory
subcomponent of the LV system (LVe) is associated with neurons
in the central nucleus of the amygdala (CNA), which have a net
excitatory effect on the SNc and VTA. Thus, we suggest that these
CNA neurons learn to associate CSs with reward and drive exci-
tatory dopamine bursts at CS onset. Finally, there is an inhibitory
component of the LV (LVi) that is also associated with the VS/
NAc, which slowly learns to inhibit the excitatory LVe drive on
the dopamine neurons.

In addition to these core PVLV mechanisms, a number of other
brain areas play a critical role in reinforcement learning. For
example, we think of the prefrontal cortex (PFC) and hippocampus
as providing something akin to an eligibility trace (as in TD[�];
Sutton & Barto, 1998; Pan et al., 2005). We believe this sort of
actively maintained working memory representation is particularly
crucial in trace conditioning paradigms in which there is an inter-
val of time between CS-offset and US-onset. As we discuss later,
PVLV explicitly accounts for known dissociations between delay
versus trace conditioning paradigms that occur under PFC and/or
hippocampal lesions, something about which TD is less explicit. In
fact, PVLV actually requires that models learn to hold onto work-
ing memory representations under trace conditioning paradigms.
Although for the models in this article we apply the working
memory inputs directly (so as to focus on the core PVLV mech-
anisms), our larger prefrontal cortex-basal ganglia (PBWM)
model, of which PVLV is a subcomponent, demonstrates how the
system can learn to maintain task-relevant information in working
memory (O’Reilly & Frank, 2006). TD does not address the
learning of working memory representations explicitly, instead it
finesses the issue by assuming that it is just there in the eligibility
trace.

In addition, the cerebellum (and possibly other brain areas)
provides a representation of time (e.g., Mauk & Buonomano,
2004; Ivry, 1996) that acts as an additional input signal that can
become associated with reward, as in the framework of Savastano
and Miller (1998). The basolateral nucleus of the amygdala (BLA)
is important for second-order conditioning in this framework be-
cause detailed properties of the PVLV mechanism prevent the LVe
(CNA) from performing both first- and second-order conditioning.
This is consistent with data showing anatomical dissociations
between these forms of conditioning (e.g., Hatfield, Han, Conely,
& Holland, 1996). Note that this dissociation, and many others
reviewed later, would not be predicted by the abstract, unitary TD
mechanism. Thus, the PVLV mechanism provides an important
bridge between the more abstract TD model and the details of the
underlying neural systems.

The mapping between TD and PVLV is not perfect, however,
and PVLV makes several distinctive predictions relative to TD in
various behavioral paradigms. For example, PVLV strongly pre-
dicts that higher order conditioning beyond second-order should be

Figure 1. Schematic of dopamine (DA) recording data for a simple
conditioning experiment in which a conditioned stimulus (CS) reliably
precedes the delivery of a reward (Rew). During acquisition (a), DA
initially bursts at the time of reward delivery but then starts spiking at
stimulus onset, diminishing at the time of reward delivery. Note that there
is no strong evidence of a backward-propagating burst over training, as
predicted by some versions of the temporal-differences model but not by
primary value learned value (PVLV). After training (b), if reward is
omitted, a dip in DA below baseline tonic levels is observed.
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weak to nonexistent, whereas TD makes no distinction between
these different levels of conditioning. There is a remarkable
lack of published work on third or higher levels of conditioning,
and the two references we were able to find indicate that it is
nonexistent or weak at best (Denny & Ratner, 1970; Dinsmoor,
2001). Another difference comes from paradigms with variable
CS–US intervals. As we show later, PVLV is very robust to this
variability but TD is not. The data indicate that animals are also
robust to this form of variability (H. Davis, McIntire, & Cohen,
1969; Kamin, 1960; Kirkpatrick & Church, 2000). PVLV also
makes a very strong distinction between delay and trace con-
ditioning, as do animals, whereas this distinction in TD is
considerably more arbitrary.

The remainder of the article is organized as follows. First we
develop the PVLV algorithm at a computational level and
provide several demonstrations of basic Pavlovian learning
phenomena by using the PVLV model. Next, we discuss the
mapping of PVLV onto the brain areas as summarized above
and review a range of empirical data that are consistent with
this model. We conclude by comparing our model with other
models in the literature, including the Brown et al. (1999)
model, which has several important similarities and several
differences relative to our model.

The PVLV Algorithm

The PVLV algorithm starts with the basic Rescorla and Wagner
(1972) learning rule (which is formally identical to the earlier delta
rule; Widrow & Hoff, 1960, originally pointed out by Sutton &
Barto, 1981), which captures the core principle that learning
should be based on the discrepancy between predictions and actual
outcomes:

� t � rt � r̂t, (1)

where rt is the current reward value at time t, r̂t is the expected or
predicted reward value, and �t is the discrepancy or error between
the two. This �t value then drives synaptic weight changes for the
system computing r̂t. For example, a simple neural model would
involve a single neural unit that computes the estimated value r̂t by
using synaptic weights wi from a set of sensory inputs xi:

r̂t � �
i

wi
txi

t. (2)

The change in the weight values needed to improve the estimated
reward value is simply

�wi
t � ε�txi

t. (3)

This model does an excellent job of learning to expect primary
rewards, and, if we take the �t to represent the dopamine firing
deviations from baseline, it can explain the cancellation of
dopamine bursting at the onset of the US in a classic Pavlovian
paradigm (Figure 1). However, it cannot account for the firing
of dopamine bursts at the earlier onset of a CS because in fact
there is no actual primary reward (rt) present at that time, and
thus the system will not learn to expect anything at that time.

This CS-triggered dopamine firing plays a critical functional
role in learning because it allows the system to learn which
situations and actions can lead to subsequent reward. For ex-
ample, initial exposure to the presence of cookies in a cookie jar
can enable a subsequent dopamine-reinforced approach and
opening of the jar.

The TD algorithm corrects this critical limitation of the
Rescorla–Wagner algorithm by adopting a temporally extended
prediction framework, where the objective is to predict future
rewards not just present rewards. The consequence of this is that
the �t at one point in time drives learning based on the immediately
prior sensory input state xi

t � 1. This produces a chain-reaction
effect in which a reward prediction error at one point in time
propagates earlier and earlier in time, to the earliest reliable pre-
dictor of a subsequent reward. Hence, the �t value, and thus the
dopamine bursting, can move earlier in time to the onset of the CS.

The PVLV algorithm takes a different approach: The basic
Rescorla–Wagner learning rule is retained as the PV (primary
value) system, and an additional system (LV, learned value) is
added to learn about reward associations for conditioned stimuli.
In addition to the biological motivations for such a division of
labor mentioned earlier (and elaborated below), there are some
computational advantages for adopting this approach. Principally,
the relationship between a CS and a subsequent US is not always
very reliable, and having separate PV and LV systems enables the
system to be very robust to such variability. In contrast, the
chaining mechanism present in the TD algorithm is designed to
work optimally when there is a very reliable sequence of events
leading from the CS to the US. Intuitively, the chain between CS
and US must remain unbroken for the predictive signal to propa-
gate backward over learning, and this chain is only as strong as its
weakest link. This problem can be mitigated to some extent by
using an eligibility trace as in TD(�), where 0 � � �1 parame-
terizes an exponentially decaying trace of the input stimuli used for
learning. This can smooth over rough spots in the chain but at the
potential cost of reducing the temporal precision of reward pre-
dictions as a result of excessive smearing. In contrast, PVLV
avoids this problem entirely by not relying on a chaining mecha-
nism at all.

There are many situations in which the CS–US relationship is
unreliable. For example, in many working memory tasks, a highly
variable number of distractor stimuli can intervene between a
stimulus to be encoded in working memory and the subsequent
demand to recall that stimulus (Hochreiter & Schmidhuber, 1997;
O’Reilly & Frank, 2006). Any dog owner knows that dogs come to
associate the jingling of a leash with the idea that they will soon be
going on a walk, despite a variable amount of time and intervening
events between the leash jingle and the walk itself (e.g., the owner
may go to the bathroom, turn off the television, and check e-mail).
In the animal learning literature, there are (only) a few experiments
in which the CS–US relationship is variable (H. Davis et al., 1969;
Kamin, 1960; Kirkpatrick & Church, 2000), but it is clear that
conditioning is very robust in this case, equivalent to comparison
conditions that have fixed CS–US intervals. This finding is con-
sistent with PVLV and poses a challenge to TD-based approaches.

In short, we think the PVLV mechanism has the simplicity and
robustness that are often characteristic of biological systems, with
the cost of being less elegant than the TD system (two systems are
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required instead of one). In the subsequent sections, we provide the
details for how the PV and LV systems operate.

The PV System

We can rewrite the Rescorla–Wagner equation in terms of the
excitatory (PVe) and inhibitory (PVi) subcomponents of the PV
system. The excitatory PV system represents the value implicitly
hardwired into a primary reward (US), PVe

t � rt in the notation of
Rescorla–Wagner, whereas the inhibitory system learns to cancel
out these rewards, PVi

t � r̂t. Thus, in this terminology, the PV
delta is

�pv
t � PVe

t � PVi
t � rt � r̂t, (4)

and this value is used to train the PVi system as described
earlier (Equation 3). As a consequence, when primary rewards
are delivered, the PVi system associates the current state of the
system with the US (reward). This current state information
includes any sensory inputs that coincide with reward, together
with internally generated timing signals (e.g., if rewards are
always delivered precisely 2 s following an input stimulus, then
the 2-s timing signal becomes associated with the US just as an
external sensory stimulus can become associated with it; Savas-
tano & Miller, 1998). As these associations increase, PVi

t at the
time of primary reward increases to match PVe

t, and the �pv
t

value (i.e., dopamine bursting) decreases, which is the observed
pattern.

The LV System

The LV system also uses the Rescorla–Wagner learning rule but
has a few key differences that enable it to signal reward associa-
tions at the time of CS onset. Like the PV system, the LV system
has two components, excitatory (LVe) and inhibitory (LVi). We
focus first on the LVe component, which learns CS associations
and drives the excitatory dopamine bursts at CS onset. The most
important property of the LVe system is that it only learns when
primary rewards are present or expected. In contrast, the PVi
system learns at all times about the current primary reward status
(PVe or rt). This difference protects the LVe system from having
to learn that there are no actual primary rewards present at the time
of CS onset. Therefore, unlike the PV system, it is able to signal
the reward association of a CS and not have this signal (dopamine
burst) trained away, as otherwise it would be if pure Rescorla–
Wagner learning were at work.

More formally, the LVe learning is conditioned on the state
of the PV system, according to the following filtering condition:

PVfilter � PVi
t � �pv or PVe

t � �pv, (5)

where �pv is a threshold on PV activation, above which it is
considered that the PV system is expecting or receiving a reward
at this time (in the Appendix we present a more general condition
that allows for representation of both reward and punishment
expectations).

For clarity, note that PVfilter is thus a boolean variable such that

PVfilter � �1 if primary reward present or expected
0 otherwise. (6)

The boolean value of PVfilter then regulates the learning of the LVe
system,

�wi
t � �ε�PVe

t � LVe
t 	xi

t, if PVfilter

0 otherwise. (7)

The dependence of the secondary LV system on the primary PV
system for learning ensures that actual reward outcomes have the
final say in shaping all of the reward associations learned by the
system. Also, note that it is the primary reward value itself (PVe

t

or rt) that drives the learning of the LV system, not the PV or LV
delta value, which is defined next. These features have important
implications for understanding various conditioning phenomena,
as elaborated below.

The LVi system performs a similar role for a learned CS as the
PVi system does for the US: It learns to cancel out dopamine
bursts for a highly learned CS. The LVi system is essentially the
same as the LVe system, except that it uses a slower learning rate
(ε), and it produces a net inhibitory drive on the dopamine system
like the PVi system. The LV delta is then the difference between
the excitatory and inhibitory components (just as with the PV
delta),

� lv
t � LVe

t � LVi
t. (8)

Because of its slower learning rate, LVi slowly learns which
CSs are reliably associated with reward and decreases the
dopamine bursts for such CSs relative to those that have more
recently become associated with reward (which have been
learned by the faster LVe but not the slower LVi system).
Furthermore, if a CS that has been reliably associated with
reward subsequently becomes less strongly associated with
reward, the LV delta can become negative (because LVe has
learned this new lower reward association, but LVi retains the
previous more positive association), indicating the change in
reward association. Thus, consistent with the computational
motivation for the delta rule, the LV delta in Equation 8
represents the discrepancy between what was previously known
or expected (as encoded in the LVi weights of the system
through prior learning) and what is more recently happening
(encoded through the LVe weights). This LVi value does not
much affect the simple conditioning simulations shown below,
but it is more important for the efficacy of PVLV in training an
actor (in our case for working memory updating; O’Reilly &
Frank, 2006). Specifically, without LVi a stimulus associated
with reward would always drive a DA burst (even if its reward
association had recently decreased), and it would always rein-
force actions with a constant dopamine burst, to the point that
such actions would be massively overlearned.

How do the PV and LV systems each contribute to the
dopamine output signal? Because there are two delta signals in
PVLV, from PV and LV, these need to be combined to produce
an overall delta value that can be used as a global dopamine
signal (e.g., to train an actor system in an actor– critic archi-
tecture). The most functionally transparent mechanism is to
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have the PV delta apply whenever there is a primary reward
present or expected by the PV system. But when no rewards are
present, the LV delta can still drive dopamine firing. As before
(see Equation 5), PVLV implements this by using the boolean
variable, PVfilter, where

PVfilter � �1 if primary reward present or expected
0 otherwise, (9)

and PVfilter is evaluated,

PVfilter � PVi
t � �pv or PVe

t � �py. (10)

Thus,

� t � ��pv, if PVfilter

�lv otherwise. (11)

This is also consistent with the equation that determines when the
LV system learns according to PV expectations and actual reward
delivery (Equation 7).1

Figure 2 summarizes the PVLV system’s operation in the simple
CS–US conditioning paradigm we have been considering. The PV
continuously learns about the occurrence of primary rewards (both
presence and absence), and as it learns to expect reward delivery
it cancels the dopamine burst (i.e., PV delta value) that would
otherwise occur at that time. The reward also trains the LV system,
which produces increasing weights from the CS (as long as this is
active in the input at this time). On subsequent trials, the LV
system is then able to fire naturally at CS onset, producing a
dopamine burst (i.e., LV delta value). By this mechanism, the time
gap between CS-onset and US is bridged automatically by the
CS–US association, without recourse to the kind of explicit pre-
diction that is central to the TD model. The biological mapping of
the PVLV mechanisms shown in the figure are discussed in detail
below.

Additional Mechanisms

There are two additional mechanisms required for the overall
system to function (and to be consistent with available data). First
(as previously noted), the PVi system must take advantage of some
kind of timing signal that enables it to fire at the expected time of
actual reward input and not otherwise. In Figure 2B, we illustrate
a ramping timing signal triggered by CS onset, which is intended
to represent the kind of interval timing signal provided by the
cerebellum (e.g., Ivry, 1996; Mauk & Buonomano, 2004), but any
kind of regular activity pattern would work just as well for our
model (see Lustig, Matell, & Meck, 2005, for a model of timing
signals within the basal ganglia). We discuss this issue further in
comparison with an alternative model of DA firing by Brown et al.
(1999) below, which depends on an intrinsic timing mechanism as
an integral part of their system.

The second additional mechanism required is a novelty de-
tection (and familiarity suppression) mechanism, so that the LV
system does not continue to trigger dopamine spiking during the
entire duration of CS input. With such a mechanism in place,
the first onset of a stimulus input triggers a burst of LV firing,
but this then decreases as the stimulus stays on. One solution to

this problem is to use a habituation mechanism on the LV
system to achieve this effect (e.g., Brown et al., 1999), but this
would generalize across various different stimuli and would
therefore prevent a second stimulus that could be associated
with a different or larger reward from evoking DA firing.
Instead, in our implementation we have adopted a synaptic
depression mechanism (e.g., Abbott, Varela, Sen, & Nelson,
1997; Markram & Tsodyks, 1996; Zucker & Regehr, 2002;
Huber & O’Reilly, 2003), which causes a habituation of the LV
DA-burst firing response only to the stimulus that was initially
active (i.e., only active synapses are depressed). With this
mechanism in place, the LVe system accommodates to any
constant sensory inputs and responds only to changes in input
signals, causing it to fire only at the onset of a stimulus tone.
Such synaptic depression mechanisms are ubiquitous through-
out the vertebrate and invertebrate brain (Zucker & Regehr,
2002). Nevertheless, there are a large number of ways of
implementing such an overall function, so we are confident that,
if our overall hypothesis about the PVLV mechanism is correct,
the brain will have found a means of achieving this function.2

For full details about the PVLV algorithm and implementation,
see the Appendix.

Application to Conditioning Data

At the level of the basic DA firing data represented in Figure 1,
both TD and PVLV account for the most basic findings of DA
bursting at tone onset and cancellation of the burst at reward
delivery. However, as noted earlier, simple TD models (but not
PVLV) also predict a chaining of DA bursts “backward in time”
from the reward to the stimulus onset, which has not been reliably
observed empirically (Fiorillo, Tobler, & Schultz, 2005; Pan et al.,
2005). However, this particular aspect of the data is still contro-
versial (e.g., Niv, Duff, & Dayan, 2005) and also depends critically
on the way that the input environment is represented. For example,
Pan et al. (2005) recently showed how a TD(�) model with a high
lambda value could reproduce the empirically observed pattern
(i.e., no evidence of backward marching dopamine bursts). Fur-
thermore, the data often show dopamine bursts at both the CS and
US (Pan et al., 2005; Schultz, 2002)—this is incompatible with

1 A simpler possible implementation would be to just add the two delta
values to produce a summed DA value, but this double counts the reward-
related deltas because both the LV and PV contribute in this case. Never-
theless, because LV and PV deltas otherwise occur at different times,
Equation 11 is very similar to adding the deltas; the PV system just
dominates when external rewards are presented or expected. It is also
possible to consider an additive equation that also conditionalizes the
contribution of the PV component; this was found in O’Reilly and Frank
(2006) to work slightly better than Equation 11 in a working memory
model (see Appendix for details).

2 Available evidence suggests that a mechanism such as proposed here
most likely exists in the pathway somewhere distal to the LVe represen-
tations themselves (which PVLV proposes to be in the central nucleus of
the amygdala, see below) as electrophysiological recording data show
sustained (i.e., not onset-only) firing in CNA cells throughout CS duration
(Ono, Nishijo, & Uwano, 1995). For example, downstream synaptic de-
pression/habituation may occur in either the pedunculopontine nucleus, or
it could be intrinsic to local dynamics in the midbrain dopamine nuclei
themselves.
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TD(0) but is consistent with both PVLV and TD(�). Therefore,
although it would be nice support for TD if chaining were reliably
observed, its apparent absence is not particularly strong evidence
against the overall TD framework.

In the following sections, we show that PVLV can account for
other basic features of Pavlovian conditioning, including extinc-
tion, blocking, overshadowing/summation, conditioned inhibition,
trace versus delay conditioning, and second-order conditioning.
We further demonstrate that PVLV can robustly learn to associate
stimuli with reward values even when the delay and number of
intervening nonrewarding stimuli are randomized—a situation that
challenges TD, which depends on a predictable delay and sequence
of events between the CS and the US.

Model Implementation

Figure 3A shows the PVLV model implementation used for
these simulations. Stimulus inputs are simple localist units, with an
additional set of stimulus-specific timing inputs that are thought to
represent signals generated by the cerebellum (e.g., Ivry, 1996;
Mauk & Buonomano, 2004). Each stimulus triggers a sequence of
unit activations that simply progress across the input from left to
right at a rate of one unit per time step. These signals enable the
PVi layer to learn when to expect the external reward, thereby
canceling the DA burst at that time. The estimated value repre-
sentations for the PV and LV systems are encoded as a distributed
activity pattern across three value units with preferred activations
of (0, .50, 1), so that different values can be encoded by using
different weights.3

The PVe layer is clamped to provide a representation of the
external reward value, rt, as an input. We use .50 to represent no
reward information, 1 for rewards, and 0 for negative feedback/
punishment. The remaining PVi, LVe, and LVi layers learn
weights from the sensory/timing inputs to produce the correspond-
ing reward expectation values. The LVi layer learns too slowly to
affect any of the results presented here, but as noted earlier it is
critical for more complex reinforcement learning conditions that
require integrating feedback across multiple trials and stimulus
combinations (as in the O’Reilly & Frank, 2006, working memory
model), and it is included for completeness. The units update their
activations by using a point neuron model with simulated excita-
tory, inhibitory, and leak currents, as defined in the Leabra model
(see Appendix for equations).

Acquisition and Extinction

Figure 3C shows the pattern of activation from the model after
acquisition for the basic Pavlovian conditioning paradigm we have
considered throughout the article. As expected, the model shows
the observed pattern of DA firing, initially at the time of reward
and then increasingly at the time of CS onset and not at the time
of reward. In addition, this pattern extinguishes if reward is no
longer provided, a straightforward result in the model due to the

3 A single unit value representation would be constrained by virtue of
having one set of weights to have a monotonic mapping onto scalar values.
This is not critical for the simple demonstrations here, but it is more
generally useful (e.g., for our working memory model; O’Reilly & Frank,
2006).

Figure 2. The primary value learned value (PVLV) learning mechanism.
A: The structure of PVLV. The primary value (PV) system learns about
primary rewards and contains two subsystems: The excitatory (PVe) drives
excitatory dopamine (DA) bursts from primary rewards (US � uncondi-
tioned stimulus), and the inhibitory (PVi) learns to cancel these bursts (by
using timing or other reliable signals). The learned value (LV) system
learns to fire for conditioned stimuli (CS) that are reliably associated with
reward. The excitatory component (LVe) drives DA bursting, whereas the
inhibitory component (LVi) is just like the PVi, except it inhibits CS-
associated bursts. The PVe corresponds anatomically to the lateral hypo-
thalamus (LHA), which has excitatory projections to the midbrain DA
nuclei, and responds to primary rewards. The PVi and LVi correspond to
the striosome/patch neurons in the ventral striatum (V. Str.), which have
direct inhibitory projections onto the DA system and learn to fire at the
time of expected rewards. The LVe corresponds to the central nucleus of
the amygdala (CNA), which has excitatory DA projections and learns to
respond to CSs. B: Application to the simple conditioning paradigm, in
which the PVi learns (on the basis of the PVe reward value at each time
step) to cancel the DA burst at the time of reward, whereas the LVe learns
a positive CS association (only at the time of reward) and drives DA bursts
at CS onset. The phasic nature of CS firing, despite a sustained CS input,
requires a novelty detection mechanism of some form; we suggest a
synaptic depression mechanism has beneficial computational properties.
Timing is thought to represent distributed drifting pattern of activity as
computed by several cerebellum models, represented here in one dimen-
sion as a simple ramp. VTA � ventral tegmental area; SNc � substantia
nigra pars compacta; cereb. � cerebellum.

36 O’REILLY, FRANK, HAZY, AND WATZ



PVi mechanism (results not shown). However, it is important that
the LVe have a slightly faster learning rate than PVi for this
extinction to occur—otherwise the PVi can extinguish before the
LVe, causing PVfilter to go below threshold and leaving LVe with
some residual firing.

Blocking

The blocking effect (Kamin, 1968) was one of the main moti-
vations leading to the development of the Rescorla–Wagner learn-
ing rule. In these studies, an animal first learned to associate a
single stimulus (A) with reward (A 
 trial). Subsequently, a
second stimulus (X) was paired with A, and the compound stim-
ulus was rewarded (AX 
 trial). Blocking refers to the phenom-
enon that prior learning of a reward association for A blocks the
acquisition of association for X. By virtue of having the Rescorla–
Wagner rule drive the engine, PVLV naturally produces this effect.
We first trained the model for 50 “epochs” (one pass through the
training patterns) on A
 and B� (
 � positive reward associa-
tion, � � null reward association). For the next 50 epochs, we
added AX
 and BY
 trials while continuing to train A
 and B�.
Finally, we tested X and Y, measuring the CS onset DA value. As
shown in Figure 4A, the acquisition of reward association to X was
blocked by the prior A
 association relative to Y. This is because
PVi has learned to inhibit the DA burst that would otherwise have
occurred for rewards based on the presence of the A stimulus. As
a result, there is minimal DA-driven learning about X. This same
pattern of DA firing (and the lack thereof) replicates physiological
recordings seen in experiments that have used the same blocking
paradigm simulated here (Waelti, Dickinson, & Schultz, 2001).

Overshadowing and Summation

Training on a compound stimulus (e.g., AX
) causes the ac-
quisition of associative strength to the individual elements to be
reduced relative to conditioning to each of the elements alone and
relative to strength to the compound itself. The actual pattern of
results that is seen depends on the preexisting salience of the two
stimuli, with the more salient stimulus overshadowing the lesser.
When both stimuli are of equal salience, learning about both is
reduced roughly equally. This later condition is referred to as
mutual overshadowing. The complement of overshadowing is
known as summation, when two elements are conditioned sepa-
rately (e.g., A, X) and the compound (AX) is then tested, exhib-
iting greater conditioning. Both of these effects can be explained
through the Rescorla–Wagner rule, in which elements combine
additively in producing the overall reward expectation. Therefore,
individual elements get less reward association when trained in
combination, and the combination of individually trained elements
produces greater activation. Figures 4B and C show that these
effects hold in the PVLV model.

Conditioned Inhibition

Stimuli that predict an absence of reward in the presence of
other stimuli that previously predicted reward take on a negative
reward association, known as conditioned inhibition. To demon-
strate this, we first trained the model on A
, followed by AX�
(while continuing to train on A
). Then, we tested A and X, and,

Figure 3. Primary value learned value (PVLV) network implementation
(A) and basic patterns of activation (B and C) for a standard delay
conditioning trial in which a conditioned stimulus (CS) comes on at Time
1 and stays on until Time 3, at which point a reward (Rew) is delivered.
The overall dopamine output (DA) firing shifts from the point of reward at
the start of training (B) to the onset of the CS at the end of training (C). The
model uses localist representations of value (0, .50, 1) so different values
can be encoded with different sets of weights; overall value is activation-
weighted average across units, shown in the first unit in layer. LVe �
learned value excitatory layer; LVi � learned value inhibitory layer; PVi �
primary value inhibitory; PVe � primary value excitatory (external re-
ward).
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as shown in Figure 4D, X took on an overall negative (i.e., less
than the .50 neutral baseline) reward association. This is consistent
with dopamine recording data showing a decrease in firing to the
X (Tobler, Dickinson, & Schultz, 2003).

Trace Versus Delay Conditioning

Delay conditioning refers to the type of conditioning problems
we have considered so far, in which the CS input remains active
through the time of reward. In the trace conditioning paradigm, the
CS is instead removed before the reward is delivered, thereby
requiring the animal to maintain some kind of internal “trace” of
the stimulus. It is well established that trace conditioning depends
on the integrity of the hippocampus and prefrontal cortex (PFC),
whereas delay conditioning does not (e.g., Kronforst-Collins &
Disterhoft, 1998; Weible, McEchron, & Disterhoft, 2000). The
standard account of these findings is that these additional brain
systems are necessary for maintaining the stimulus trace through to
the point of reward so that a reward association can be established.

This is exactly what the PVLV model requires, by virtue of all
PVLV learning occurring at the time of (expected) rewards. Thus,
if a neural representation of the stimulus is not active at the time
of reward, no conditioned association can develop in the PVLV
system.

However, it is not as clear how TD models would account for
the need for PFC or hippocampus in trace conditioning. In prin-
ciple, TD should be able to use chaining to bridge the gap between
CS offset and reward onset, as long as there is some reliable
sequence of neural activation states that follows from the CS
presentation. This is especially true when lambda is high in TD(�)
models because of the correspondingly long eligibility traces of the
CS, which should persist after the CS goes off. Although it is
possible to propose that the eligibility trace is somehow imple-
mented in PFC or hippocampus, this would then imply that the
system without these areas behaves like TD(0). Such a system
would likely be less robust to variability in the CS–US relation-
ship, as explored below. This could be easily tested by using

Figure 4. Results from basic conditioning paradigms, showing overall dopamine output (DA) value to onset
of indicated conditioned stimulus. A: Blocking in training of X in AX
 from prior training on A
 compared
with Y in BY
 where B� was previously trained. B: Overshadowing of elemental A associations by training
on an AX compound. C: Summation of elemental associations (A
, X
) in testing the compound AX. Note that
the difference in response to A in Panels B and C reflects the overshadowing effect as well. D: Conditioned
inhibition for X produced by initial conditioning on A
 followed by AX�.
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published paradigms (e.g., Kirkpatrick & Church, 2000). If vari-
ability in the CS–US timing (all within delay conditioning) did not
affect conditioning with PFC and/or hippocampal lesions, then this
would present a challenge for the TD framework.

Second-Order Conditioning

Second-order conditioning refers to the ability of a conditioned
stimulus (X) that has become associated with reward (US) to then
drive the learning of behavioral associations for a second CS (A)
that reliably predicts the occurrence of the first one (X). That is,
after second-order conditioning, if the X had acquired the ability to
elicit a particular conditioned response (CR; e.g., salivation in
Pavlov’s dogs), the A will now elicit a very similar response. This
paradigm provides an interesting functional distinction between
PVLV and TD. In TD, the extension of reward association to the
A from the DA burst at the onset of the X occurs naturally through
the chaining mechanism, which just moves the burst backward in
time to the A onset. Thus, in TD, CS-driven bursts are no different
than reward-driven bursts in their ability to train further reward
associations. This in turn implies that third-order and higher con-
ditioning ought to occur as easily as does second-order condition-
ing, which apparently is not the case. We were unable to find a
single report of third-order conditioning in the literature, and only
one article that even mentions the issue of third-order conditioning,
stating that it must be very weak if it exists at all (Dinsmoor, 2001;
see also Denny & Ratner, 1970, for a brief discussion on lack of
third-order and higher conditioning). This should perhaps be of
concern for advocates of the TD model.

PVLV, in contrast, makes a strong distinction between first- and
second-order conditioning (which is supported by lesion data, as
discussed later). First-order conditioning (e.g., to the X) occurs
because the X is present at the time of the primary reward, and thus
the PV filtering on the LV system allows the LVe to learn positive
reward associations to the X. Critically, the CS-driven bursts from
the LVe system do not cause further training of the LVe represen-
tation: both LVe and PVi learn only at the time of actual (primary)
rewards (and recall that LVe is trained not by a delta-like dopa-
mine value but rather directly by the US/PVe signal). If the
LVe-driven dopamine bursts at the time of CS onset were able to
drive learning in the LVe itself, this would result in a positive
feedback loop that would quickly saturate weights at some maxi-
mum value and effectively make extinction impossible (see later
discussion for more on this issue). Nonetheless, CS-driven dopa-
mine bursting does directly train up association weights in the rest
of the system, including those between second-order CSs (e.g., A)
and conditioned responses (CR), and between sensory representa-
tions themselves (i.e., CS–CS associations, as in A and X becom-
ing associated in cortex).

One critical piece of data about second-order conditioning is
that extinguishing the first-order CS (X) does not typically affect
the ability of the second-order CS (A) to activate the conditioned
response (Rizley & Rescorla, 1972). This finding contrasts with
sensory preconditioning, which involves associating A and X
repeatedly prior to conditioning, then doing first-order condition-
ing of X. This results in a reward association for A that is mediated
entirely through X. Thus, when X is extinguished, it takes A down
with it (Rizley & Rescorla, 1972). Taken together, this pattern of
results suggests that CS–CR associations are more important than

CS–CS associations in second-order conditioning. All of this is
compatible with PVLV, in that the first-order CS dopamine bursts
drive learning of both types of associations, but it is easy to
imagine that CS–CR associations are more quickly learned and
more dominant.

However, the clear prediction from PVLV is that a second-order
CS will be dissociable from a first-order one in its ability to drive
the LVe system: Only first-order CSs will have direct learned
weights into the LVe system and will be capable of driving
dopamine firing at CS onset. Thus, to the extent that a second-
order CS does drive dopamine firing (which has not been tested to
our knowledge), this dopamine firing will be mediated through the
first-order CS and will thus extinguish if this first-order CS is
extinguished (as in sensory preconditioning). There is no reason to
expect TD to make such a distinction, and therefore this stands as
an important distinguishing testable prediction. Furthermore, the
apparent lack of higher order conditioning above second-order is
consistent with the idea that the second-order CS does not typically
acquire the same dopamine-firing ability as the first-order CS.
Finally, another class of predictions, which we discuss more fully
later, is that other brain areas outside of those in the core PVLV
system should be critical for second-order conditioning.

To provide a simple demonstration of the principle of second-
order conditioning in PVLV, we implemented the CS–CS associ-
ation version of this effect (which we know is not the dominant
case) because we do not have a good representation of conditioned
responding in this simple model to capture the learning of CS–CR
associations (other models, e.g., of the basal ganglia system could
be used to model this effect; Frank, 2005). We included simulated
cortical areas (and possibly basolateral amygdala, as discussed
later) in our model that learn CS–CS associations via DA modu-
lation produced by PVLV (Figure 5A). When the already condi-
tioned X stimulus is activated in conjunction with the A in the
A3X training case, the X drives a LVe-mediated DA burst that
then increases cortical associations among the A and X represen-
tations. When the A is later presented alone, these cortical weights
drive the reactivation of the X representation, leading to a DA
burst at A onset (Figure 5B).

CS–US Timing Variability

As mentioned earlier, one feature of PVLV relative to TD is that
it should be more robust to variability in the CS–US relationship.
TD depends on a precise chain of events from CS onset to US
onset, whereas PVLV simply learns that a CS has been reliably
associated with a US and does not require such a causal chain of
events between the two. This difference can be examined by
introducing variability in the timing of the CS–US relationship, as
has been done in behavioral studies showing no detriments in
conditioning from this variability (H. Davis et al., 1969; Kamin,
1960; Kirkpatrick & Church, 2000).

We constructed two different kinds of environments that have
randomized sequences of events between the CS and US: a basic
randomized CS–US interval task (replicating the behavioral stud-
ies) and a simulated working memory task (O’Reilly & Frank,
2006). For the first test, we introduced a random delay between CS
and US that varied in the set (3, 6, 12). In addition, the probability
of reward was manipulated in the set (.10, .20, .50, 1.00), to
explore sensitivity to the strength of association. A control stim-
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ulus that did not predict reward was also included. Furthermore,
the delay interval was filled with randomly selected “distractor”
stimuli (in addition to the maintained representation of the CS), to
simulate ongoing neural activity and other sensory events in the
world. A random selection of distractors was also presented be-
tween one CS–US trial and the next.

We compared the PVLV model against a TD(0) model imple-
mented in the same basic neural framework as our PVLV model.
To give the TD mechanism as good an opportunity to learn as

possible, we also included a timing-like signal across a set of units
that counted up (i.e., moved from one unit to the next) starting at
the onset of the CS. A range of different TD learning parameters
were explored, including discount factor gamma and learning rate
epsilon. To keep things simple and the input representations the
same across the two models, we did not introduce a delta param-
eter as in TD(�). However, the CS remained fully active during the
entire CS–US interval, so this would not be affected by the delta
parameter. A simple implementation of the delta effect would
simply smear out the stimuli over time, and while this would
smooth over some of the noise, it will also smooth over the signal
(CS onset) as well. Furthermore, the optimal delta value will vary
depending on the length of the CS–US interval. Although there
may be better solutions to these problems, the main point is to
demonstrate that PVLV is naturally robust to this variability, not
that it is impossible to construct some version of TD to deal with it.

Figure 6 shows the average DA (�) value at the onset of the
reward predictive CS across 10 runs for the best-performing TD
parameters compared with those of the PVLV network, for reward
probabilities of .50 and .20. Although the TD network can learn
about the predictive nature of the CS for the higher probability
reward and shorter maximum delay lengths, it fails to consistently
deliver a positive DA burst as the probability of reward goes down
and maximum delay length increases. In contrast, PVLV learns
reliably at the longest delays and the lowest probabilities of re-
ward.

In the second test, we simulated a Pavlovian version of the
1–2–AX working memory task explored in O’Reilly and Frank
(2006). In this task, the network has to respond to target sequences
(e.g., A–X or B–Y), and the currently relevant target sequence is
determined by a control signal (1 or 2). That is, if a 1 is presented,
the target sequence is A–X and continues to be A–X until a further
control signal is presented. If a 2 is presented, then the target is
B–Y until the next control signal. Thus there are several “inner
loops” (A�X, A�Y, etc.) for each “outer loop” (1 or 2). In our
Pavlovian version, the outer loop is either an A or a B, which
determines whether an X or a Y will be rewarding over a series of
subsequent trials (if A, then X is rewarding; if B, then Y is
rewarding). Random distractor stimuli can appear at any time, and
the number of inner loops of X, Y, or distractor stimuli was
randomly varied from 1–4. The outer loop stimulus was main-
tained in the input for the duration of these inner loops (to remove
working memory demands from the simple Pavlovian model
which is not equipped with the prefrontal mechanisms simulated in
O’Reilly and Frank, 2006, to support working memory). The
probability of activating one of the target stimuli (X for A, Y, for
B) relative to the distractors was varied in the set (.10, .20, .50,
1.00).

Figure 7 shows similar results to the random delay condition,
plotting the DA burst for the outer loop stimuli (A or B). Here, the
maintenance duration was only a maximum of four trials but
because randomly triggered rewards from the variable number of
inner loop targets occurred during the “maintenance” period of the
outer loop, this introduced greater unpredictability in the TD
chaining mechanism for associating reward with the outer loop
stimulus. This task closely mimics the reward structure of the
1–2–AX working memory task, and clearly demonstrates the prob-
lems that the TD chaining mechanism causes in such tasks. Al-
though some improvement in the performance of TD can almost

Figure 5. Second-order conditioning (A) model and (B) activation pat-
terns. Second-order conditioning occurs in primary value learned value
(PVLV) via dopaminergic or other modulation of learning in cortical
systems and not directly within the PVLV system itself (unlike temporal-
differences and other chaining algorithms). The sensory and hidden layers
represent these cortical areas (sensory cortex and higher order association
cortex) and are modulated by the overall dopamine output (DA) layer.
After training (first X
 then AX intermixed with X
), the A input
activates cortical representations that were originally associated with the X
stimulus, causing the representation of the X to be activated in the sensory
layer, leading to a learning-value-mediated DA burst at the onset of the A.
This is the pattern of activation shown in the model, corresponding to Time
1 in the activation plot. The X stimulus is activated at Time 3, and no
reward (Rew) is delivered in this second-order trial (but is expected on the
basis of the X
 training) at Time 5 (2 steps after X onset). Stim �
stimulus; PVe � primary value excitatory; PVi � primary value inhibitory;
LVi � learned value inhibitory layer; LVe � learned value excitatory
layer; CS � conditioned stimulus.
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certainly be achieved through various means as mentioned earlier,
it is clear that the PVLV mechanism is intrinsically more reliable
for these kinds of tasks. We argue that this robustness may be
critical for functioning in the real world.

Biological Mapping of PVLV

The above simulations show that PVLV can account for a range
of Pavlovian behavioral phenomena and that its simple learning
mechanisms can be more robust than the predictive temporal
learning in the TD algorithm. Perhaps the strongest support for this
framework as a model of reward learning in the brain comes from
the good fit between the functional properties of the PV and LV
components of PVLV and those of brain areas that are known to
support reward learning. We summarize this below (Figure 8; see
Hazy, Frank, and O’Reilly (2006) for a more detailed discussion).

PVe � Lateral Hypothalamic Area (LHA)

The PVe component of the model is responsible for providing
excitatory drive to dopamine cells in response to primary rewards.
There is considerable evidence that neurons in the LHA reliably
respond to these primary rewards without habituation (Nakamura
& Ono, 1986; Ono, Nakamura, Nishijo, & Fukada, 1986) and have

excitatory projections into the midbrain dopaminergic nuclei
(VTA/SNc) both directly and even more strongly via the pedun-
culopontine tegmental nucleus (PPTN) (Semba & Fibiger, 1992).
There is also direct evidence that activation of the PPTN leads to
dopamine bursting (Floresco, West, Ash, Moore, & Grace, 2003).

PVi � Patch-Like Neurons in the Ventral Striatum

The PVi system learns to expect primary rewards and to inhibit
the dopamine firing that would otherwise occur in response to
them. Furthermore, when expected rewards are withheld, their
inhibitory influence results in a dip or pause in dopamine firing.
Striosome/patch-like neurons in the ventral striatum (which appear
to be especially prevalent in the shell of the nucleus accumbens in
rats but that are also distributed throughout the ventral striatum and
nucleus accumbens) send direct inhibitory projections into the
VTA and SNc (for a review, see Joel & Weiner, 2000). Unlike
striosomes of the dorsal striatum, which project only to ventral tier
dopamine cells mostly in the SNc, those in the ventral striatum
project globally to the entire VTA and SNc putting them in a
unique position to inhibit burst firing globally. Electrophysiologi-
cally, some neurons in the ventral striatum have been shown to fire
immediately prior to primary rewards (Cromwell & Schultz, 2003;

Figure 6. Average (Avg) conditioned stimulus (CS) overall dopamine output (DA) temporal-differences (TD)
values for the random delay task, comparing TD (A, B) with primary value learned value (PVLV; C, D). The
different delays (3, 6, 12) indicate the maximum number of intervening “distractor” stimulus trials that come
between a CS and subsequent reward, with the actual number of trials determined randomly between one and
the maximum. The reward is given with the probability indicated ( p � .50, .20, or .10, respectively). TD breaks
down with longer delays and lower probabilities of reward, being unable to reliably propagate the reward
prediction back to the CS onset to trigger a DA burst. In contrast, PVLV remains reliable even for p � .10 and
a delay of 12. Note the differences in scale. Results are averages over 10 runs. Rnd Delay � random delay;
Disc � discount rate; Lrate � learning rate; Epoch � one pass through the training patterns.

41PVLV: PAVLOVIAN LEARNING ALGORITHM



Deadwyler, Hayashizaki, Cheer, & Hampson, 2004; Schultz, Api-
cella, Scarnati, & Ljungberg, 1992), critically including firing at
the expected time of reward when no rewards are actually pre-
sented (i.e., in “extinction” trials).

LVe � Central Nucleus of the Amygdala (CNA)

The LVe component of the model learns reward associations
from sensory inputs (CSs), and drives excitatory dopamine bursts
in response to these inputs. The CNA receives broad projections
from all over the cortex, both directly and indirectly (via the
subnuclei of the BLA; Amaral, Price, Pitkanen, & Carmichael,
1992). These CNA neurons can then drive excitatory dopamine
firing in the VTA and the SNc (Ahn & Phillips, 2003; Fudge &
Haber, 2000; Rouillard & Freeman, 1995). There are direct and
indirect (e.g., via PPTN) projections from CNA to VTA/SNc
(Fudge & Haber, 2000; Wallace, Magnuson, & Gray, 1992), but
the exact nature of these projections remains somewhat unclear.
The lateral CNA contains GABA spiny neurons much like the
striatum (M. Davis, Rainnie, & Cassell, 1994), but the medial
CNA neurons have a different morphology and at least some are
glutametergic (Takayama & Miura, 1991). Thus, the mechanism
by which CNA excites the midbrain dopamine neurons could be

either direct excitation or indirect disinhibition. Electrophysiologi-
cally, multimodal CNA neurons in Pavlovian conditioning para-
digms (initially responsive to only a US) learn to fire also for an
associated CS (Ono et al., 1995). In response to a visual stimulus
predictive of reward, immediate early gene expression was ob-
served in CNA cells, particularly those that project to SNc (Lee et
al., 2005). Further, disconnection of the CNA and the SNc pre-
vented the acquisition of conditioned responses, without affecting
the acquisition of food-related responses (which would be served
by the PV system). Other lesion studies show that the CNA is
important for supporting Pavlovian learning, but not the expression
of learned behavior, to a CS (e.g., El-Amamy & Holland, 2006;
Groshek et al., 2005; Killcross, Robbins, & Everitt, 1997). The
CNA is also critical for a nonspecific form of Pavlovian instru-
mental transfer (PIT), whereby a Pavlovian CS can provide a
nonspecific enhancement of instrumental responding for a differ-
ent US than that paired with the CS (Corbit & Balleine, 2005).
These PIT data are consistent with PVLV in that the CNA (LVe),
having been activated by the CS, can drive global dopamine firing
that can then facilitate instrumental responding in a nonspecific
way.

Figure 7. Average (Avg) “outer loop” conditioned stimulus (CS) overall
dopamine output (DA) temporal-differences (TD) values for the AXBY
task, comparing TD, (A) with primary value learned value (PVLV), (B) for
different probabilities of the target stimulus (X for A, Y for B) appearing
within the inner loop and triggering a reward (otherwise, a randomly
chosen distractor would appear). Note the differences in scale. As in the
random delay task shown in the previous figure, the PVLV algorithm
provides much more reliable DA bursts compared with the TD mechanism.
Results are averages over 10 runs. Disc � discount rate; Lrate � learning
rate; Epoch � one pass through the training patterns.

Figure 8. Biological mapping of the primary value learned value (PVLV)
algorithm. Excitatory drive on the midbrain dopamine system comes from
the lateral hypothalamus (LHA) and central nucleus of the amygdala
(CNA). These project (via the pedunculopontine tegmental nucleus [PPT])
to the ventral tegmental area (VTA) and substantia nigra pars compacta
(SNc) midbrain dopamine neurons. The CNA learns to associate arbitrary
stimuli (CSs) with rewards (unconditioned stimuli [USs]), and drives
dopamine firing at the onset of CSs, consistent with the properties of the
learned value excitatory (LVe) system. The LHA responds to rewards and
drives dopamine bursting at the time of US onset, consistent with the
primary value excitatory (PVe) system. The patch/striosome-like neurons
of the ventral striatum (VS patch) send direct inhibitory projections to the
entire VTA and SNc and learn to fire at the time of US and CS onset. Thus,
they correspond to the primary value inhibitory (PVi; firing at US onset)
and learned value inhibitory (LVi; firing at CS onset) systems. Note that
striosome/patch cells in the dorsal striatum have more focused connectivity
with the dopamine nuclei, whereas these in the ventral striatum project
globally, as is required for the PVi/LVi system.
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LVi � Patch-Like Neurons in the Ventral Striatum

The LVi neurons perform the same role for learned CSs as the
PVi neurons do for primary rewards: They learn (very slowly)
about the reward association of these stimuli and serve to cancel
out excitatory dopamine bursts that would otherwise occur. The
above anatomical data on patch-like neurons in the ventral striatum
are consistent with this LVi role. Furthermore, subpopulations of
these ventral striatum neurons exhibit CS-related firing (Schultz et
al., 1992; Cromwell & Schultz, 2003), whereas others exhibit the
US-related firing noted above for PVi.

Beyond these core PVLV-associated areas, the biology of
reinforcement learning ultimately encompasses much of the
brain. In closely related work, we have developed a model of
how the dorsal areas of the basal ganglia interact with the
frontal cortex to control both motor outputs and working mem-
ory updating (Frank, 2005, 2006; O’Reilly & Frank, 2006;
Frank, Loughry, & O’Reilly, 2001). The frontal working mem-
ory system is critical for a variety of reinforcement learning
functions. For example, as noted earlier, it can support trace
conditioning by maintaining active representations of stimuli
after they disappear from the environment (e.g., Kronforst &
Collins & Disterhoft, 1998; Weible et al., 2000). Without this
system, the basic PVLV model with immediate sensory inputs
can only support delay conditioning. The orbital prefrontal
cortex may also be critical for supporting working memory of
reward-related information (e.g., Frank & Claus, 2006; Hiko-
saka & Watanabe, 2000; Schoenbaum & Roesch, 2005; Trem-
blay & Schultz, 1999), which can then provide top-down goal-
driven influences on the PVLV mechanisms. Simulations of
these functions and their interactions with the basal ganglia
demonstrated that they can potentially account for various other
reinforcement learning phenomena, such as devaluation and
decision-making deficits under orbital lesions, and are also
important for reversal learning (Frank & Claus, 2006).

In addition, the hippocampus can support the formation of
conjunctive stimulus representations that play a role in various
forms of reinforcement learning, including nonlinear discrimina-
tion learning (e.g., Alvarado & Rudy, 1995), sensory precondi-
tioning (Port & Patterson, 1984), and transitive inference (Dusek
& Eichenbaum, 1997). We have developed computational models
of these phenomena (e.g., Frank, Rudy, & O’Reilly, 2003;
O’Reilly & Rudy, 2001), and future work will integrate these
models with the PVLV mechanisms.

Finally, the role of the BLA in second-order conditioning and a
variety of other reinforcement learning paradigms has yet to be
fully integrated within our framework. Our overall position is that
the BLA plays a somewhat similar role to the CNA in that it is
important for associating CSs with USs, but it does so in a more
specific way that involves direct synaptic connections with neu-
rons in the ventral striatum and the limbic prefrontal cortex. In
contrast, the CNA has a more generalized effect consistent with its
role in driving global dopaminergic firing. In other words, we
think of BLA as more like a “cortical” area, whereas CNA is more
clearly subcortical. This is generally consistent with the ideas and
data of Cardinal, Parkinson, Hall, and Everitt (2002); Swanson
(2003); and Corbit and Balleine (2005).

Testable Predictions of the Model

We previously discussed several testable predictions that would
discriminate between PVLV and TD. On the basis of the above
anatomical mappings, we can make a number of additional pre-
dictions about possible experiments that would strongly test the
PVLV model.

The striosome/patch neurons in the ventral striatum should be
specifically responsible for producing the dip in dopamine firing at
the time of expected rewards, when rewards are not delivered. This
could be tested by lesioning the nucleus accumbens shell in rats
(where such neurons are concentrated) and recording from VTA/
SNc neurons in a standard Pavlovian paradigm with extinction.

At a behavioral level, the VS striosome/patch neurons should be
specifically important for extinction and reversal learning, which
should depend on the dopamine dip for expected but not delivered
rewards. There is some data consistent with this prediction (Ferry,
Lu, & Price, 2000; Robbins, Giardini, Jones, Reading, & Sahakian,
1990).

The CNA should be specifically responsible for producing the
dopamine burst to CS onset. This could be directly tested by
lesioning the CNA and recording from VTA/SNc in a standard
Pavlovian paradigm.

At a behavioral level, CNA should be critical for learning
working memory tasks, in which working memory update actions
(driven by more central regions of the dorsal striatum that project
to prefrontal cortex) must be activated at the onset of task-relevant
stimuli to encode these stimuli into working memory (O’Reilly &
Frank, 2006).

The CNA should also be important for autoshaping, where an
animal learns to approach and/or act on a conditioned stimulus
(CS) after Pavlovian conditioning. According to the PVLV model,
CS- and CNA-driven dopamine bursts should be particularly crit-
ical in reinforcing motor actions directed toward the CS because
dopamine bursts at the time of US delivery generally occur too late
to have an effect on CS-directed behaviors. This is consistent with
the account provided by Cardinal, Parkinson, Hall, and Everitt
(2002), where it was found that CNA lesions severely impair
autoshaping conditioned responses (Parkinson, Robbins, & Ever-
itt, 2000). Critically, CNA lesions after training (i.e., autoshaping
has already taken place) do not impair expression, which is also
consistent with our learning-based model (Cardinal, Parkinson,
Lachenal, et al., 2002).

As noted earlier, the PVLV model strongly predicts that CNA
(LVe) should not be important for second-order conditioning. The
LV system only learns from primary rewards (i.e., the PV system).
If this were not the case, then the dopamine burst driven by the
LVe to a CS onset would cause the LVe system to increase its
reward association to that same CS, leading to a runaway positive
feedback loop. The consequence is that the LVe-driven dopamine
bursting cannot drive learning within the LVe itself, and thus the
LVe should not be able to support second-order conditioning. This
prediction is consistent with data showing that the BLA, but not
the CNA, is important for second-order conditioning (Hatfield et
al., 1996). More rigorous tests could solidify this prediction and
provide a clearer picture of the precise role of the BLA in this case.
Again, see Hazy et al. (2006) for more detailed biological discus-
sion and further predictions.
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Comparison With Brown, Bullock, and Grossberg (1999)
and Other Models

The PVLV model shares several features in common with the
dopamine bursting in the basal ganglia (BBG) model (Brown et al.,
1999). The BBG model features two pathways that converge on
the substantia nigra pars compacta (SNc) midbrain dopamine
nucleus. One pathway goes via the ventral striatum through the
ventral pallidum and PPTN, whereas the other goes via the strio-
somes of the dorsal striatum. External rewards directly excite the
SNc via the ventral striatal pathway through nonmodifiable pro-
jections. The ventral striatal pathway produces a net excitatory
effect on the SNc dopamine neurons, whereas the striosomal
pathway is adaptively delayed in time (via an intracellular spectral
timing mechanism) and has an inhibitory connection. Both of these
pathways are trained by dopamine from the SNc. The net effect is
that, after standard Pavlovian training (e.g., Figure 1), a CS input
produces an initial excitatory dopamine burst via the ventral stri-
atum pathway, whereas the striosomal pathway produces an adap-
tively delayed inhibition of the SNc that cancels out the dopamine
burst that otherwise would have been caused by the external
reward input.

Thus, this ventral striatum pathway achieves an effect similar to
the LV system in PVLV (i.e., CS-onset firing), whereas the strio-
somal pathway achieves an effect similar to the PV system (i.e.,
reward burst canceling). In this respect of having two separable
systems achieving these two functions, the BBG model and PVLV
are similar. Furthermore, the ventral striatum pathway in the BBG
model also has a habituation mechanism to prevent continued
dopamine firing to the CS, similar to the synaptic depression
mechanism in the LV system of PVLV.

Despite these similarities, the two models also have some im-
portant differences. Perhaps the most obvious is that the reward-
canceling striosome pathway in the BBG model operates only on
the basis of time since CS onset, whereas the PV system in PVLV
is a more generalized system for canceling reward bursts, which
can use timing signals or any other form of external or internally
generated inputs (as advocated by Savastano & Miller, 1998). As
noted earlier, animals can learn just fine with variable CS–US
delays (H. Davis et al., 1969; Kamin, 1960; Kirkpatrick & Church,
2000). Indeed, by virtue of its strong reliance on time in predicting
rewards, the BBG model suffers from much of the same depen-
dence on future predictability as does the TD model, which the
PVLV model avoids.

There are several other differences between the two models. For
example, the SNc dopamine in the BBG model trains up both the
ventral striatum and striosome pathways in the same way, whereas
PVLV has an asymmetry in the way that the PV and LV systems
are trained (PV filters the training of the LV). One consequence of
this is that the CS-onset dopamine burst in the BBG model rein-
forces the very weights that generated this burst, causing a positive
feedback loop that drives weights to their high-saturation value.
This would interfere with the system’s ability to accurately repre-
sent statistical frequency information with graded weight values.
Also, it is not clear how the BBG model would account for the
blocking effect because the dopamine burst triggered by the onset
of the already conditioned CS should drive the system to learn
about the new to-be-blocked CS when it is subsequently intro-
duced. In other words, blocking occurs in these dopamine-based

models by virtue of the dopamine burst being canceled when it is
expected, but the CS-onset burst produced by the ventral striatum
in the BBG model is never canceled and thus should not produce
blocking. The PVLV model avoids this problem by virtue of the
LV-generated burst not training itself: All learning in the PVLV
system itself is driven by the PV-modulated dopamine bursts,
which are subject to cancellation and thus blocking.

In terms of biological mapping, the two models are also fairly
different. We associate the ventral striatum striosomal neurons
with the PVi system, whereas the BBG model attributes this same
basic function to dorsal striatum striosomal neurons. The BBG
model holds that the ventral striatum nonstriosomal neurons drive
excitatory CS-related dopamine bursts, whereas this LVe-like
function is associated with the CNA in our model. We think there
is considerably more evidence for the CNA’s role in this type of
function, as elaborated earlier. Furthermore, our more general
basal ganglia model suggests that the disinhibitory pathway from
the striatum to the SNc via the ventral pallidum is responsible for
disinhibiting dopamine release for actions that were initiated by
“go” signals in the striatum and not for directly activating dopa-
mine bursting (O’Reilly & Frank, 2006). This disinhibitory, but
not bursting, role for the pallidal connections is consistent with
data from Floresco et al. (2003), who showed that activation of the
ventral pallidum increased the overall amount of dopamine acti-
vation (which we suggest results from disinhibiting more dopa-
mine neurons) but did not increase the extent of bursting. In
contrast, activation of the PPTN resulted in increased bursting,
which is consistent with the idea that the CNA and LHA drive
bursting via their projections to the PPTN.

A model sharing some general properties of the BBG model was
proposed by Contreras-Vidal and Schultz (1999), who also posited
a spectral timing function for the striosomes with inhibitory pro-
jections to the dopamine neurons to cancel expected rewards. They
attributed the excitatory function more to the limbic prefrontal
cortex, though the exact biological mechanisms of this are less
clearly tied to the known anatomy of the basal ganglia. Neverthe-
less, overall, this model shares the notion that there are two
systems driving dopamine firing with both the BBG and PVLV
models.

In terms of specific hypotheses as to how the unitary TD
computation is thought to be computed neurally, Houk et al.
(1995) proposed the first model, and most of the other TD-based
models have adopted their general ideas (to the extent that they are
explicit about the underlying biological mechanisms). Houk et al.
(1995) proposed that the striosome/patch neurons in the striatum of
the basal ganglia represent the current value estimate V̂t, and that
two different projections to the midbrain dopamine neurons com-
pute the delta value as the temporal derivative of the value estimate
as it changes over time (i.e., from t to t 
 1). The temporal
derivative can be computed in terms of a fast, indirect, net-
excitatory projection (via the subthalamic nucleus) and a slower
direct inhibitory projection. If the striosome firing rate is steady,
the two pathways cancel each other out. An increase in striosome
activation leads to more excitation initially (via the fast indirect
pathway), which is then canceled out by the slower inhibition. The
opposite occurs for reductions in striosome activation. In evaluat-
ing this proposal, Joel et al. (2002) concluded that it was not
particularly consistent with the known anatomy of DA connectiv-
ity. Also, existing data appear to suggest that, if anything, this
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circuit would more likely compute fast inhibition and slower
disinhibition (excitation), which would compute the negative of
the temporal derivative. Furthermore, we argue that the require-
ment that the TD model has a single system as the source of both
CS-related and US-related dopamine firing is inconsistent with the
data reviewed above, which instead seems more consistent with (at
least) two components, as in PVLV.

Finally, Dayan (2001; see also Dayan & Balleine, 2002) pre-
sented an important model that extends the standard TD-based
reinforcement learning paradigm to include motivational systems,
to account for a variety of behavioral findings that are inconsistent
with existing TD-based models. Although beyond the scope of this
article, this model posits distinct roles for the amygdala, orbital
frontal cortex (OFC), and the core and shell of the nucleus accum-
bens. The amygdala and OFC in this model learn to estimate the value
function, which is more consistent with the biological mapping in the
PVLV model than prior TD-based models. The issues of stimulus
substitution and devaluation addressed by this Dayan (2001) model
are discussed from the PVLV framework in Hazy et al. (2006; see
also Frank & Claus, 2006), and future work should focus on address-
ing these important issues more concretely in the model.

Conclusion

In this article, we present a new computational model that can
account for observed patterns of dopamine firing that are thought
to underlie Pavlovian conditioning and other related forms of
reinforcement learning. This model avoids the dependence on
predictable chains of events that the temporal differences model
has, making it better able to produce useful learning signals in
more chaotic environments. We argue that such environments are
more characteristic of the natural world in which such learning
mechanisms need to operate. Furthermore, the two components of
the PVLV mechanism provide a good fit with the underlying
neurobiological substrates of the central nucleus of the amygdala
and the neurons of the ventral striatum that provide inhibition of
the midbrain dopaminergic nuclei. Considerable additional work
remains to be done to apply this framework to the vast literature on
reinforcement learning paradigms and their biological substrates.
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Appendix

Implementational Details

The model (summarized here) was implemented using the
Leabra framework that is described in detail in O’Reilly and
Munakata (2000) and in O’Reilly (2001). These same parameters
and equations have been used to simulate over 40 different models
in O’Reilly and Munakata and in a number of other research
models. Thus, the model can be viewed as an instantiation of a
systematic modeling framework that uses standardized mecha-
nisms instead of new mechanisms constructed for each model. The
model can be obtained by e-mailing Randall C. O’Reilly.

Point Neuron Activation Function

Leabra uses a point neuron activation function that models the
electrophysiological properties of real neurons, while simplifying
their geometry to a single point. This function is nearly as simple
computationally as the standard sigmoidal activation function, but
the more biologically based implementation makes it considerably
easier to model inhibitory competition, as described below. Fur-
ther, the use of this function enables cognitive models to be more
easily related to more physiologically detailed simulations, thereby
facilitating bridge-building between biology and cognition.

The membrane potential Vm is updated as a function of ionic
conductances g with reversal (driving) potentials E as follows:

�Vm�t	 � ��
c

gc�t	g� c�Ec � Vm�t		, (A1)

with 3 channels (c), corresponding to excitatory input (e), leak
current (l), and inhibitory input (i). Following electrophysiological
convention, the overall conductance is decomposed into a time-
varying component computed as a function of the dynamic state of
the network and a constant gc that controls the relative influence of
the different conductances. The equilibrium potential can be writ-
ten in a simplified form by setting the excitatory driving potential
(Ec) to 1 and the leak and inhibitory driving potentials (El and Ei)
of 0,

Vm
� �

geg� e

geg� e � glg� l � gig� i
, (A2)

which shows that the neuron is computing a balance between
excitation and the opposing forces of leak and inhibition. This
equilibrium form of the equation can be understood in terms of a

(Appendix continues)
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Bayesian decision-making framework (O’Reilly & Munakata,
2000).

The excitatory net input/conductance ge(t) or 
j is computed as
the proportion of open excitatory channels as a function of sending
activations times the weight values,


 j � ge�t	 � �xiwij� �
1

n�
i

xiwij. (A3)

The inhibitory conductance is computed via the kWTA function
described in the next section, and leak is a constant.

Activation communicated to other cells (yj) is a thresholded (�)
sigmoidal function of the membrane potential with the gain pa-
rameter (�),

yj�t	 �
1

�1 �
1

��Vm�t	 � ��

� , (A4)

where �x�
 is a threshold function that returns 0 if x � 0 and x if
X � 0. Note that if it returns 0, we assume yj(t) � 0, to avoid
dividing by 0. As it is, this function has a very sharp threshold,
which interferes with graded learning mechanisms (e.g., gradient
descent). To produce a less discontinuous deterministic function
with a softer threshold, the function is convolved with a Gaussian
noise kernel (� � 0, � � .005), which reflects the intrinsic
processing noise of biological neurons,

y*j�x	 � �
1

�2��
e�z2/�2�2	yj�z � x	dz, (A5)

where x represents the �Vm � ��
 value, and yj* is the noise-
convolved activation for that value. In the simulation, this function
is implemented using a numerical lookup table.

k-Winners-Take-All Inhibition

Leabra uses a k-Winners-Take-All (kWTA) function to achieve
inhibitory competition among units within a layer (area). The
kWTA function computes a uniform level of inhibitory current for
all units in the layer such that the k 
 1th most excited unit within
a layer is generally below its firing threshold, whereas the kth is
typically above threshold. Activation dynamics similar to those
produced by the kWTA function have been shown to result from
simulated inhibitory interneurons that project both feedforward
and feedback inhibition (O’Reilly & Munakata, 2000). Thus, al-
though the kWTA function is somewhat biologically implausible
in its implementation (e.g., requiring global information about
activation states and using sorting mechanisms), it provides a
computationally effective approximation to biologically plausible
inhibitory dynamics.

kWTA is computed via a uniform level of inhibitory current for
all units in the layer as follows:

gi � gk
1
� � q�gk

� � gk
1
� 	, (A6)

where 0 � q � 1 (.25 default used here) is a parameter for setting
the inhibition between the upper bound of gk

� and the lower bound
of gk
1

� . These boundary inhibition values are computed as a

function of the level of inhibition necessary to keep a unit right at
threshold,

gi
� �

g*eg� e�Ee � �	 � glg� l�El � �	

� � Ei
, (A7)

where g*e is the excitatory net input without the bias weight
contribution—this allows the bias weights to override the kWTA
constraint.

In the basic version of the kWTA function, which is relatively
rigid about the kWTA constraint and is therefore used for output
layers, gk

� and gk
1
� are set to the threshold inhibition value for the

kth and k 
 1th most excited units, respectively. Thus, the inhi-
bition is placed exactly to allow k units to be above threshold, and
the remainder below threshold. For this version, the q parameter is
almost always .25, allowing the kth unit to be sufficiently above
the inhibitory threshold.

In the average-based kWTA version, gk
� is the average gi

� value
for the top k most excited units, and gk
1

� is the average of gi
� for

the remaining n–k units. This version allows for more flexibility in
the actual number of units active depending on the nature of the
activation distribution in the layer and the value of the q parameter
(which is typically .60) and is therefore used for hidden layers.

PVLV Equations

The PVLV value layers use standard Leabra activation and
kWTA dynamics as described above, with the following modifi-
cations. They have a three-unit distributed representation of the
scalar values they encode, where the units have preferred values of
(0, .50, 1). The overall value represented by the layer is the
weighted average of the unit’s activation times its preferred value,
and this decoded average is displayed visually in the first unit in
the layer. The activation function of these units is a “noisy” linear
function (i.e., without the x/(x
1) nonlinearity, to produce a linear
value representation, but that is still convolved with Gaussian
noise to soften the threshold, as for the standard units, Equation
A5), with gain � � 220, noise variance � � .01, and a lower
threshold � � .17. The k for kWTA (average based) is 1, and the
q value is .90 (instead of the default of .60). These values were
obtained by optimizing the match for value represented with
varying frequencies of 0–1 reinforcement (e.g., the value should
be close to .40 when the layer is trained with 40% 1 values and
60% 0 values). Note that having different units for different values,
instead of the typical use of a single unit with linear activations,
allows much more complex mappings to be learned. For example,
units representing high values can have completely different pat-
terns of weights than those encoding low values, whereas a single
unit is constrained by virtue of having one set of weights to have
a monotonic mapping onto scalar values.

Learning Rules

The PVe layer does not learn, and is always just clamped to
reflect any received reward value (r). By default we use a value of
0 to reflect negative feedback, .50 for no feedback, and 1 for
positive feedback (the scale is arbitrary). The PVi layer units (yj)
are trained at every point in time to produce an expectation for the
amount of reward that will be received at that time. In the minus
phase of a given trial, the units settle to a distributed value
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representation based on sensory inputs. This results in unit activa-
tions yj

�, and an overall weighted average value across these units
denoted PVi. In the plus phase, the unit activations (yj


) are
clamped to represent the actual reward r (a.k.a., PVe). The weights
(wij) into each PVi unit from sending units with plus-phase acti-
vations xi


, are updated using the delta rule between the two phases
of PVi unit activation states:

�wij � ε�yj

 � yj

�	xi

. (A8)

This is equivalent to saying that the US/reward drives a pattern of
activation over the PVi units, which then learn to activate this
pattern based on sensory inputs.

The LVe and LVi layers learn in much the same way as the PVi
layer (Equation A8), except that the PV system filters the training
of the LV values, such that they only learn from actual reward
outcomes (or when reward is expected by the PV system, but is not
delivered) and not when no rewards are present or expected. This
condition is as follows:

PVfilter � PVi � �min � PVe � �min � PVi � �max � PVe � �max,

(A9)

�wi � �ε�yj

 � yj

�	xi

, if PVfilter

0 otherwise, (A10)

where �min is a lower threshold (.20 by default), below which
negative feedback is indicated, and �max is an upper threshold (.80),
above which positive feedback is indicated (otherwise, no feed-
back is indicated). Biologically, this filtering requires that the LV
systems be driven directly by primary rewards (which is reason-
able, and required by the basic learning rule anyway) and that they
learn from DA dips driven by high PVi expectations of reward that
are not met. The only difference between the LVe and LVi systems
is the learning rate ε, which is .05 for LVe and .001 for LVi. Thus,
the inhibitory LVi system serves as a slowly integrating inhibitory
cancellation mechanism for the rapidly adapting excitatory LVe
system.

The four PV and LV distributed value representations drive the
dopamine layer (VTA/SNc) activations in terms of the difference
between the excitatory and inhibitory terms for each. Thus, there is
a PV delta and an LV delta:

�pv � PVe � PVi (A11)

� lv � LVe � LVi. (A12)

With the differences in learning rate between LVe (fast) and LVi
(slow), the LV delta signal reflects recent deviations from expec-
tations and not the raw expectations themselves, just as the PV
delta reflects deviations from expectations about primary reward
values. This is essential for learning to converge and stabilize
when the network has mastered the task (as the results presented in
this article show). We also impose a minimum value on the LVi
term of .10, so that there is always some expectation—this ensures
that low LVe learned values result in negative deltas.

These two delta signals need to be combined to provide an
overall DA delta value, as reflected in the firing of the VTA and
SNc units. One sensible way of doing so is to have the PV system
dominate at the time of primary rewards, whereas the LV system

dominates otherwise, by using the same PV-based filtering as
holds in the LV learning rule (Equation A10):

� � � �pv, if PVfilter

�lv otherwise. (A13)

It turns out that a slight variation of this where the LV always
contributes works slightly better, and is what is used in this paper:

� � � lv � ��pv, if PVfilter

0 otherwise. (A14)

Synaptic Depression of LV Weights

The weights into the LV units are subject to synaptic depression,
which makes them sensitive to changes in stimulus inputs, and not
to static, persistent activations (Abbott et al., 1997). Each incom-
ing weight has an effective weight value w* that is subject to
depression and recovery changes as follows:

�w*i � R�wi � w*i	 � Dxiwi, (A15)

where R is the recovery parameter, and D is the depression
parameter, and wi is the asymptotic weight value. For simplicity,
we compute these changes at the end of every trial instead of in an
online manner, using R � 1 and D � 1, which produces discrete
one-trial depression and recovery.

Cortical DA Modulated Learning (Second-Order
Conditioning)

For the second-order conditioning model, the overall PVLV DA
signal (Equation A13) modulated the cortical units by adding an
additional excitatory (for positive DA) or inhibitory (for negative
DA) current to the overall membrane potential computation, with
the conductance proportional to the DA value. This additional
current was only added during the plus phase (second phase of
activation settling), and learning was then computed by using the
standard contrastive Hebbian learning (CHL) algorithm (a stan-
dard part of the Leabra algorithm),

�wij � �xi

yj


	 � �xi
�yj

�	. (A16)

TD Implementation

Our implementation of the TD algorithm uses a distributed
coarse-coded representation of value over 12 units, covering the
range between �.50 and 3.50 in increments of .20. Activation of
a given value is encoded as a Gaussian bump over adjacent units,
such that the activation-weighted average represents the appropri-
ate value. This Gaussian model is necessary for TD because it does
not use the same discrete value representations as the PVLV model
(i.e., 0, .50, 1), so it needs a representation that is capable of better
representing a range of values. As with the PVLV value represen-
tations, this mechanism was extensively tested and parameterized
to produce accurate value representations across a wide range of
conditions. The results show that it works well when reliable
signals are available.
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