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FiveCentralFeaturesof theModel

Wedefineworkingmemoryascontrolledprocessinginvolving activemaintenanceand/orrapidlearning,
wherecontrolledprocessingis anemergentpropertyof thedynamicinteractionsof multiplebrainsystems,
but theprefrontalcortex (PFC)andhippocampus(HCMP)areespeciallyinfluentialdueto theirspecialized
processingabilitiesandtheirprivilegedlocationswithin theprocessinghierarchy(boththePFCandHCMP
arewell connectedwith a wide rangeof brainareas,allowing themto influencebehavior at a globallevel).
Thespecificfeaturesof ourmodelinclude:

1. A PFCspecializedfor active maintenanceof internalcontextual informationthat is dynamicallyup-
datedandself-regulated,allowing it to bias (control) ongoingprocessingaccordingto maintained
information(e.g.,goals,instructions,partialproducts,etc).

2. A HCMP specializedfor rapidlearningof arbitraryinformation,whichcanberecalledin theservice
of controlledprocessing,while theposteriorperceptualandmotorcortex (PMC)exhibits slow, long-
termlearningthatcanefficiently representaccumulatedknowledgeandskills.

3. Controlthatemergesfrom interactingsystems(PFC,HCMPandPMC).

4. Dimensionsthatdefinecontinuaof specializationin differentbrainsystems:e.g.,robustactive main-
tenance,fastvsslow learning.

5. Integrationof biologicalandcomputationalprinciples.
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Introduction

Working memoryis an intuitively appealingtheoreticalconstruct— perhapsdeceptively so. It has
proven difficult for the field to converge on a fully satisfying,mechanisticallyexplicit accountof what
exactly working memoryis andhow it fits into a larger modelof cognition(hencethemotivation for this
volume). Existing theoreticalmodelsof working memorycan be tracedto ideasbasedon a traditional
computer-like mentalarchitecture,whereprocessingis centralizedand long-termmemoryis essentially
passive. In this context, it makes senseto have RAM or cache-like working memorybuffers dedicated
to temporarilystoringitemsthat areneededduring processingby the central executive(Baddeley, 1986).
Alternative processingarchitectureshave beenproposed,bothwithin thecomputationalandpsychological
literatures(e.g.,Anderson,1983;Newell, 1990),in which working memoryis definedfunctionally — as
the activatedcomponentof long term memoryrepresentations— ratherthanstructurallyasa dedicated
componentof the system. However, thesetypically include a structuraldistinction betweenprocessing
andmemory. Noneof thesearchitecturesseemsto correspondcloselyto the architectureof the brain, in
which processingandmemoryfunctionsaretypically distributedwithin andperformedby thesameneural
substrate(Rumelhart& McClelland,1986).

Webelieve thatconsideringhow workingmemoryfunctionmightbeimplementedin thebrainprovides
a uniqueperspective that is informative with regardto both the psychologicalandbiologicalmechanisms
involved. This is what we attemptto do in this chapter, by providing a biologically-basedcomputational
modelof working memory. Our goal is not only to provide anaccountthat is neurobiologicallyplausible,
but alsoonethatis mechanisticallyexplicit, andthatcanbeimplementedin computersimulationsof specific
cognitive tasks. We sharethis goal with othersin this volumewho have alsocommittedtheir theoriesto
mechanisticallyexplicit models,at both the symbolic (Lovett, Reder, & Lebiere,this volume;Young&
Lewis, this volume;Kieras,Meyer, Mueller, & Seymour, this volume)andneural(Schneider, this volume)
levels.

It is possibleto identify a coresetof informationprocessingrequirementsfor many working memory
tasks:1) Taskinstructionsand/orstimuli mustbeencodedin sucha form that they caneitherbeactively
maintainedover time,and/orlearnedrapidly andstoredoffline for subsequentrecall;2) Theactive mainte-
nancemustbebothdynamicandrobust,sothatinformationcanbeselectively maintained,flexibly updated,
protectedfrom interference,andheldfor arbitrary(althoughrelatively short)durations;3) Themaintained
informationmustbeableto rapidly andcontinuallyinfluence(bias)subsequentprocessingor actionselec-
tion. 4) Therapid learningmustavoid theproblemof interferencein orderto keepevenrelatively similar
typesof informationdistinct. In additionto thesespecificationsfor anactivememorysystemanda rapid
learning system,we think that the working memoryconstructis generallyassociatedwith tasksthat re-
quirecontrolledprocessing, whichgovernstheupdatingandmaintenanceof activememoryandthestorage
andretrieval of rapidly learnedinformationin a strategic or task-relevant manner. This is consistentwith
the original associationof working memorywith central-executive like functions. Taken together, these
functionalaspectsof workingmemoryprovideabasicsetof constraintsfor ourbiologicallybasedmodel.

Our approachinvolvestwo interrelatedthreads.Thefirst is a focuson thefunctionaldimensionsalong
whichdifferentbrainsystemsappearto havespecialized,andtheprocessingtradeoffs thatresultasaconse-
quenceof thesespecializations.Thesecondis asetof computationalmodelsin whichwehaveimplemented
thesefunctionalspecializationsasexplicit mechanisms.Throughsimulations,wehave endeavoredto show
how theinteractionsof thesespecializedbrainsystemscanaccountfor specificpatternsof behavioral per-
formanceonawiderangeof cognitive tasks.Wehavepostulatedthatprefrontalcortex (PFC),hippocampus
(HCMP) andposteriorandmotor cortex (PMC) representthreeextremesof specializationalongdifferent
functionaldimensionsimportantfor workingmemory:sensoryandmotorprocessingbasedoninferenceand
generalization(PMC); dynamicandrobustactive memory(PFC);andrapid learningof arbitraryinforma-
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tion
�

(HCMP).Sinceeachof thesespecializationsinvolve tradeoffs, it is only throughinteractionsbetween
thesesystemsthatthebraincanfulfill theinformationprocessingrequirementsof workingmemorytasks.

As anexampleof how thesecomponentswork together, considera simplereal-world taskthat involves
contributionsfrom thesedifferentbrainsystems.Imagineyou arelooking for someinformation(thename
of a college friend’s child) containedin anemailmessageyou receiveda yearagoandhave storedin one
of your many messagefolders.You canrememberseveral thingsaboutthatemail,like who sentit (a good
friend who knows thecollege friend), whatelsewashappeningat aroundthat time (you hadjust returned
from aconferencein Paris),but youdon’t rememberthesubjectline or whereyoufiled it. This information
abouttheemailis retrievedfrom theHCMPsystem,whichwasableto bind togethertheindividual features
of the memoryandstoreit asa uniqueevent or episode.Oncerecalled,thesefeaturesmustbe usedto
guide the processof searchingthroughthe folders and email messages.We think that this happensby
maintainingrepresentationsof thesefeaturesin an active statein the PFC,which is able to keepthem
active for thedurationof thesearch,andprotectthemfrom beingdislodgedfrom active memoryby all the
otherinformationyou read. Meanwhilethe basicabilities of readinginformationandissuingappropriate
commandswithin theemailsystemaresubservedby well-learnedrepresentationswithin thePMC, guided
by representationshelpedactive in PFC.

Onceinitiated,thesearchrequirestheupdatingof itemsin active memory(collegefriend’s name,good
friend’sname,Parisconference)andits interactionwith informationencounteredin thesearch.Forexample,
whenyou list all of the folders,you selecta small subsetasmostprobable.This requiresan interaction
betweentheitemsin activememory(PFC),long-termknowledgeaboutthemeaningsof thefolders(PMC),
andspecificinformationaboutwhatwasfiled into them(HCMP). Theresultis theactivationof a new set
of itemsin active memory, containingthenamesof thenew setof foldersto search.You mayfirst decide
to look in a folder that will containan email telling you exactly whenyour conferencewas,which will
help narrow the search.As you do this, you may keepthat datein active memory, andnot maintainthe
conferenceinformation.Thus,theitemsin activememoryareupdated(activatedanddeactivated)asneeded
by the taskat hand. Finally, you iteratethroughthe foldersandemail messages,matchingtheir dateand
senderinformationwith thosemaintainedin active memory, until thecorrectemailis found.

All of thishappenedasa resultof strategic, controlledprocessing,involving theactivationandupdating
of goals(theoverallsearch)andsub-goals(e.g.,findingthespecificdate).Themaintenanceandupdatingof
goals,likethatof theotheractivememoryitems,is dependentonspecializedmechanismsin thePFCsystem.
Thus,thePFCsystemplaysa dominantrole in bothactive memoryandcontrolledprocessing,which are
two centralcomponentsof theworkingmemoryconstruct.However, othersystemscanplayequallycentral
roles.For example,if youwereinterruptedin yoursearchby aphonecall, thenyou mightnot retainall the
pertinentinformationin active memory(“Now, wherewasI?”). TheHCMP systemcanfill in themissing
informationby frequently(andrapidly)storingsnapshotsof thecurrentlyactiverepresentationsacrossmuch
of thecortex, which canthenberecalledafteraninterruptionin orderto pick up whereyou left off. Thus,
workingmemoryfunctionalitycanbeaccomplishedby multiplebrainsystems,thoughthespecializedactive
memorysystemof thePFCremainsacentralone.

Wehavestudiedasimpleworkingmemorytaskbasedon thecontinuousperformancetest(CPT),which
involvessearchingfor target lettersin a continuousstreamof stimuli (typically letters). For example,in
the AX versionof the CPT (AX-CPT), the target is the letter ’X’, but only if it immediatelyfollows the
letter ‘A’. Thus, the ’X’ aloneis inherentlyambiguous,in that it is a non-target if precededby anything
otherthanan’A’. Like theemailsearchtask,this requiresthedynamicupdatingandmaintenanceof active
memoryrepresentations(e.g.,thecurrentstimulusmustbemaintainedin orderto performcorrectlyon the
subsequentone),whichmakesthisaworkingmemorytask.Activemaintenanceis evenmoreimportantfor
amoredemandingversionof thistaskcalledtheN-back, in whichany lettercanbeatargetif it is identicalto
theoneoccurringN trialspreviously (whereN is pre-specifiedandis typically 1, 2, or 3). Thus,moreitems
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need� to bemaintainedsimultaneously, andacrossinterveningstimuli. The N-backalsorequiresupdating
theworkingmemoryrepresentationsaftereachtrial, in orderto keeptrackof theorderof thelastN letters.

Thereareseveralotherrelevantdemandsof this task.For example,uponreceiving thetaskinstructions,
subjectsmustrapidly learntheotherwisearbitraryassociationbetweenthe letter ’A’ and’X’. We assume
that this is carriedout by the HCMP. Of course,subjectsmustalsobe ableto encodeeachstimulus,and
executetheappropriateresponse,whichweassumeis carriedoutby PMC.Together, therapidassociationof
thecuewith thecorrectresponseto thetarget (HCMP), theactive maintenanceof informationprovidedby
thespecificcuepresentedin eachtrial (PFC),andtheuseof thatinformationto guidetheresponse(PMC),
constitutea simpleform of working memoryfunction. In Figure1, we presenta computationalmodelof
performancein this task,thatillustratesour theoryregardingthefunctionalrolesof PFC,PMCandHCMP.
We have implementedcomponentsof this model,anddemonstratedthat it canaccountfor detailedaspects
of normalbehavior in theAX-CPT, aswell asthatof patientswith schizophreniawhoarethoughtto suffer
from PFCdysfunction(Braver, Cohen,& Servan-Schreiber, 1995;Cohen,Braver, & O’Reilly, 1996;Braver,
Cohen,& McClelland,1997a).

In themodel,thePMC layerof thenetwork performsstimulusidentification,andresponsegeneration.
Thus,in panela), whenthe‘A’ stimulusis presented,anunequivocalnon-targetresponse(heremappedonto
theright hand,but counterbalancedin empiricalstudies)is generated.However, thePFCis alsoactivated
by this ‘A’ stimulus,sinceit servesasa cuefor a possiblesubsequenttarget ‘X’ stimulus.During thedelay
periodshown in panelb), thePFCmaintainsits representationin anactive state.This PFCrepresentation
encodesthe informationthattheprior stimuluswasa cue,andthusthat if an‘X’ comesnext, a target (left
hand)responseshouldbe made. Whenthe ‘X’ stimulusis thenpresented(panelc), the PFC-maintained
active memorybiasesprocessingin thePMC in favor of theinterpretationof the‘X’ asa target, leadingto
a target(left hand)response.We think thattheHCMPwouldalsoplayanimportantrole in performingthis
task,especiallyin early trials, by virtue of its ability to rapidly learnassociationsbetweentheappropriate
stimuli (e.g.,‘A’ in thePMC and‘left-to-X’ in thePFC)basedon instructions,andprovide a link between
theseuntil directcorticalconnectionshave beenstrengthened.However, we have not yet implementedthis
importantcomponentof workingmemoryin this model.

In the following sections,we first elaborateour theoryof working memoryin termsof a morecom-
prehensive view of how informationis processedwithin neuralsystems.While we believe it is important
thatour theorybasedon mechanisticmodelsof cognitive functionwhosebehavior canbecomparedwith
empiricaldata,a detailedconsiderationof individual modelsor empiricalstudiesis beyond the scopeof
this chapter. Furthermore,many of the featuresof our theoryhave not yet beenimplemented,andremain
a challengefor futurework. Thus,our objective in this chapteris to provide a high level overview of our
theory, andhow it addressesthetheoreticalquestionsposedfor thisvolume.

A Biologically-BasedComputationalModelof Cognition

Ourmodelof workingmemoryis aunifiedonein thatthesameunderlyingcomputationalprinciplesare
usedthroughout.Weandothershaverelieduponthesecomputationalprinciplesin previouswork to address
issuesregardingcognitive functionandbehavioral performancein many othertaskdomains,includingones
involving responsecompetition,classicalconditioning,andcovertspatialattention.Moreover, thefunctional
specializationsthatwepostulatefor differentbrainsystemsemergeasdifferentparametricvariationswithin
this unified framework, giving rise to a continuumof specializationalong thesedimensions.The basic
computationalmechanismsarerelatively simple,includingstandardparallel-distributed-processing (PDP)
ideas(Rumelhart& McClelland,1986;McClelland,1993;Seidenberg, 1993),themostrelevantbeing:

The Brain usesparallel, distributed processinginvolving many relatively simple elements(neuronsor
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Figure 1: Neural network model of the AX-CPT task, showing roles of PMC (posterior& motor cortex), PFC
(pre-frontalcortex) andHCMP (hippocampusandrelatedstructures:not actually implementedin our modelsyet).
Activation is shown by black units, and the weightsbetweensuchunits arehighlightedto emphasizethe flow of
information throughthe network. Lateral inhibition exists within eachof the layers. a) The cue stimulus‘A’ is
presented,resultingin the activation of a PFC representationfor “Respondwith left (target) handif an X comes
next.” b) During thedelay, thePFCrepresentationis actively maintained,providing top-down supportfor thetarget
interpretationof the ‘X’ stimulus.c) Whenthe ‘X’ comes,it resultsin a target(left) response(whereasa non-target
(right) responsewould have occurredwithout the top-down PFCactivationduring thedelayperiod). In early trials,
theHCMPprovidesappropriateactivationto varioustaskcomponents,asa resultof its ability for rapidlearning.

neuralassemblies),eachof which is capableof performinglocal processingandmemory, andwhich
aregroupedinto systems.

Systemsarecomposedof groupsof relatedelements,thatsubserve a similar setof processingfunctions.
Systemsmaybedefinedanatomically(by patternsof connectivity) and/orfunctionally(by specializa-
tion of representationor function).

Specialization arisesfrom parametricvariationsin propertiespossessedby all elementsin thebrain(e.g.,
patternsof connectivity, time constants,regulation by neuromodulatorysystems,etc.). Parameter
variationsoccur along continuousdimensions,and thus subsystemspecializationcan be a graded
phenomenon.

Knowledge is encodedin the synapticconnectionstrengths(weights) betweenneurons,which typically
changeslowly comparedwith thetimecourseof processing.Thismeansthatneuronshave relatively
stable(dedicated) representationsover time.

Cognition resultsfrom activationpropagation throughinterconnectednetworks of neurons. Activity is
requiredto directly influenceongoingprocessing.

Learning occursby modifyingweightsasa functionof activity (which canconvey error andreward feed-
backinformationfrom theenvironment).

Memory is achievedeitherby therelatively short-termpersistenceof activationpatterns(activememory)
or longer-lastingweightmodifications(weight-basedmemory).

Representationsare distributed over many neuronsand brain systems,and at many different levels of
abstractionandcontextualization.

Inhibition betweenrepresentationsexistsat all levels,bothwithin andpossiblybetweensystems,andin-
creasesasa (non-linear)function of the numberof active representations.This resultsin attention
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System Function InternalRelation ExternalRelation Act Capacity LearnRate
PMC inference,processing distributed,overlapping embedded many slow
PFC maintenance,control isolated,combinatorial global few slow
HCMP rapidlearning separated,conjunctive context sensitive one fast

Table1: Critical parameterizationsof the threesystems.Function specifiesthe functionoptimizedby this system.
Inter nal Relation indicateshow representationswithin eachsystemrelateto eachother. External Relation indicates
how representationsrelateto othersystems.Act Capacity indicateshow many representationscanbeactive at any
giventime. Learn Rate indicatescharacteristicrateof learning.Seetext for fuller description.

phenomena,andhasimportantcomputationalbenefitsby enforcingrelatively sparselevelsof activa-
tion.

Recurrence (bidirectionalconnectivity) existsamongtheelementswithin a systemandbetweensystems,
allowing for interactivebottom-upandtop-down processing,constraint satisfactionsettling,andthe
communicationof errorsignalsfor learning.

A centralfeatureof this framework, asoutlinedabove, is that differentbrain systemsarespecialized
for differentfunctions. In orderto characterizethesespecializations(andunderstandwhy they may have
arisen),wefocusonbasictradeoffs thatexist within thiscomputationalframework (e.g.,activity- vsweight-
basedstorage,or rapid learningvsextractionof regularities). Thesetradeoffs leadto specialization,since
a homogeneoussystemwould requirecompromisesto bemade,whereasspecializedsystemsworking to-
gethercanprovide thebenefitsof eachendof thetradeoff without requiringcompromise.Thisanalysishas
led to thefollowing setof coincidentbiologicalandfunctionalspecializations,which arealsosummarized
in Figure2 andTable1:

Posterior perceptual and motor cortex (PMC): Optimizesknowledge-dependentinferencecapabilities,
which dependon denseinterconnectivity, highly distributed representations,and slow integrative
learning(i.e., integratingover individual learningepisodes)in orderto obtaingoodestimatesof the
importantstructural/statistical propertiesof theworld, uponwhich inferencesarebased(McClelland,
McNaughton,& O’Reilly, 1995). Similarity-basedoverlapamongdistributedrepresentationsis im-
portantfor enablinggeneralizationfrom prior experienceto new situations.Thesesystemsperform
sensory/motorandmoreabstract,multi-modalprocessingin a hierarchicalbut highly interconnected
fashion,resultingin theability to perceive andact in theworld in accordancewith its salientandre-
liable properties.We take this to bethecanonicaltypeof neuralcomputationin thecortex, andview
theothersystemsin referenceto it.

Pre-frontal cortex (PFC): Optimizesactivememoryvia restrictedrecurrentexcitatoryconnectivity andan
active gatingmechanism(discussedbelow). This resultsin theability to bothflexibly updateinter-
nal representations,maintaintheseover time andin the faceof interferenceand,by propagationof
activationfrom theserepresentations,biasPMCprocessingin a task-appropriatemanner. PFCis spe-
cializedbecausethereis afundamentaltradeoff betweentheability to actively sustainrepresentations
(in theabsenceof enduringinput or thepresenceof distractinginformation)anddenseinterconnec-
tivity underlyingdistributed(overlapping)representationssuchasin thePMC (Cohenet al., 1996).
As a result,the individual self-maintainingrepresentationsin PFCmustbe relatively isolatedfrom
eachother(asopposedto distributed). They canthusbeactivatedcombinatoriallywith lessmutual
interferenceor contradiction,allowing for flexible andrapid updating.Becausethey sit high in the
corticalrepresentationalhierarchy, they arelessembeddedandmoregloballyaccessibleandinfluen-
tial. Becausethey areactively maintainedandstronglyinfluencecognition,only a relatively small
numberof representationscantypically beconcurrentlyactive in thePFCatagiventime in orderfor
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PMC PFC

HCMP

Figure2: Diagramof key propertiesof thethreeprincipalbrainsystems.Active representationsareshown in grey;
highly overlappingcircles are distributed representations;non-overlappingare isolated;in betweenare separated.
Weightsbetweenactive units are shown in solid lines; thoseof non-active units in dashed. Threeactive feature
valuesalongthreeseparate“dimensions”(e.g.,modalities)arerepresented.PMC representationsaredistributedand
embeddedin specialized(e.g.,modality specific)processingsystems.PFC representationsare isolatedfrom each
other, andcombinatorial,with separateactive unitsrepresentingeachfeaturevalue.Unlike othersystems,PFCunits
arecapableof robustself-maintenance,asindicatedby therecurrentconnections.HCMP representationsaresparse,
separated(but still distributed),andconjunctive,sothatonly a singlerepresentationis activeata time,corresponding
to theconjunctionof all active features.

coherentcognitionto result.Thus,inhibitory attentionalmechanismsplay animportantrole in PFC,
andfor understandingtheorigin of capacityconstraints.

Hippocampusand relatedstructures(HCMP): Optimizes rapid learning of arbitrary information in
weight-basedmemories.Thispermitsthebindingof elementsof anovel association,includingrepre-
sentationsin PFCandPMC,providing a mechanismfor temporarystorageof arbitrarycurrentstates
for laterretrieval. Thereis a tradeoff betweensuchrapidlearningof arbitraryinformationwithout in-
terferingwith prior learning(retroactive interference),andtheability to developaccurateestimatesof
underlyingstatisticalstructure(McClellandetal.,1995).To avoid interference,learningin theHCMP
usespatternseparation (i.e., individual episodesof learningareseparatedfrom eachother),asop-
posedto the integrationcharacteristicof PMC. This separationprocessrequiressparse, conjunctive
representations,whereall theelementscontribute interactively (not separably)to specifyinga given
representation(O’Reilly & McClelland,1994). This conjunctivity is theoppositeof thecombinato-
rial PFC,wheretheelementscontributeseparably. Conjunctivity leadsto context specificandepisodic
memories,which bind togethertheelementsof a context or episode.This alsoimplies that thereis
a singleHCMPrepresentation(consistingof many active neurons)correspondingto anentirepattern
of activity in thecortex. Sinceonly oneHCMP representationcanbeactive at any time, reactivation
is necessaryto extractinformationfrom multiplesuchrepresentations.

While thereareundoubtedlymany otherimportantspecializedbrainsystems,we think that thesethree
provide central,andcritical contributionsto working memoryfunction. However, brainstemneuromodula-
tory systems,suchasdopamineandnorepinephrine,play an importantsupportingrole in our theory, asa
resultof theircapacityto modulatecorticalprocessingaccordingto reward,punishment,andaffectivestates.
In particular, aswe discussfurtherbelow, we have hypothesizedthatdopamineactivity playsa critical role
in working memoryfunction,by regulatingactive maintenancein PFC(Cohen& Servan-Schreiber, 1992;
Cohenetal., 1996).
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It shouldalsobeemphasizedthattheabovearerelatively broadcharacterizationsof largebrainsystems,
which (especiallyin the caseof the neocorticalsystems)may have subsystemswith different levels of
conformanceto thesegeneralizations.Further, theremay be other importantdifferencesbetweenthese
systemsthatarenot reflectedin ouraccount.Nevertheless,thesegeneralizationsareconsistentwith a large
corpusof empiricaldataandideasfrom othertheorists(e.g.,Fuster, 1989;Shallice,1982;Goldman-Rakic,
1987;Squire,1992).Finally, wenotethattherearestill importantportionsof this accountthathave notyet
beenimplementedin computationalmodels,andthesufficiency of theseideasto performcomplex cognitive
tasks,especiallythoseinvolving extendedsequentialbehavior, remainsuntestedasof now. Nevertheless,
encouragingprogresshasbeenmadeimplementingandtestingmodelssomeof themorebasicfunctionswe
have described,suchastheactive maintenancefunctionof PFCandthebindingfunctionof hippocampus
(seeCohenet al.,1996;McClellandet al.,1995;Cohen& O’Reilly, 1996for reviews).

In whatfollows, we will elaboratethewaysin which thesebrainsystemsinteractto producecontrolled
processingandworking memory, andmake morecleartheir relationshipto otherconstructssuchascon-
sciousnessandactive memory. Wewill thenfocusonasetof importantissuessurroundingtheoperationof
thePFCactive memorysystem,followedby anapplicationof theseideasto understandingsomestandard
workingmemorytasks.This thenprovidesa sufficient setof principlesto addressthetheoreticalquestions
posedin thisvolume.

ControlledProcessingandBrain SystemInteractions

We considercontrolledprocessingto be an importantaspectof our theoryof working memory. This
hasclassicallybeendescribedin contrastwith automaticprocessing(Shiffrin & Schneider, 1977;Posner&
Snyder, 1975),andhasbeenthoughtto involve a limited capacityattentionalsystem.However, morerecent
theorieshave suggestedthata continuummayexist betweenbetweencontrolledandautomaticprocessing,
(Kahneman& Treisman,1984;Cohen,Dunbar, & McClelland,1990),andweconcurwith thisview. Thus,
working memoryalsovariesalongthis samecontinuum.In particular, we have conceptualizedcontrolled
processingastheability to flexibly adaptbehavior to thedemandsof particulartasks,favoring theprocess-
ing of task-relevant informationover othersourcesof competinginformation,andmediatingtask-relevant
behavior overhabitualor otherwiseprepotentresponses.In ourmodels,thisis operationalizedastheuseand
updatingof actively maintainedrepresentationsin PFCto biassubsequentprocessingandactionselection
within PMCin atask-appropriatemanner. For example,in theAX-CPT modeldescribedabove, thecontext
representationactively maintainedin PFCis ableto exert controlover processingby biasingthe response
madeto anambiguousprobestimulus.

While it is temptingto equatecontrolledprocessingwith theoreticalconstructssuchasa centralexec-
utive (Gathercole,1994;Shiffrin & Schneider, 1977),therearecritical differencesin theassumptionsand
characterof thesemechanismsthathave importantconsequencesfor our modelof working memory. Per-
hapsthe most importantdifferencebetweenour notion of controlledprocessingandtheoriesthat posit a
centralexecutive is that we view controlledprocessingasemerging from the interactionsof several brain
systems,ratherthan the operationof a single,unitary CPU-like construct. We believe that our interac-
tive, decentralizedview is moreconsistentwith thegradedaspectof controlledprocessing,aswell asthe
characterof neuralarchitectures.However, aspectsof our theoryarecompatiblewith othermodels. For
example,Shallice(1982)hasproposedatheoryof frontal function,andtheoperationof acentralexecutive,
in termsof asupervisoryattentionalsystem(SAS).Hedescribesthisusingaproductionsystemarchitecture,
in which theSASis responsiblefor maintaininggoalstatesin working memory, in orderto coordinatethe
firing of productionsinvolved in complex behaviors. This is similar to therole of goalstacksandworking
memoryin ACT (Anderson,1983;Lovettetal., thisvolume).Similarly, our theoryof workingmemoryand
controlledprocessingdependscritically on actively maintainedrepresentations(in PFC).This centralrole
for active maintenancein achieving controlledprocessingcontrastswith a view whereactive maintenance
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Figure3: Waysin which theHCMP andPFCcontributeto theautomaticvscontrolled-processingdistinction(after
Cohen& O’Reilly, 1996).Bias is providedby thePFC,andcanbeusedto performsustainedprocessing,canfacilitate
the processingof weakly-learned(i.e., relatively infrequent)tasks,and can serve to coordinateprocessingacross
differentsystems.Binding is provided by the HCMP, andcan be usedto rapidly learnandstorethe information
necessaryto performnovel tasksor processing.Controlledprocessingcaninvolveeitheror bothof thesecontributions,
while automaticprocessingcanbeperformedindependentof them.

andexecutive controlarestrictly segregated(Baddeley & Logie,thisvolume).

We considercontrolledprocessingto arisefrom theinterplaybetweenPFCbiasingandHCMP binding
(Cohen& O’Reilly, 1996). Figure3 illustratesthe centralideasof this account,which is basedon the
functionalcharacterizationsof thePFCandHCMP asdescribedabove. Accordingto this view, thedegree
to which controlledprocessingis engagedby a taskis determinedby theextent to which eitheror bothof
thefollowing conditionsexist:

� Sustained,weakly-learned(i.e., relatively infrequent),or coordinatedprocessingis required.

� Novel informationmustberapidlystoredandaccessed.

SincethePFCcanbiasprocessingin therestof thesystem,sustainedactivity of representationsin PFC
canproducea focusof activity amongrepresentationsin PMC neededto performa given task. This can
be usedto supportrepresentationsin PMC over temporallyextendedperiods(e.g., in delayedresponse
tasks),and/orweakly-learnedrepresentationsthat might otherwisebe dominatedby strongerones(e.g.,
in the Strooptask,wherehighly practicedword-readingdominatesrelatively infrequentcolor naming—
Cohenetal.,1990).This functionof PFCcorrespondscloselyto Engle,Kane,andTuholski’s (thisvolume)
notion of controlledattentionandto Cowan’s (this volume)notion of focusof attention. In contrast,the
HCMP contributestheability to learnnew informationrapidly andwithout interference,binding together
task-relevant information(e.g.,taskinstructions,particularcombinationsof stimuli, intermediatestatesof
problemsolutions,etc) in sucha form thatit beretrievedat appropriatejuncturesduringtaskperformance.
Thismayberelevantfor EricssonandDelaney’s (thisvolume)notionof longtermworkingmemory, Young
andLewis’ (this volume)productionlearningmechanism,andMoscovitch andWinocur’s (1992)notionof
“working-with-memory”.Weproposethatthecombinationof thesetwo functions(PFCbiasingandHCMP
binding) canaccountfor the distinctionbetweencontrolledand automaticprocessing.On this account,
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automatic� processingis whatoccursvia activation propagationthroughintrinsic PMC connectivity, while
controlledprocessingreflectstheadditionalconstraintson theflow of activity broughtto bearby thePFC
and/orHCMP.

ActivationPropagationandMultiple Constraint Satisfaction

While someaspectsof behavior canbeunderstoodin termsof relatively localprocesseswithin thebrain,
weassumethat,undermostcircumstances,behavior is determinedby arich anddynamicsetof interactions
involving thewidespreadpropagationof activationto multiple,distributedbrainsystems.While thedetailed
outcomeof suchprocessingin a particularcasemaybedifficult, if not ultimately impossible,to describe,
its generalcharactercan be understoodin termsof multiple constraint satisfaction: the activation state
that resultsfrom this propagationof informationover weightedneuronalconnectionsis likely to be one
thatsatisfiesvariousconstraints,includingthoseimposedby threecritical components:1) externalstimuli;
2) sustainedactivity in PFC;and3) recalledinformationfrom the HCMP. Thus, representationsin PFC
andHCMP act as“control signals,” insofar as theseinfluencethe flow of activity andtherebyshapethe
constraintsatisfactionprocessthatis takingplacein therestof thebrain.Furthermore,theiractivationstates
arethemselvesinfluencedby similarconstraintsatisfactionmechanismsbasedonactivationsfrom thePMC
(thougha presumedgatingmechanismin the PFCcanmake it moreor lesssusceptibleto this “bottom-
up” influence— seediscussionbelow). All of theseconstraintsaremediatedby thesynapticconnections
betweenneurons,whichareadaptedthroughexperiencein suchawayasto resultin betteractivationstatesin
similarsituationsin thefuture.Thus,muchof therealwork beingdonein ourmodel(andouravoidanceof a
homunculusor otherwiseunspecifiedcentralexecutivemechanismswhenwediscusscontrolledprocessing),
lies in theseactivation dynamicsandtheir tuning asa function of experience.Computationalmodelsare
essentialin demonstratingtheefficacy of thesemechanisms,whichmayotherwiseappearto havemysterious
properties.

AccessibilityandConsciousness

In our model,oneof the dimensionsalongwhich brain systemsdiffer is in the extent to which their
representationsare globally accessibleto a wide rangeof otherbrain systems,asopposedto embedded
within morespecificprocessingsystemsand lessglobally accessible.We view this differenceasarising
principally from a system’s relative positionwithin anoverall hierarchyof abstractnessof representations.
Thishierarchyis definedby how farremovedasystemis from directsensoryinputor motoroutput.Systems
supportinghigh level, moreabstractrepresentationsaremorecentrallylocatedwith respectto the overall
network connectivity, resultingin greateraccessibility. Accordingly, becauseboththePFCandHCMP are
at the top of the hierarchy(Squire,Shimamura,& Amaral,1989;Fuster, 1989)they aremoreinfluential
and accessiblethan subsystemswithin PMC. Like the other dimensionsalong which thesesystemsare
specialized,we view this asa gradedcontinuum,andnot asan all-or-nothing distinction. Furthermore,
we assumethat the PMC hasrich “lateral” connectivity betweensubsystemsat the samegenerallevel of
abstraction(at leastbeyondthefirst few levelsof sensoryor motorprocessing).Nevertheless,thePFCand
HCMPassumeapositionof greateraccessibility, andthereforegreaterinfluence,relative to othersystems.

Accessibilityhasmany implications,which relateto issuesof consciousawareness,andpsychological
distinctionslike explicit vs implicit or declarativevs procedural. We view thecontentsof consciousexpe-
rienceasreflectingtheresultsof globalconstraintsatisfactionprocessingthroughoutthebrain,with those
systemsor representationsthataremostinfluentialor constrainingon thisprocesshaving greaterconscious
salience(c.f., Kinsbourne,1997). In general,this meansthathighly accessibleandinfluentialsystemslike
PFCandHCMP will tendto dominateconsciousexperienceover the moreembeddedsubsystemsof the
PMC. Consequently, thesesystemsaremostclearlyassociatedwith notionsof explicit or declarative pro-
cessing,while thePMC andsubcorticalsystemsareassociatedwith implicit or proceduralprocessing.We
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endorse	 this distinction,but addthe importantcaveatthatPFCandHCMP areparticipantsin anextended
interactive system,andthat,onceagain,suchdistinctionsshouldbeconsideredalonga continuum.Thus,
our theory is not compatiblewith strongassumptionsaboutinformationallyencapsulatedmodules(e.g.,
Fodor, 1983;Moscovitch & Winocur, 1992).

ActiveMemoryvsWorkingMemory

In our model,we usethe termactive memoryto refer to informationthat is representedasa patternof
activity (neuronalspiking)acrossa setof units(neuralassembly)which persistsover some(possiblybrief)
time interval. We view working memoryasrelying on active memory, by virtue of theneedto rapidly and
frequentlyaccessstoredinformationovershortintervalsandusethisinformationto biasprocessingin anon-
goingway in otherpartsof thesystem.However, theHCMP, becauseit is capableof rapidly formingnovel
associationsandretrieving thesein task-relevant contexts, is alsousefulfor working memory. Conversely,
we do not assumethat actively maintainedrepresentationsare invoked exclusively within the context of
working memory. Sustainedactivity canoccurandplay a role in automaticprocessingaswell. For exam-
ple,it is notdifficult to imaginethatrelatively automatictaskssuchastypingwouldrequirepersistentactive
representations,andsustainedactivity hasindeedbeenobserved in areasoutsideof PFC(Miller & Desi-
mone,1994).We assumethatactively maintainedrepresentationsparticipatein working memoryfunction
only underconditionsof controlledprocessing— that is, whensustainedactivity is theresultof represen-
tationscurrentlybeingactively maintainedin thePFC,or retrievedby theHCMP. Thiscorrespondsdirectly
to thedistinctions,proposedby Cowan(this volume)andEngleet al. (this volume),betweencontrolledor
focusedattentionvsothersourcesof activationandattentionaleffects.

Regulationof ActiveMemory

It haslongbeenknown from electrophysiological recordingsin monkeysthatPFCneuronsremainactive
over delaysbetweena stimulusanda contingentresponse(e.g.,Fuster& Alexander, 1971). Furthermore,
while suchsustainedactivity hasbeenobservedin areasoutsideof PFC,it appearsthatPFCactivity is robust
to interferencefrom processinginterveningdistractorstimuli, while activity within thePMC is not (Miller,
Erickson,& Desimone,1996;Cohen,Perlstein,Braver, Nystrom,Jonides,Smith,& Noll, 1997).Although
theprecisemechanismsresponsiblefor activemaintenancein PFCarenotyetknown, onelikely mechanism
is strongrecurrentexcitation. If groupsof PFCneuronsarestronglyinterconnectedwith eachother, then
strongmutualexcitation will leadto both sustainedactivity, andsomeability to resistinterference.This
ideahasbeendevelopedin anumberof computationalmodelsof PFCfunction(e.g.,Dehaene& Changeux,
1989;Zipser, Kehoe,Littlewort, & Fuster, 1993).However, webelieve thatthissimplemodelis inadequate
to accountfor bothrobustactive maintenance,andthekind of rapidandflexible updatingthat is necessary
for complex cognitive tasks.

Theunderlyingproblemreflectsabasictradeoff — to theextentthatunitsaremadeimperviousto inter-
ference(i.e., by makingtherecurrentexcitatoryconnectionsstronger),this alsopreventsthemfrom being
updated(i.e., new representationsactivatedandexisting onesdeactivated). Conversely, weaker excitatory
connectivity will makeunitsmoresensitive to inputsandcapableof rapidupdating,but will notenablethem
to be sustainedin the faceof interference.To circumvent this tradeoff, we think that the PFChastaken
advantageof midbrainneuromodulatorysystems,which canprovide a gating mechanismfor controlling
maintenance.Whenthegateis opened,thePFCrepresentationsaresensitive to their inputs,andcapableof
rapidupdating.Whenthegateis closed,thePFCrepresentationsareprotectedfrom interference.Sucha
gatingmechanismcanaugmentthecomputationalpowerof recurrentnetworks(Hochreiter& Schmidhuber,
1997),andwe have hypothesizedthatdopamine(DA) implementsthis gatingfunctionin PFC,basedon a
substantialamountof biologicaldata(Cohenet al., 1996).
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Figure4: Illustrationof difficultieswith active maintenancevia recurrentexcitationwith distributedrepresentations.
a) No valueof the excitatory weightswill enablean appropriatesubsetof two featuresto be maintained,without
alsoactivating the third. b) If representationsaremadeindependent,thenmaintenanceis no problem,but semantic
relatednessof thefeaturesis lost. Onecouldalsojust maintainthehigher-level items(i.e., synthesizer, terminaland
television).

Thus,we proposethat themidbrainDA nuclei (theventraltegmentalarea,VTA), undercontrolof de-
scendingcortical projections,enablethe PFC to actively regulatethe updatingof its representationsby
controllingthe releaseof DA in a strategic manner. Specifically, we proposethat theafferentconnections
into the PFCfrom otherbrain systemsareusuallyrelatively weakcomparedto strongerlocal excitation,
but thatDA enhancesthestrengthof theseafferents1 at timeswhenupdatingis necessary. This would pre-
dict that theVTA shouldexhibit phasicfiring at thosetimeswhenthePFCneedsto beupdated.Schultz,
Apicella,andLjungberg (1993)have foundthatindeed,theVTA exhibitstransient,stimulus-lockedactivity
in responseto stimuli which predictedsubsequentmeaningfulevents(e.g.,reward or othercuesthat then
predictreward). Further, we arguethatthis role of DA asa gatingmechanismis synergistic with its widely
discussedrole in reward-basedlearning(e.g.,Montague,Dayan,& Sejnowski, 1996).As will bediscussed
furtherin thefinal discussionsection,this learninghelpsusto avoid theneedto postulateahomunculus-like
mechanismfor controlledprocessing.

General Natureof ActiveMemoryRepresentations

Ourtheoryplacesseveralimportantdemandsonthenatureof representationswithin thePFC,in addition
to therapidlyupdatableyetrobustactivemaintenancediscussedabove. In general,weview thePFC’srolein
controlledprocessingasimposingasustained,taskrelevant,top-down biasonprocessingin thePMC.Thus,
in complex cognitiveactivities,thePFCshouldbeconstantlyactivatinganddeactivatingrepresentationsthat
canbiasa largenumberof combinationsof PMC representations,while sustaininga coherentandfocused
threadof processing.ThismeansthatthePFCneedsavastrepertoireof representationsthatcanbeactivated
ondemand,andtheserepresentationsneedto beconnectedwith thePMCin appropriateways.Further, there
mustbesomewayof linking togethersequencesof representationsin acoherentway.

Our initial approachtowardsunderstandingPFC representationshasbeendominatedby an interest-
ing coincidencebetweentheabove functionalcharacterizationof thePFC,anda consequenceof anactive
maintenancemechanismbasedon recurrentexcitation. Distributedrepresentations,which arethoughtto
becharacteristicof thePMC, areproblematicfor this kind of active maintenancemechanism,asthey rely
critically onafferentinput in orderto selecttheappropriatesubsetof distributedcomponentsto beactivated.

1In addition,it appearsthat inhibitory connectionsarealsoenhanced,which would provide a meansof deactivating existing
representations.
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theabsenceof this afferentselection(e.g.,duringa delayperiod),recurrentexcitationamongthecom-
ponentswill spreadinappropriately, andresultin thelossof theoriginal activity pattern.This is illustrated
in Figure4, whereadistributedrepresentationis usedto encodethreedifferentitems,whicheachsharetwo
out of threetotal features.If thesedistributionshave thestrongrecurrentexcitatoryconnectionsnecessary
for activemaintenance,thenit will bedifficult to keepauniquesubsetof two featuresactivewithoutalsoac-
tivatingthethird: activationwill spreadto thethird unit via theconnectionsnecessaryto maintainit in other
circumstances.The alternative (shown in panelb) is to useisolatedrepresentations,which maintainonly
themselves. However, what is missingfrom theseisolatedrepresentationsis therich interconnectivity that
encodesknowledgeaboutthe relationshipsbetweenthe features,which could be usedfor performingthe
knowledge-dependentinferencethatwe think is characteristicof thePMC. We obtaintheoreticalleverage
from this basictradeoff, whichcanbeavoidedby having two specializedsystems(PMCandPFC).

TheideathatPFCrepresentationsarerelatively isolatedfrom eachotherhasimportantfunctionalcon-
sequencesbeyond theactive maintenanceof information. For example,in orderto achieve flexibility and
generativity, PFCrepresentationsmustbeusefulin novel contexts andcombinations.Thus,individualPFC
representationsshouldnot interferemuchwith eachothersothatthey canbemoreeasilyandmeaningfully
combined— thisis justwhatonewouldexpectfrom relatively isolatedrepresentations.Wethink thatlearn-
ing in thePFCis slow andintegrative like therestof thecortex, so that this graduallearningtakingplace
over many yearsof humandevelopmentproducesa rich anddiversepaletteof relatively independentPFC
representationalcomponents,which eventuallyenablethe kind of flexible problemsolving skills that are
uniquelycharacteristicof adulthumancognition.

This view of PFCrepresentationscanbeusefullycomparedwith thatof humanlanguage.In termsof
basicrepresentationalelements,languagecontainswords,which have a relatively fixedmeaning,andcan
becombinedin a hugenumberof differentwaysto expressdifferent(andsometimesnovel) ideas.Words
representthingsat many different levels of abstractionandconcreteness,andcomplicatedor particularly
detailedideascanbe expressedby combinationsof words. We think that similar propertieshold for PFC
representations,andindeedthata substantialsubsetof PFCrepresentationsdo correspondwith word-like
concepts.However, we emphasizethatword meaningshave highly distributedrepresentationsacrossmul-
tiple brainsystems(Damasio,Grabowski, & Damasio,1996),andalsothatthePFCundoubtedlyhasmany
non-verbal representations.Nevertheless,it may be that the PFCcomponentof a word’s representation
approachesmostcloselythenotionof adiscrete,symbol-like entity.

Takingthis languageideaonestepfurther, it mayprovide usefulinsightsinto thekindsof updatingand
sequentiallinking that PFCrepresentationsneedto undergo during processing.For example,languageis
organizedat many different levels of temporalstructure,from shortphrases,throughlongersentencesto
paragraphs,passages,etc. Theselevels aremutually constraining,with phrasesaddingtogetherto build
higher-level meaning,andthis accumulatedmeaningbiasingtheinterpretationof lower-level phrases.This
sameinteractive hierarchicalstructureis presentduringproblemsolvingandothercomplex cognitive activ-
ities,andis critical for understandingthedynamicsof PFCprocessing.We think thatall of thesedifferent
levels of representationcanbe active simultaneously, andmutually constrainingeachother. Further, it is
possiblethat the posterior-anteriordimensionof the PFCmay beorganizedroughlyaccordingto level of
abstraction(andcorrespondingly, temporalduration).For example,thereis evidencethatthemostanterior
areaof PFC,thefrontal pole,is only activatedin morecomplicatedproblemsolvingtasks(Baker, Rogers,
Owen,Frith, Dolan,Frackowiak, & Robbins,1996),andthatposteriorPFCreceivesmostof theprojections
from PMC,andthenprojectsto moreanteriorregions(Barbas& Pandya,1987,1989).Finally, thisnotionof
increasinglyabstractlevelsof planor internaltaskcontext is consistentwith theprogressionfrom posterior
to anteriorseenwithin themotorandpremotorareasof the frontal cortex (Rizzolatti,Luppino,& Matelli,
1996).
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Specialization
�

of ActiveMemoryRepresentations

An importantissuebothwithin theworkingmemoryliteratureandwith regardto theoriesof PFCfunc-
tion is that of specializationalongfunctionaland/orrepresentationaldimensions.For example,Baddeley
(1986)proposedthattherearetwo separateworkingmemorybuffers: a phonological loop anda visuospa-
tial scratchpad, whichmight itself besubdividableinto objectandspatialcomponents.It hasbeenproposed
that this functionalspecializationreflectsanunderlyingspecializationin thebrainsystemssubservingthe
differentbuffer systems(Gathercole,1994). For example,theremaybespecificbrainsystemssubserving
verbalrehearsal(e.g.,Broca’s areaand/orangulargyrus). Thereis alsoa well recognizedsegregationof
processingof objectandspatialinformationinto ventral(temporal)anddorsal(parietal)streamswithin the
PMC(Ungerleider& Mishkin, 1982),thatmaycorrespondto thetwo subdivisionsof Baddeley’s visuospa-
tial sketchpad.At a somewhatmoregenerallevel, ShahandMiyake (1996)have foundevidenceconsistent
with theideaof separablespatialandverbalcapacities.

Specializationmayalsoplay a role in PFCorganizationandfunction. Argumentsin the literaturehave
centeredaroundtwo dimensionsalongwhich PFCmaybeorganized:functionalandcontent-based.How-
ever, we arguethat it is difficult to draw a cleandistinctionbetweenfunctionandcontent.Indeed,a basic
principle of neuralnetworks is that processingandknowledge(content)are intimately intertwined. For
example,thefunctionaldistinctionbetweenmemory(in thedorsolateralPFC)andinhibition (in theorbital
areas;Fuster, 1989;Diamond,1990),could alsobe explainedby a content-baseddistinction in termsof
therepresentationof affective, appetitive andsocialinformationin theorbital areas,which might bemore
frequentlyassociatedwith theneedfor behavioral inhibition. Similarly, thefunctionaldissociationbetween
manipulation(in dorsalateralareas)andmaintenancein (ventrolateralareas;Petrides,1996)may be con-
foundedwith the needto representsequentialorder informationin mosttasksthat involve manipulation.
To furthercomplicatethe issue,onetypeof functionalspecializationcanoftengive rise to otherapparent
functionalspecializations.For example,we have arguedthatthememoryandinhibitory functionsascribed
to PFCmaybothreflecttheoperationof asinglemechanism(i.e., inhibition canresultfrom maintainedtop-
down activation of representationswhich then inhibit othercompetingpossibilitiesvia lateral inhibition;
Cohen& Servan-Schreiber, 1992;Cohenetal., 1996).

Given theseproblems,we find it moreuseful to think in termsof the computationalmotivationsde-
scribedabove in orderto understandhow thePFCis specialized(i.e., in termsof thetradeoff betweenactive
maintenanceanddistributedrepresentations).Thus,we supporttheideathat thePFCis specializedfor the
function of active maintenance.Consequently, representationswithin the PFCmustbe organizedby the
contentof therepresentationsthataremaintained.A numberof neurophysiologicalstudieshave suggested
a content-basedorganizationthatreflectsananteriorextensionof theorganizationfoundin thePMC,with
dorsalregionsrepresentingspatialinformation(Funahashi,Bruce,& Goldman-Rakic,1993)andmoreven-
tral regionsrepresentingobjector patterninformation(Wilson,Scalaidhe,& Goldman-Rakic,1993).Other
contentdimensionshavealsobeensuggested,suchassequentialorderinformation(Barone& Joseph,1989),
and“dry” cognitive vsaffective,appetitive and/orsocialinformation(Cohen& Smith,1997).However, the
datadoesnot consistentlysupportany of theseideas. For example,Rao,Rainer, andMiller (1997)have
recordedmorecomplex patternsof organizationin neurophysiologicalstudies,with significantdegreesof
overlapandmultimodality of representations.Recentfindingswithin the humanneuroimagingliterature
arealsoconfusing,asearlyreportsthat indicateddistinctionsin theareasactivatedby verbalvsobjectand
verbalvs spatialinformation(e.g.,Smith,Jonides,& Koeppe,1996)have not beenreliably replicated(as
reportedin anumberof recentconferenceproceedingsandin unpublisheddatafrom our lab).

In light of thisdata,we suggestthatthePFCmaybeorganizedaccordingto moreabstract,multimodal,
andlessintuitive dimensionsthathave beenconsideredto date(i.e., thatdo not correspondsimply to sen-
sory modalitiesor dimensions).This seemslikely, given the relatively high-level positionof the PFCin
theprocessinghierarchy(seediscussionabove), which would give it highly processedmulti-modalinputs.
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Further
�

, this typeof input mayinteractwith thelearningmechanismsandotherconstraintson thedevelop-
mentof representationswithin PFC.For example,wehaveshown thattaskdemandsandtrainingparameters
(i.e., blockedvs interleaved exposure)canplay an importantrole in determiningwhethera simulatedPFC
developsuni- or multimodalrepresentationsof objectandspatialinformation(Braver & Cohen,1995).

ExampleWorkingMemoryTasks

Earlier, we provided an exampleof how the mechanismswe have proposedareengagedin a simple
workingmemorytask(theAX-CPT). Here,weconsiderhow they maycomeinto play in two tasksthatare
commonlyusedto measureworking memorycapacity, andcontrastthemwith onesthatarethoughtto not
involve working memory. The verbalworking memoryspantask(Daneman& Carpenter, 1980)involves
readingaloudasetof sentencesandrememberingthefinal wordsfrom eachsentencefor laterrecall.Thus,
thesefinal wordsmustbemaintainedin the faceof subsequentprocessing,which makesthis taskheavily
dependentontherobustPFCactivemaintenancemechanisms.A spatialversionof thistask(Shah& Miyake,
1996)involvesidentifying letterspresentedat differentnon-uprightorientationsasbeingeithernormalor
mirror-reversed,which appearsto requiresomeamountof mentalrotationto theuprightorientation,while
rememberingthe orientationsof the lettersfor later recall. This mentalrotation requiresthe driving of
PMC-basedvisual transformations(learnedover extensive experienceseeingvisual transformationssuch
asrotation,translation,etc.) in a task-relevant manner, presumablyvia actively maintainedPFCtop-down
biasing.Further, theorientationinformationmustbemaintainedin thefaceof subsequentprocessingof the
samekindsof information,whichagainrequiresrobustPFCactive maintenance.

Theseworking memoryspantaskshave beencontrastedwith othersthatarenot consideredto involve
workingmemory. For example,theverbalworkingmemoryspantaskhasbeencomparedwith asimpledigit
spantask,whichpresumablyonly requiresactive maintenance,but notcontrolledprocessing.Behaviorally,
theverbalworking memoryspantaskis bettercorrelatedwith otherputative verbalworkingmemorytasks
thatalsoinvolvecontrolledprocessing,comparedto thissimpledigit spantask(Daneman& Merikle,1996).
Theotherhalf of thisargumenthasbeenmadein thecaseof aspatialequivalentof thedigit spantask(which
involved rememberingthe orientationsof a setof arrows), that wassignificantlycorrelatedwith a simple
visualprocessingtask,while thespatialworking memoryspanmeasurewasnot (Shah& Miyake, 1996).
SeeEngleet al. (this volume)for a moredetaileddiscussionof this issueandotherrelevant experimental
results.

Anotherexample,involving the useof the HCMP system,is the comprehensionof extendedwritten
passages.Becauseof limited capacityin the PFC active memorysystem,it is likely that someof the
representationsactivatedby the comprehensionof prior paragraphsareencodedonly within the HCMP,
andmustbe recalledasnecessaryduring laterprocessing(e.g.,whenencounteringa referencelike, “this
would be impossible,given Ms. Smith’s condition,” which refersto previously introducedinformation
thatmaynot have remainedactive in thePFC).The ideais that this later referencecanbeusedto trigger
recallof thepreviousinformationfrom theHCMP, perhapswith theadditionof somestrategic activationof
otherrelevant informationwhich haspersistedin the PFC(e.g.,the fact that Ms. Smith livesin Kansas).
A successfulrecall of this informationwill result in the activation of appropriaterepresentationswithin
the PFCandPMC, which combinedwith the currenttext resultsin comprehension(e.g.,Ms. Smith was
hit by a tornado,andcan’t comeinto work for animportantmeeting).In contrastwith theoriesthatdraw a
strongdistinctionbetweenactivememoryandHCMPweight-basedmemories(e.g.,Moscovitch & Winocur,
1992),we think thata typicalcognitive taskanalysismaynotdistinguishbetweenthesetypesof memoryin
many situations,makingthegenericworking memorylabelmoreappropriatefor both. Finally, Youngand
Lewis (this volume)presentwhatappearsto bea roughlysimilar role for rapid learningin their theoryof
workingmemory, andEricssonandDelaney (thisvolume)describerelatively long-lastingworkingmemory
representationswhich would seemto involve theHCMP (aswell astheeffectsof extensive experienceon



16 Biologically-BasedComputationalModel

underlyingcorticalrepresentations).

Answersto TheoreticalQuestions

This sectionsummarizesour answersto a set of eight basicquestionsaboutour theory of working
memory. Thequestionsaresummarizedby thesectionheaders,andTable2 providesaconcisesummaryof
ouranswersto thesequestions.

BasicMechanismsandRepresentationsin WorkingMemory

Active maintenance(for which thePFCis specialized),rapidlearning(for which theHCMP is special-
ized),andcontrolledprocessing(biasingandbindingbasedon these)arethebasicmechanismsof working
memoryin our account. Controlledprocessingemergesfrom the interactionsbetweenall threeprimary
brainsystems(PFC,HCMP, PMC), but is moststronglyinfluencedby thePFCandHCMP. For purposes
of comparison,we describeour basicmechanismsin termsof standardmemoryterminologyof encoding,
maintenance,andretrieval:

Encoding: Due to slow learning,the cortical systems(PFCandPMC) have relatively stablerepresenta-
tionalcapability. Thus,encodingin thesesystemsreliesontheselectionandactivation(via constraint
satisfactionprocessingoperatingoverexperience-tunedweights)of thosepre-existingrepresentations
that are most relevant in a particularcontext. In the HCMP, encodinginvolves the rapid binding
togetherof a novel conjunctionof the representationsactive in the restof the brain. An important
influenceon thisprocess,andacritical componentof controlledprocessing,is thestrategic activation
(undertheinfluenceof thePFC)of representationsthatinfluenceHCMPencodingin task-appropriate
ways(e.g.,activatingdistinctive featuresduringelaborative encodingin amemorytask).

Maintenance: Only thePFCis thoughtto becapableof sustainingactivity over longerdelaysandin the
faceof otherpotentiallyinterferingstimuli or processing.However, underconditionsof shorterde-
laysandtheabsenceof interference,PMCcanexhibit sustainedactivememories(Miller etal.,1996).
We include in our definition of the PFCthe frontal languageareaswhich have beenshown to be
active in neuroimagingstudiesinvolving active memoryasdiscussedabove. For example,consider-
ableevidencesupportsthe ideathatmaintenancein this systemis implementedby anphonological
loop (Baddeley & Logie, this volume;Baddeley, 1986),which mayinvolve morehighly specialized
mechanismsthanthosehypothesizedto exist in otherareasof PFC.We do not think that theHCMP
maintainsinformationin an active form, but ratherthroughrapid weight changesmadeduring en-
coding. Theseweight-basedHCMP memoriescan persistover much longer intervals than active
memories(c.f., Ericsson& Delaney, thisvolume).

Retrieval: For active memories,retrieval is not anissue,but for HCMP weight-basedmemories,retrieval
typically requiresmultiple cuesto trigger a particularhippocampalmemory(dueto its conjunctive
nature).As with encoding,thestrategic activationof suchcuesconstitutesanimportantpartof con-
trolledprocessing.

As for the natureof the representationsin our modelof working memory, we have characterizedthe
distinctive propertiesof representationsin eachof thethreemainbrainsystems(seeTable1 andFigure2).
However, sincewedonotadhereto abuffer-basedor any otherdistinctsubstrateview of workingmemory,
this questionis difficult to address.Essentially, thespaceof possibledifferentrepresentationsfor working
memoryis aslarge asthe spaceof all representationsin the neocortex andhippocampus,sinceany such
representationcouldbeactivatedin a controlledmanner, thussatisfyingourdefinitionof workingmemory.
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Ho


wever, we think thatbrainsystemsspecializedfor languagemayprovide anexceptionallypowerful and
general-purposerepresentationalsystemfor encodingarbitrary information,and are likely to be usedto
encodeeven superficiallynon-verbal information. Similarly, it may also be that abstractspatialand/or
numericalrepresentationsareusefulfor encodingrelationalandperhapstemporalinformation.

TheControl andRegulationof WorkingMemory

In ourtheory, controlresultsfromthebiasingfunctionof thePFC,andthebindingfunctionof theHCMP.
Thesesystems,in turn, areregulatedby eachother, the PMC, andascendingbrainstemneuromodulatory
systems.Thus,control andregulationareinteractive anddistributedphenomena,that involve all partsof
thesystem.While theseinteractionsarenecessarilycomplex, it is possibleto identify characteristiccontri-
butionsmadeby eachcomponentof the system.The PFCplaysa dominantrole in controlledprocessing
by virtue of its characteristicfeatures:its ability to maintainactivation over time; the flexible andrapid
updatingof representationsdueto theircombinatorialandactive nature;andits positionhigh in thecortical
processinghierarchy. Notethatunlike modelswhich separatecontrol(e.g.,acentralexecutive) from active
storage(e.g.,buffers),active maintenanceplaysacentralrole in controlin ourmodel.

Representationswithin the PFCarethemselvessubjectto the influenceof processingwithin the PMC
andHCMP, by wayof specializedcontrolmechanismsthatregulateaccessto thePFC.As describedabove,
we suggestthat the midbrain dopamine(DA) systemprovides an active gating of PFC representations,
controllingwhenthey canbeupdated,andprotectingthemfrom interferenceotherwise.We think that the
PFC,togetherwith thePMC andpossiblytheHCMP, controlsthefiring of theDA gatingsignal,through
descendingprojections.Furthermore,we assumethat theseprojectionsaresubjectto learning,so that the
PFCandPMCcanlearnhow to controlthegatingsignalthroughexperience.

TheUnitary vs Non-UnitaryNatureof WorkingMemory

We take the view that working memoryis not a unitary construct— insteadwe suggestthat it is the
combinationof activememory, rapidlearning,andemergentcontrolledprocessingoperatingoverdistributed
brain systems. Insteadof the moving of information from long-termmemoryinto and out of working
memorybuffers,we think that informationis distributedin a relatively stableconfigurationthroughoutthe
cortex, andthatworkingmemoryamountsto thecontrolledactivationof theserepresentations.As wenoted
at the outset,this view sharessomesimilaritieswith the view of working memoryofferedby production
systemaccounts(e.g.,ACT — Anderson,1983;Lovettetal., thisvolume).However, it doesnot includethe
structuraldistinctionbetweendeclarative andproceduralknowledgeassumedby suchaccounts.

This non-unitaryview is consistentwith findingslike thoseof ShahandMiyake (1996),who foundno
significantcorrelationbetweenan individual’s verbalandspatialworking memorycapacities.We would
further predict that working memorycapacitywill vary alonga variety of dimensions,dependingon the
quality of therelevantPMC andPFCrepresentationsdevelopedover experience(c.f., Ericsson& Delaney,
this volume). However, working memoryis alsoaffectedby moredomain-general,controlledprocessing
mechanisms(suchasthosesupportedby brainstemneuromodulatorysystems),sothatsomecharacteristics
of workingmemoryfunctionmightexhibit moreunitary-like features(c.f., Engleetal., thisvolume).Thus,
theactualperformanceof agivensubject,underagivensetof taskconditions,will dependonacombination
of bothdomainspecificandmoregeneralfactors.

TheNatureof WorkingMemoryLimitations

Thepresenceof capacitylimitationsseemsto beoneof thefew pointsaboutwhichthereis consensusin
theworkingmemoryliterature.Despitethisagreement,thereis relatively little discussionof whysuchlimi-
tationsexist. Are thesetheunfortunateby-productof fundamentallimitationsin theunderlyingmechanisms
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(e.g., insufficient metabolicresourcesto sustainadditionalmentalactivity), or do they reflectsomemore
interestingcomputationalconstraint?We adhereto the latter view. We believe that capacitylimitations
in working memoryreflecta tradeoff betweentwo competingfactors: the accessibility, andwide-spread
influenceof PFCrepresentations— necessaryto implementits biasingfunctionasa mechanismof control
— andtheneedto constraintheextentof activationthroughoutthePMC, to avoid “runaway” activity, and
promotefocusedandcoherentprocessing.We assumethat this tradeoff is managedby inhibitory mech-
anisms,that constrainspreadingactivation, andprevent the runaway activity that would otherwiseresult
from the positive feedbackloopswithin the cortex. This is particularlyimportantin the PFC,becauseof
its widespreadandinfluentialprojectionsto therestof thebrain. We have begunto explorethis possibility
in explicit computationalmodelingwork (Usher& Cohen,1997). This accountemphasizesthe potential
benefitsof what otherwisemight appearto be arbitrarylimitations (c.f., Lovett et al., this volume). Note
thatYoungandLewis (this volume)andSchneider(this volume)presentfunctionalmotivationssimilar to
ourown.

As we statedabove, we think thereareboth domainspecificandmoregeneralcontributions to work-
ing memoryfunction. Similarly, thereare likely to be both experiencedependentandgenetically-based
contributions. Further, it is likely that thereare interactionsbetweenthesefactors. For example,exten-
sive experiencewill producea rich andpowerful setof domain-specificrepresentationsthat supportthe
ability to encodemoredomain-specificinformationboth in active memoryandvia rapid learningin the
HCMP. However, this is unlikely to affectmoregeneralfactors(e.g.,neuromodulatoryfunction,or theover-
all level of inhibition within the PFC).This is consistentwith the generallack of cross-domaintransfer
from experience-basedworkingmemorycapacityenhancementsasdiscussedin EricssonandDelaney (this
volume),andwith therelatively domaingenerallimitationsobservedby Engleetal. (this volume).

The role of experience-basedlearning(which is an importantcomponentof our overall model) in en-
hancingdomainspecificworking memorycapacitycanbe illustratedby consideringthe following phases
of experience:

Novel phase: HCMP is requiredto storeand recall novel task-relevant information, so that capacityis
dominatedby theconstraintof having only oneHCMPrepresentationactiveatatime,with significant
controlledprocessingrequiredto orchestratetheuseof this informationwith ongoingtaskprocessing.
This is like the first time onetries to drive a car, wherecompleteattentionis required,everything
happensin slow serialorder, andmany mistakesaremade.

Weakphase: PFCis requiredto biastheweakPMC representationsunderlyingtaskperformance,sothat
capacityis dominatedby therelatively moreconstrainedPFC.Thus,it is difficult to performmultiple
tasksduringthisphase,or maintainotheritemsin active memory. This is like theperiodafterseveral
timesof driving, whereonestill hasto devote full attentionto the task(i.e., usePFCto coordinate
behavior), but at thebasicoperationsarereasonablyfamiliarandsomecanbeperformedin parallel.

Expert phase: Weightswithin thePMC have beentunedto thepoint thatautomaticprocessingis capable
of accomplishingthe task. Sincethe PMC representationsarerelatively moreembedded,they can
happilycoexist with activity in otherareasof PMC, resultingin high capacity. This is thecasewith
expert drivers, who cancarry on conversationsmoreeffectively thannovices while driving. Note
that slow improvementswithin this phaseoccur with continuedpractice,resultingin experience-
baseddifferencesin strengthandsophisticationof underlyingrepresentations,which contribute to
individual differencesin capacityand performance.This is true in the PFCaswell, wherefewer
active representationsneedbemaintainedif amoreconcise(e.g.,“chunked”) representationhasbeen
learnedoverexperience.
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TheRoleof WorkingMemoryin Complex CognitiveActivities

Complex cognitive activities involve controlledprocessingandthus,by our definition,involve working
memory. According to our accountof the roles of the PFC (biasing)and HCMP (binding), controlled
processingoccursunderconditionsof temporallyextendedand/ornovel tasks,andin caseswhich require
coordinatedprocessingamongmultiplesystems.Typically, complex tasksinvolve thetemporally-extended
coordinationof multiplestepsof processing,oftenin novel combinationsandsituations,andthestorageof
intermediateproductsof computation,subgoals,etc. Active memorytogetherwith thecontrolledencoding
andretrieval of HCMPmemoriescanbeusedto retaintheintermediateresultsof theseprocessingstepsfor
subsequentuse.

Wehave yet to applyourmodelto specificcomplex tasks,aswehave yet to producesatisfactoryimple-
mentationsof theentiresetof neuralsystemsthatwould berequired.Our overarchinggoal in developing
suchmodelsis theability to accountfor complex taskperformancewithout resortingto a homunculusof
oneform or another. While many accountsof executive controlremainpurelyverbalandareobviouslysus-
ceptibleto thehomunculusproblem,evenmechanisticallyexplicit accountsof complex taskperformancein
productionsystemarchitectures(e.g.,Young& Lewis, thisvolume;Lovettetal., thisvolume)haveahidden
homunculusin the form of the researcherwho builds in all theappropriateproductionsin orderto enable
thesystemto solve thetask.As wediscussin greaterdetailbelow, ourcurrentmodelingeffortsarefocused
on developinglearningmechanismsthat would give rise to a rich anddiversepaletteof PFCrepresenta-
tions(andcorrespondingPMCsubsystems),whichshouldbecapableof performingcomplex taskswithout
resortingto ahomunculusof any form.

TheRelationshipof WorkingMemoryto Long-TermMemoryandKnowledge

We view working memoryasbeingtheactive portionof long-termmemory, wherelong-termmemory
refersto theentirenetwork of knowledgedistributedthroughoutthecortex, HCMP, andotherbrainsystems.
Asnotedearlier, thisis similarto productionsystemtheoriesof workingmemory(suchasACT— Anderson,
1983;Lovett et al., this volume). However, we alsospecifythat thetermworking memoryonly appliesto
thoserepresentationsthatareactivatedasaresultof controlledprocessing.Thus,it is possibleto haveactive
representationsthat exist outsideof working memory(c.f. Cowan, this volume;Engleet al., this volume,
for similar views). Becauseof this intimaterelationshipbetweenworking memoryandlong-termmemory,
we expectworking memoryto beheavily influencedby learningin the long-termmemorysystem(seethe
discussionin thecapacitysectionabove andEricsson& Delaney, thisvolume).

Wedonotthink thatall componentsof long-termmemoryareequallylikely to berepresentedin working
memory. As discussedpreviously, languageprovidesa particularlyusefulmeansof encodingarbitraryin-
formation,andis thusheavily involvedin workingmemory. In contrast,moreembedded,low-level sensory
andmotorprocessingis lesslikely to comeundertheinfluenceof controlledprocessing,andis not typically
consideredto be involved in working memory. Thus, the generallevel of accessibilityassociatedwith a
givenbrainsystemis correlatedwith theextentto which it is likely to beinvolved in working memory. As
discussedearlier, thismeansthatmoredeclarativeor explicit longtermknowledgeis likely to beinvolvedin
workingmemory, whereasimplicit or procedural knowledgeis moreassociatedwith automaticprocessing.

TheRelationshipof WorkingMemoryto AttentionandConsciousness

Working memory, attention,andconsciousnessareclearly relatedin importantways. We view theun-
derlyingconstraintthatgivesriseto attentionasresultingfrom theinfluenceof competitionbetweenrepre-
sentations,implementedby inhibitory interneuronsthroughoutthecortex (andpossiblyalsoby subcortical
mechanismsin the thalamusandbasalganglia). This inhibition providesa mechanismthat causessome
thingsto beignoredwhile othersareattendedto, andis a critical aspectof attentionthat is not strictly part
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of� working memory. However, assumingthis constraint,controlledprocessingplaysan importantrole in
determiningwhat is active in a given context (andvia competitionandinhibition, alsowhat is ignored).
Thus,workingmemoryandattentionarerelatedin thatthey arebothdefinedin partby themechanismsthat
determinewhatis activatedin aparticularcontext.

Consciousnessis also relatedto both working memoryandattention. As statedpreviously, we view
consciousexperienceasreflectingtheoutcomeof globalconstraintsatisfactionprocessing,wheresalience
is afunctionof thedegreeof influenceover thisprocessattributableto agivenrepresentation.Thus,systems
whicharegloballyaccessiblelikethePFCandHCMParealsohighly influential,andthuslikely to dominate
consciousexperience.This meansthat the controlledprocessing-basedactivation (attention)mediatedby
thesesystemsis mostrelevantfor consciousness,andthatthecontentsof consciousexperiencearelikely to
reflectthatof workingmemoryaswehave definedit (seealsoprevioussectionandKinsbourne,1997).

TheBiological Implementationof WorkingMemory

Ourmodelis basedlargely onbiologicaldata,andits neuralimplementationhasbeendescribedbothin
termsof basicpropertiessuchasactivation,inhibition, andlearning,andin termsof theinteractionsof the
specializedbrainsystemsdescribedabove (PFC,HCMP, PMC).By virtue of thesebiologicalfoundations,
thereis awealthof datawhich is consistentwith ourmodel,from anatomyandphysiologyto neuroimaging
andneuropsychological work. Wewill just review someof themostrelevantdatahere.

With respectto theinvolvementof thePFCin workingmemorytasks,our labhasfocusedonneuroimag-
ing andschizophrenicpatientperformanceon theAX-CPT taskdescribedin the introduction.By making
thetargetA-X sequencevery frequent(80%),andthedelaybetweenstimuli longer(5 secs),we predicted
thatschizophrenicpatientssuffering animpairmentof PFCfunctionwould make a relatively largenumber
of falsealarmsto B-X sequences(where‘B’ is any non-‘A’ stimulus)due to a failure of PFC-mediated
working memoryfor the prior stimulus. This was confirmed,with unmedicatedschizophrenicpatients
showing thepredictedincreasein falsealarms,while medicatedschizophrenicsandcontrolsubjectsdid not
(Servan-Schreiber, Cohen,& Steingard,in press).In addition,neuroimagingof healthysubjectsperforming
theAX-CPT showedthatPFCincreasedactivity with increasesin delayinterval (Barch,Braver, Nystrom,
Forman,Noll, & Cohen,1997).NeuroimagingduringN-backperformancerevealedthatPFCactivity also
increaseswith workingmemoryload(Braver, Cohen,Nystrom,Jonides,Smith,& Noll, 1997b),andis sus-
tainedacrosstheentiredelayperiod(Cohenetal.,1997).Thesedatatogetherwith otherconsistentfindings
from monkey neurophysiology(e.g.,Fuster, 1989;Miller et al., 1996), frontally-damagedpatients,(e.g.,
Damasio,1985)all supportthe ideathat thePFCis critically importantfor working memory. Also, Engle
etal. (this volume)discusstheimportanceof thePFCin workingmemory.

With respectto the role of the HCMP in working memory, it haslong beenknown that the HCMP
is critical for learningnew information (Scoville & Milner, 1957; seeSquire,1992; McClelland et al.,
1995,for recentreviews). Recentneuroimagingdatasuggeststhatthecontrolledencodingandretrieval of
informationin theHCMP dependson interactionsbetweenthePFCandtheHCMP (e.g.,Tulving, Kapur,
Craik,Moscovitch, & Houle,1994).Further, patientswith frontal lesionsshow impairedability to perform
strategic encodingandretrieval on standardmemorytests(Gershberg & Shimamura,1995). All of this is
consistentwith our view that PFCandHCMP interactionsareimportantfor the controlledprocessingof
memorystorageandretrieval, whichcanbeusedasanon-active form of workingmemory.

RecentDevelopmentsandCurrentChallenges

Our theoryof working memoryrepresentsan attemptto understandthis constructin termsof a setof
biologically-based, computationalmechanisms.This hasresultedin a novel set of functionalprinciples
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(1) BasicMechanismsandRepresentationsin WorkingMemory:
Active memoryandrapid learningvia controlledprocessing,asimplementedby thepre-frontalcor-
tex (PFC),hippocampusandrelatedstructures(HCMP),andtheposteriorperceptual& motorcortex
(PMC). Representations,distributedthroughoutsystem,areencodedby controlledactivation; main-
tainedby robust PFCmechanismsandweight-basedHCMP learning;andretrieved in the caseof
HCMP by controlledactivationof cues.Verbalandperhapsspatialand/ornumericalrepresentations
areespeciallyusefulwaysof encoding.

(2) TheControlandRegulationof WorkingMemory:
Workingmemoryis notseparatedfrom control,sincecontrolledprocessingandactivememoryarein-
timatelyrelated.Controlis alsonotcentralized,emerging insteadfrom interactionsbetweendifferent
brainsystems.PFCplaysimportantrole dueto: robust maintenancecapabilities;flexible andrapid
updatingof representations;positionat thetopof thecorticalprocessinghierarchy(with HCMP).

(3) TheUnitaryvsNon-UnitaryNatureof WorkingMemory:
Working memoryis not unitary: consistingof active memory, rapidlearningandcontrolledprocess-
ing, anddistributedover several brain systems.Commonuseof controlledprocessingmechanisms
maycontributeaunitary-like componentto performance.

(4) TheNatureof WorkingMemoryLimitations:
Two mechanisms:inhibition, andinterference.PFChasgreaterinhibition to promotecoherentpro-
cessing,thus lower capacity. Capacityhasdomainspecificand generalcomponents(see3), and
correspondingexperienceandgeneticbases.Capacityis highly dependenton amountandtype of
controlledprocessingnecessary, andefficiency of underlyingrepresentationslearnedoverexperience.

(5) TheRoleof WorkingMemoryin Complex Cognitive Activities:
Workingmemoryis critical,assuchactivitiesaredefinedby theinvolvementof controlledprocessing,
andrequireactive memory/rapidlearningto maintainintermediateresults.Distributedbrainsystems
areinvolvedasrelevantin particulartasks,with morecommoninvolvementof PFCandHCMP.

(6) TheRelationshipof WorkingMemoryto Long-TermMemoryandKnowledge:
Working memoryis largely just the active portion of long-termmemory, which is itself distributed
over many brainareas.More globally accessiblesystemsandthosethat provide particularlyuseful
representations(e.g.,language)aremorelikely to be involved in working memory, leadingto a bias
towardsdeclarativeor explicit representationsinsteadof implicit or procedural ones.

(7) TheRelationshipof WorkingMemoryto AttentionandConsciousness:
Working memoryis thesubsetof representationsattendedto by virtue of controlledprocessing.At-
tentionalsorefersto a constrainingmechanism(inhibition), andcanbeinfluencedby automaticpro-
cessing.Consciousnessreflectstheglobalconstraintsatisfactionprocess,which is disproportionately
influencedby controlled-processing systems.Thus,thecontentsof consciousexperiencearelikely to
reflectthatof workingmemory.

(8) TheBiological Implementationof WorkingMemory:
Our modelis basedon the biology, including neural-level propertieslike activation, inhibition, and
learning, and a computationalaccountof specializedbrain systemfunction, including the PFC,
HCMP, andPMC. A large amountof empiricaldatafrom patients,neuroimaging,neurophysiology,
andanimalstudiesis consistentwith ourmodel.

Table2: Summaryof ouranswersto theeightdesignatedquestions.
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that
�

explain many of thesamephenomenaastraditionalworking memoryconstructs,but in a mannerthat
contrastswith existingtheoreticalideasin importantways.Ourexistingcomputationalwork hasinstantiated
and validateda numberof aspectsof our theory, including: the gradednatureof controlledprocessing
(Cohenet al., 1990); the ability of PFCrepresentationsto biassubsequentprocessing(Cohen& Servan-
Schreiber, 1992);therole of PFCin active maintenance(Braver et al., 1995);andtherole of theHCMP in
rapidlearning(O’Reilly, Norman,& McClelland,1998;O’Reilly & McClelland,1994).However, wehave
not yet implementeda computationalmodelthatcapturesall of our ideasregardingworking memoryand
controlledprocessing.Moreover, therearea numberof importantissuesraisedby our overall modelthat
have notbeenproperlyaddressedin ourprior work, andwhichform thecurrentfocusof our research.

Theseunresolved issuescanbe describedat two generallevels of analysis— one level involves the
developmentof bettermodelsof eachof the individual brainsystemsthatplay a role in our overall model
(PMC, PFC,HCMP), andthe other level involvescharacterizingthe natureof interactionsbetweenthese
systems.Obviously, thelattereffort dependscritically on thesuccessof theformer, which is wherewehave
beenprimarily focused.Underlyingtheentireendeavor areissuesof thecomputationalsufficiency necessary
to learnandperformtemporallyextendedcontrolled-processing tasksusingneuralnetwork models.

Modelsof thePMC,PFC,andHCMP

Becauseit representsthecanonicalform of corticalprocessing,our modelof thePMC lies at thefoun-
dationof theothermodels.We have recentlymadeimportantadvancesin characterizingthenatureof pro-
cessingandlearningin cortex, andnow have a computationalframework (calledLeabra; O’Reilly, 1996b,
1996a)which containsall of the basicmechanismsandpropertiesrequiredby our model. In particular,
the Leabraframework combinesrecurrence,inhibition, and integratederror-driven andHebbianlearning
mechanismsin asimple,principled,robust,andbiologicallyplausiblemanner. While thesepropertieshave
beenimplementedseparatelyin differentmodelsbefore,Leabraintegratesthemall in a unified,coherent
framework. Our modelof theHCMP systemis relatively well-developedconceptually, andpartsof it have
beenmodeledat a very detailedlevel (O’Reilly & McClelland,1994). Recently, we have createda com-
pleteHCMP modelusingtheLeabraframework (O’Reilly et al., 1998),andhave modeledtherecollective
contribution to many of thebasicrecognitionmemoryphenomena(list length,list strength,etc).

It is thePFCwhichhasreceivedmostof our recenttheoreticalattention,building onpreviouswork that
establishesa basicframework for understandingthe computationalrole of PFCin controlledprocessing.
Therearetwo primarythreads:1) Therole of a dopamine(DA) mediatedactive gatingmechanismasde-
scribedpreviously;and2) Thenatureof PFCrepresentationsnecessaryto accomplishcontrolledprocessing
in complex tasks.We have recentlyimplementeda DA-like gatingmechanismin a computationalmodel
of PFC,andshown thatit cansuccessfullyaccountfor all of thephenomenaaccountedfor by our previous
models,while makingnew predictionsbasedon the phasicnatureof the DA gate(Braver et al., 1997a).
Thismodelis beingextendedto morecomplex tasksthatwill bettertestthegatingmechanismby requiring
both rapid updatingandsustainedmaintenancein the faceof interference.Our currentwork on the PFC
representationsis investigatingthetradeoff betweendistributedrepresentationsandactive maintenanceasa
functionof differenttaskdemands.

Reward-basedLearning, Goals,andthePFC

Oneof the most importantunresolved challengesto modelsof working memory(andcognitionmore
generally)is specifyingthemechanisticbasisof executivecontrol(controlledprocessing)in awaythatdoes
not resortto a homunculus.While we have generallycharacterizedour view of how controlledprocessing
emergesfrom constraintsatisfactionandthespecializedpropertiesof thePFCandHCMP, actuallyshowing
that this works in real tasksremainsa challenge. We think that the solution to this problemrequiresa
powerful learningmechanismwhichis capableof developingsomethinglike the“productions”thatunderlie
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the
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performanceof complex cognitive tasks(thusavoiding the hiddenhomunculusof the researcherwho
builds in theappropriateproductionsfor eachtask).Thefollowing is onesetof ideasregardingthenatureof
this learningmechanism,which emergesfrom a synthesisof our basicideasabouta DA-basedmechanism
for active gating,andthenatureof therepresentationsin thePFC.

Theseideascanbemotivatedby thinking abouttheessentialdifferencebetweenhumancognition,and
that of even our closestprimaterelatives. It is obvious that language,abstraction,problemsolving, and
tool useareimportantbehavioral differences.However, we suggestthat thesemayall befacilitatedby the
ability to internalize,abstract,and chain togetherrepresentationsof reward (andpunishment). In short,
the realdifferencebetweenhumansandotherprimatesmaybe thatwe canestablishelaboratesystemsof
internalizedreward that motivateus to learnandengagein thesemoreabstractbehaviors, whereasother
primates,whocanlearnimpressively complex andabstracttasks,mustneverthelessbeconstantlymotivated
by externalforces(e.g.,food,juice)to doso.Thus,insteadof beinga“pure” cognitivesystemdivorcedfrom
all emotionalor motivationalconcerns,thePFCmay insteadbecentrallyinvolved in thedirty businessof
motivation,emotion,pleasure,andpain(Davidson& Sutton,1995;Bechara,Tranel,Damasio,& Damasio,
1996).

This observation provestantalizingin thecontext of our ideasaboutthe role of dopamine(DA) in the
PFC.In particular, if thecritical specializationof thePFCis that it hastaken controlover theDA system
in orderto regulateits own active maintenancefunction, thenit is alsoin a positionto take over andin-
ternalizethe deploymentof DA-mediatedreinforcement.It is well known that DA playsa critical role in
reinforcement-basedlearning(Schultzet al., 1993;Montagueet al., 1996). If theactivationof PFCrepre-
sentationscorrespondessentiallyto goalswhicharemaintainedin anactive andrelatively protectedstatein
theabsenceof DA firing, thentheactof satisfyingagoalshouldsimultaneouslyresultin reinforcementand
gating(i.e., thedeactivation of that goal representationandtheopportunityto activatea subsequentone).
The firing of DA underPFCcontrol would provide both,andthe influenceof this DA signalon learning
shouldresultin moreeffective ellicitationandefficientexecutionof thatgoalin thefuture.

Further, we have arguedabove that the PFC hasthe capacityfor the simultaneousrepresentationof
many levels of temporalextentandabstraction,which would beneededto accountfor thegoal structures
underlyingcomplex humancognition. Sincereward is underthedescendingcontrolof thePFCitself, the
needfor externalrewardis reduced,allowing for thedevelopmentof elaboratemeans(interveninggoals)to
accomplishremoteandabstractends.In contrast,otheranimalsdependto amuchgreaterextentonconstant
externalinput to drive theDA rewardsystem,andthuscannotbuild theseelaborateinternalgoalstructures.

Therearemany differentways in which the internalizedcontrol of DA could be implementedin the
PFC,but unfortunatelylittle is known aboutthe relevant biological details. Thus,we areusingcomputa-
tionalmodelsto determinetherelativeadvantagesanddisadvantagesof differentimplementations.Another
importantimplementationalissuehasto do with learningon thebasisof actively-maintained,isolatedrep-
resentationslike thosein thePFC,which have a morediscrete,binarycharacterandthusdo not appearto
beamenableto thetypesof gradient-basedlearningmechanismsthatwork sowell in thedistributed,graded
representationscharacteristicof the PMC. In summary, the specializationsof the PFCwill likely require
specializedlearningmechanisms,whicharethefocusof ourcurrentresearch.

Conclusion

In summary, our overall modelof thebrainsystemsunderlyingworking memory, including thePMC,
PFC,andHCMP, is still underconstruction,but we have a broadandcompellingblueprintfor futureex-
ploration. This modelprovidesmany exampleswherecomputationalprinciples(e.g.,basictradeoffs) are
usedto understandbiologicalproperties,in waysthat,while consistentwith existing ideasin many cases,
canachieve a new level of synthesisandclarity. We hopethat this approachwill continueto prove useful,
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despite
�

theinevitablerevisionof many of thespecificideasproposedherein.
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