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Abstract

Thereisevidencethat the specialized neura processing systemsin the neocortex, which are respon-
sible for much of human cognition, arise from the action of a relatively general-purpose learning
mechanism. | propose that such a neocortical learning mechanism can be best understood as the
combination of error-driven and self-organizing (Hebbian associative) learning. Thismodel of neo-
cortical learning, caled LEABRA (loca, error-driven and associative, biologically realistic algo-
rithm), is computationally powerful, has important implications for psychological models, and is
biologically feasible. Thethesisbeginswith an evaluation of the strengthsand limitationsof current
neural network learning algorithmsas model s of a heocortical | earning mechanism according to psy-
chological, biological, and computationa criteria. | argue that error-driven (e.g., backpropagation)
learning is a reasonable computational and psychological model, but it is biologically implausible.
I show that backpropagation can be implemented in a biologically plausible fashion by using inter-
active (bi-directional, recurrent) activation flow, which is known to exist in the neocortex, and has
been important for accounting for psychol ogical data. However, theinteractivity required for biolog-
ical and psychological plausibility significantly impairsthe ability to respond systematically to novel
stimuli, makingit still abad psychological model (e.g., for nonword reading). | proposethat the neo-
cortex solvesthis problem by using inhibitory activity regulation and Hebbian associative learning,
the computational properties of which have been explored in the context of self-organizing learn-
ing models. | show that by introducing these properties into an interactive (biologically plausibl€)
error-driven network, one obtainsamodel of neocortical learning that: 1) providesaclear computa-
tional role for a number of biological features of the neocortex; 2) behaves systematically on novel
stimuli, and exhibitstransfer to novel tasks; 3) learnsrapidly in networks with many hidden layers;
4) providesflexible access to learned knowledge; 5) shows promisein accounting for psychological
phenomena such as the U-shaped curve in over-regularization of the past-tenseinflection; 6) has a
number of other nice properties.
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Chapter 1

| ntroduction

The neocortex, that wrinkled sheet of neurons upon which al of our thoughtsrest, plays the central
role in the majority of our higher cognitive functions, from perceptual processing to abstract think-
ing, language processing, planning, and problem solving. There are three intriguing facts about the
neurobiology of the neocortex which form the inspiration for the work presented in thisthesis:

1. Despitesomelevel of regional variation, all areas of the neocortex share basic patterns of con-
nectivity and neuron types.! (Creutzfeldt, 1977; Szentagothai, 1978; Shepherd, 1988; Dou-
glas, Martin, & Whitteridge, 1989).

2. The development of representations in the neocortex relies in large part on an ontogenetic
learning processbased on the activity signal sof cortical neurons(Hubel & Wiesdl, 1965, 1970;
Hubel, Wiesdl, & LeVay, 1977; Stryker & Harris, 1986). Asadramatic example, itispossible
to switchtheauditory and visual inputsto the areas of neocortex that usually processthisinfor-
mation, and end up with a“visua” areathat processesauditory information (Sur, Garraghty, &
Roe, 1988).

3. Themechanisms of synaptic modification in al areas of the neocortex appear to be the same,
and are based on NMDA receptor dependent long term potentiation (LTP) and depression
(LTD) (Artola& Singer, 1993; Linden, 1994).

Thus, it seemsthat an activity-based | earning mechanism, operating within alargely domain-general
neural processing framework, could beresponsiblefor creating the powerful representationsand pro-
cessing systems that give rise to much of human cognition. Further, given that the adult cortex ex-
hibitssimilar formsof activity-dependent plasticity (seeKaas, 1991; Merzenich & Sameshima, 1993,
for reviews), it is possible that similar principles are operating in both early (developmental) and

!While there are cytoarchitectonically detectable differencesin cortical areas, which give rise to the divisions due to
Brodman and others, Creutzfeldt (1977) and Shepherd (1988) argue that thesereflect differencesin the size of afferent and
efferent pathways, and not intrinsic circuitry.
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mature learning. While there are undoubtedly important specializationsin different cortical areas, it
might be useful to consider these as different parameteri zations of acommon underlying mechanism.

Starting with thisidea of a general neocortical learning mechanism as a hypothesis, this thesis
focuses on the following basic questionsregarding the functional and biological properties of such
amechanism:

e What are the signalsthat drive learning in the cortex? Are error signals or reinforcement sig-
nal s necessary, or can learning operate purely on “input” signals alone?

¢ Arethere computational advantages associated with using one or more of these different kinds
of learning signals?

e Do biological and/or behavioral dataprovide clear constraints on the nature of learningin the
cortex?

¢ How might the biology of the cortex implement learning based on computationally advanta-
geous learning signals?

Being able to answer these kinds of questions about the nature of a neocortical learning system
should lead to adeeper understanding of the nature of the representationsand processing that under-
lie human cognition, in addition to providing support for the ideathat the neocortex employs such a
genera -purpose learning mechanism. Indeed, the potential centrality and generality of the neocor-
tical learning mechanism can be compared with the central role of DNA in biological systems —
in both cases arelatively simple mechanism lies at the foundation of avery complex system. How-
ever, the cortical 1earning mechanism is probably much more complex than the structure of DNA,
and the connection between its properties and those of complex cognitive phenomenamay be diffi-
cult to establish. Nevertheless, it seemslikely that the understanding of this mechanismwill play an
important role in the future of psychological investigation.

There are a number of different research strategies that could be, and are being, applied to an-
swering questionslike those posed above. Perhaps the most direct approach would be to develop a
complete understanding of the biological mechanismsunderlying cortical learning. However, given
the tremendous complexity of the cortical neurobiology and the huge space of possiblevariables af -
fecting learning, this approach might be impossible without focusing on particularly useful forms
of learning, identified on the basis of their functional properties, that the cortex could plausibly be
employing. Thus, thegoal of thisthesisisto compare several computationally powerful learning al-
gorithmsthat could plausibly beimplemented in the cortical biology, with the objective of providing
functional constraints on the general form of cortical learning.

The functiona criteriafor evaluating these different algorithms are based on general properties
that have been identified by existing research as important for modeling psychol ogical phenomena
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and learning to solve complex tasks. Theability to exhibit these propertieswhil e performing psycho-
logically relevant (but somewhat abstracted) tasksisthe functional criterion required of the cortical
learning model developed in thisthesis. The critical functional properties are asfollows:

Interactive (bi-directional, recurrent) processing: Allows both bottom-up and top-down con-
straintsto inform problem solutions(McClelland & Rumelhart, 1981; Plaut & Shallice, 1993),
and allows knowledge to be accessed flexibly by enabling different subsets of knowledge at
different timesto constrain processing. Bidirectional connectivity isaprominent feature of the
neocortical circuitry, and is physiologically relevant (Douglas, Koch, Mahowald, Martin, &
Suarez, 1995; Douglas & Martin, 1990). Also, thisthesisshowsthat interactivity isimportant
for performing error-driven learning in a biologically plausible fashion.

Systematic responsesto novel stimuli: Distributed representations developed over learning pro-
vide an effective basisfor generalization, or treating novel items systematically according to
regularitiespresent intrainingitems. For example, thishas recently been demonstrated for the
case of pronouncing nonwords by Plaut, McClelland, Seidenberg, and Patterson (1996).

Hierarchical, multi-layered representations: Provide efficient solutions to complex, difficult
problems by enabling them to be re-represented over multiple stages of processing in ways
that make them easier to solve.

Despite thefact that these properties of neura network algorithmsare widely regarded asimportant,
itisshowninthisthesisthat no singleexisting neural network learning model meetsall of thesebasic
functiona criteria. Thus, it appears that there is room for improvement over existing models.

In addition to satisfying the functional criteria, it isimportant that amodel of learning in the neo-
cortex provideacomputational rolefor prominent aspectsof the cortical neurobiol ogy, and that it not
violate basic biological feasibility constraints. Some of the most basic biological properties of the
neocortex that should have important functional consequences, and have been discussed in existing
computational models, include:

e Pervasiveinhibitory circuitry implemented by inhibitory interneurons.
¢ Prominent recurrent excitatory feedback connectivity between principal (pyramidal) neurons.

e Dominant role of positive-only neural signalsin communicating between cortical pyramidal
neurons.

e Observed associative character of synaptic long term potentiation (LTP) and depression
(LTD).

The biological feasibility constraintsat their most basic amount to the use of signalsfor controlling
learning that are locally available to neurons, and are of a form that neurons are likely to be able
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Figure 1.1: A graphic representation of the centra idea behind the LEABRA agorithm and itsname: abal-
ance between error-driven and self-organizing, associative learning.

to compute. Aswith the functional criteria, existing algorithmsfail to meet al of these biological
criteria. Interestingly, thisis especially true of the algorithms which come closest to satisfying the
above functional criteria.

Animportant claim of thisresearch isthat existing computational learning modelsfail to provide
asatisfactory model of cortical learning according to thebasic functional and biological criteriagiven
above. However, different aspects of the above criteriacan be satisfied by the two predominant types
of existing models. In particular, error-driven feedforward neural networks (e.g., backpropagation)
satisfy the largest portion of the functional criteria, while self-organizing, Hebbian associative neu-
ral networks satisfy the largest portion of the biologica constraints. Still, there are some aspects
of both the functional and biological constraints which are satisfied by neither of these two types
of agorithms. Nevertheless, it is possible that an algorithm which combined both error-driven and
self-organizing learning would not only retain their respective advantages, but al so somehow satisfy
the remaining functional and biological criteria. Thiswould require away of avoidingthe biological
feasibility problems associated with error-driven learning, enabling acombined a gorithm to satisfy
all of the biological criteria.

The central hypothesisexplored in thiswork isthat a combined error-driven and self-organizing
learning algorithm satisfies al of the basic functional and biological constraintsfor amodel of cor-
tical learning, and therefore represents the best existing model thereof. The overal name for this
model of cortical learningis LEABRAZ, for “Local, Error-driven and Associative®, Biologically Re-
alistic Algorithm,” which is pronounced like the astrological sign “libra’, suggesting a balance be-
tween different constraints (see Figure 1.1 for agraphic representation of thisidea). It isimportant to
notethat, whilethisname emphasi zes the Hebbian associ ativeaspect of self-organizinglearning, itis
actually both thisaspect and the use of constraintson unit activationsthat are central tothe LEABRA
algorithm.

There are three main parts of the thesis: 1) The derivation and testing of a biologically feasible
form of error-driven learning (Chapter 2); 2) The development of theoretical principlesbehind, and

2This name was suggested by Yuko Munakata.
#The term associativeis used here as a synonym for Hebbian associative and self-organizing learning.
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an implementation of, the Hebbian associative learning and activity constraints which are used in
conjunction with the biologically feasible form of error-driven learning in LEABRA (Chapters 3
and 4); 3) Testing thetheoretical claimsregarding the performance of LEABRA compared to several
standard a gorithms through a number of simulations on a variety of tasks (Chapters 5 through 7).
These aspects of thethesis are summarized briefly bel ow, followed by amore extended introduction
to the central theoretical claims regarding the functional and biological properties of the LEABRA
algorithm.

Chapter 2 presents a biologically plausible form of error-driven learning called GeneRec that
implements aform of error backpropagation based on some insights derived from the recirculation
algorithm of Hinton and McClelland (1988). It is shown that recurrent activation propagation can
be used to communicate useful error gradients which approximate those computed by explicit er-
ror backpropagation under certain conditions, and that all currently-known error-driven agorithms
that use local activation signals to drive learning can be derived from the GeneRec algorithm. The
importance of interactive (bidirectional, recurrent) connectivity for communicating error signalsin
GeneRec is consistent with the extensive level of reciprocal connectivity observed in the cortex
(Douglas & Martin, 1990).

Chapter 3 presents atheoretical framework for understanding how self-organizing learning can
be viewed as enforcing a set of biases or a priori constraints on the way an otherwise purely error-
driven system learns. These biases encourage the formation of representations of agenerally useful
form for a wide range of psychologically relevant tasks according to three representational princi-
ples: 1) Entropy reduction, which encourages the devel opment of reduced representations of the en-
vironment that categorize and filter the input signal; 2) Information preservation, which encourages
representationsto retain informative distinctionsin the environment*; 3) Standard representational
form, which is away of eliminating excess degrees of freedom in the formation of representations.
Learning and generalization abilities of networksareimproved by biasing the representationsin this
way, which is an important part of how the combined self-organizing and error-driven learning in
LEABRA can satisfy the additional functional criteria that cause problems for purely error-driven
algorithms. Finally, this chapter presentsa set of implementational principlesthat influence the way
in which these representational principles should be implemented in aneura network.

Chapter 4 presentsaneural network algorithmthat implementsaversion of thethree representa-
tional principlesfrom Chapter 3 according to the aforementioned implementational principles. The
important features of thisalgorithminclude: 1) A mechanism that imposes constraintson unit activ-
ities called ReBel, that encourages the devel opment of entropy reducing representations, and isin-
tended to capture theeffects of theinhibitory interneuronsin the cortex; 2) Constraintson the signsof
weightsand activationsthat constituteastandard representational form, and are consistent with those
of cortical neurons; 3) An associativelearning agorithm called Maxin which dynamically balances

*Note that principles 1 and 2 are in conflict, and the learning algorithm must strike a balance between them.
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the entropy reduction and information preservation biases, and is consistent with known properties
of associative LTP and LTD in the neocortex. Thus, the LEABRA model consists of an interactive
(recurrent) network using the ReBél activation function and a combination of the MaxIn associative
and GeneRec error-driven learning rules operating at every connection (synapse) inthenetwork. Itis
important to emphasize that LEABRA provides a homogeneous, generalized model of learning, not
a“hybrid” where onepart of the network does error-driven learning and another does self-organizing
learning.

Finally, in order to have a combination of error-driven and associative learning pressures oper-
ating throughout the network, without restricting the source of error signals to be the output layer
only, an auto-encoder version of LEABRA is developed. Thisis simply a LEABRA network that,
in addition to solving the desired input-output mapping task, is aso trained to maintain the entire
input-output activity pattern without any external signals. Thisensures that the internal representa-
tionshave encoded theinformation present in theinput-output pattern, and provides a source of error
signal s throughout the network as it learns to do so. Simulation results show that this auto-encoder
version of LEABRA out-performsthe standard version of LEABRA (and al other algorithmstested)
on almost all of the tasks studied.

Chapter 5 presents an overview of the simulation models and tasks used to compare the
LEABRA model to existing algorithms. Further, this chapter provides a basic demonstration of the
differences between LEABRA and the other algorithms on a standard handwritten digit recognition
task. Chapter 6 explorestheissue of generalization in systematic or regular domainsin greater de-
tail, illustrating the specific problems with interactive error-driven networks. Chapter 7 explores
tasks which require the devel opment of representations over multiple hidden layers, which clearly
reveal the advantages of the stronger biasesin LEABRA. Finally, Chapter 8 providesa discussion
of these results and of preliminary findingsin models of psychological tasks, which indicate some
of the future directions of thisresearch.

The remaining sections of this chapter provide a more detailed introduction to the key ideas be-
hind the LEABRA mode and its psychological and biological consequences.

Brief Summary of Existing Learning Algorithms

The LEABRA model is based in part on a combination of ideas from existing error-driven and
associative (self-organizing) learning algorithms. This section motivates the use of these two forms
of learning based on their individual merits, and discussesother possibletypesof learning signal sthat
the neocortex could plausibly use. In broad summary, there are three categories of neural network
learning algorithms, aligned a ong the dimension of the nature of the signal that drives learning:

¢ Error-driven agorithms, which learn on the basis of the difference between produced outputs
and target output signals.
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¢ Reinforcement algorithms, which learn on the basis of positiveand/or negative reward signals
in response to behavior.

¢ Sdlf-organizingalgorithms, which learn by applying general organizing principlesto theinput
signalswithout any feedback with respect to performance. These learning rules are typically
of aHebbian associative nature.

Whilethereisevidencethat suggeststhe existence of both reinforcement and Hebbian associative
learning in the brain, the same can not be said for error-driven learning (e.g., Crick, 1989). Thereare
two problems typically cited with error-driven learning: the nature and origin of the target signals,
and the nature of the error propagation mechanism. Thefirst problem can be addressed by viewing
error-driven learning as the process of making implicit predictionsabout future outcomes, wherethe
future outcomeitself servesas atarget signal that can drivelearning (McClelland, 1994). Thesecond
problem can be avoided by using interactive activation propagation to communicate error signalsas
isdonein thebiologically plausible GeneRec |earning algorithm. Both of theseissues are discussed
at length in Chapter 2 in the context of the derivation of the GeneRec agorithm. In summary, it does
not seem possible to rule out any of the three general forms of learning on the basis of biological
plausibility at this point.

While error-driven learning is perhaps the most tenuous from a biological perspective, it isthe
most computationally powerful of thethreea gorithms. Whiledifferent algorithmsmay perform bet-
ter on some tasks and worse on others, it isgenerally truethat error-driven algorithmsare much bet-
ter at learning to perform a given task, simply because they have better information available about
what they are doing wrong. Even in the simple case of atwo-layer pattern-associator network, it is
well known that the error-driven deltarule can learn awider range of input-output mappingsthan a
Hebbian associative agorithm (McClelland & Rumelhart, 1988). While reinforcement algorithms
involvethe use of error feedback signals, they are less powerful because the error signal carries only
one hit of information, as opposed to a more specific signal regarding details about how the output
differed from the target.’

It is the computational power of error-driven learning which suggeststhat it must be used in the
neocortex, given the complexity of the taskswhich are solved by cortical processing. Further, error-
driven learning has been used in a large number of psychological models to shape representations
according to the contingencies of experiencein ways that appear to match the effects of experience
on human performance. Indeed, in terms of the functiona criterialisted above, it is shown in this
thesisthat feedforward networksusing astandard error-driven (backpropagation) learning al gorithm
are capableof using graded and distributed representationsto solvetasksand generalizewell to novel
Cases.

®However, note that reinforcement learning algorithms also incorporate additional mechanismsnot often used in stan-
dard error-driven learning algorithms that can lead to good performance on some tasks despite the impoverished nature of
the feedback signal.
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However, interactive (recurrent) versions of these networks do not generalize well at al. Fur-
ther, these error-driven algorithms do not typically perform well in networks with multiple hidden
layers, showing a deficiency in the ability to form effective hierarchical or multi-layered representa-
tions. While these deficiencies of purely error-driven networks are important, they are not resolved
by using purely self-organizing or purely reinforcement-based learning. Indeed, to the extent that
reinforcement learning can be viewed as a special case of error-driven learning, it can be subsumed
inthediscussionof error-drivenlearning in the cortex. However, sincethere appear to be specialized
non-cortical neural substrates mediating reinforcement learning in the context of conditioningtasks
(e.g., the amygdala, septum, inferior olivary nucleus, basal ganglia, cerebellum, etc.), these other
structures may be more responsible for reinforcement learning, while the cortex itself is primarily
engaged in error-driven learning.

While self-organizing algorithms are not capable in general of learning to solve arbitrary tasks,
they have many attractive characteristics from abiologica perspective. Self-organizing agorithms
typically employ lateral inhibition and Hebbian associative learning — propertiesthat are known to
exist in the anatomy and physiology of the neocortex. Further, it is the self-organizing agorithms
which have been most closely tied to biologically measurable computation (e.g., the development
of structured representationsin the low-level visual system, von der Malsburg, 1973; Linsker, 1988;
Miller, Keller, & Stryker, 1989). Thus, one way of viewing the LEABRA model is as a means of
testing the computational consegquences of the biologica properties typically incorporated in self-
organizing algorithms on tasks usually reserved for error-driven learning because of their difficulty.

While the LEABRA model attempts to provide a unified view of cortical learning by combin-
ing both error-driven and associative (self-organizing) learning in a single algorithm, other ways of
combining thesetwo forms of |earning have been proposed. One commonly-held view isthat “low-
level” sensory processing is more like a self-organizing network, and “higher-level” cognitive pro-
cessing is more like an error-driven network. However, thiskind of hybrid approach would require
that different learning rulesoperate in different areas of neocortex. Thisrunscounter to theview that
the different cortical areas have more similaritiesthan differences (Creutzfeldt, 1977; Szentégothai,
1978). Further, as described below, there is considerable synergy between error driven and associa-
tivelearning in LEABRA, so that combining them together makes both biological and computational
sense.

Functional Consequences of Error-Driven and Associative Learning

This section providesamore detailed theoretical introductionto the reasonswhy the combination
of error-driven and self-organizing learning in LEABRA should interact in a positive way. Before
doing so, it should be noted that if instead there was little interaction between the error-driven and
associativelearning in LEABRA, this approach would still result in asingle neural network formal-
ism which exhibits properties found separately in various current algorithms. Thiswould be useful
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to demonstratein principle, at least to answer the “bag of tricks” kinds of criticisms leveled against
neural network models, whichfind fault with thefact that different (and possibly contradictory) com-
putational principles are used to model different psychological phenomena. Indeed, it isthe use of
learning algorithms to instantiate a coherent set of principles thought to be central for explaining
cognitive phenomena (e.g., McClelland, 1993) which givesthem an important role in psychology.

However, the arguments presented in Chapter 3 and the results of LEABRA simulations show
that error-driven and associativelearning do interact when combined. Thefollowing sectionsoutline
the specific waysin which thea priori biases implemented in LEABRA help to facilitate otherwise
purely error-driven learning.

Generalization in Interactive Networks

The standard treatment of the effects of stronger biasing or constraintsin neural networks and
statistical estimation tendsto emphasize therole of constraintsor regularizersinimproving the gen-
erdization capabilitiesof the network (e.g., Weigand, Rumelhart, & Huberman, 1991; Abu-Mostafa,
1989; Geman, Bienenstock, & Doursat, 1992). Theideaisthat amore constrained or appropriately
biased network will not be ableto learn as much about the noisein atraining set, and will thus avoid
the over-fitting problem which leads to poorer performance on testing items drawn from the same
underlying distribution as the training items. However, it isnot clear how central thisaspect of gen-
erdizationisfor thinking about cortical learning, since the human learning process takes place over
along enough time-frame to reduce the aggregate influence of noiseto aminimal level. Neverthe-
less, thetendency to overfit datamight be auseful indicator of other important aspects of thelearning
properties of different algorithms.

Thereis another way of thinking about generalization which is much more relevant to cognition.
Generalization can be viewed as the byproduct of a system which uses representations that capture
the structure of a given environment. For a simple example, once you know how to count, you can
generalizefrom the sequence 1, 2, 3... to produce further instancesin the sequence for aslong asyou
have the patience to do so. Thus, the structure of ordinality and its systematic mapping onto digits
enables one to generatively produce and understand the domain of numbers. Clearly, thisway of
thinking about generalization is central to understanding how humans can exhibit rule-like, genera-
tive, and systematic behavior.

Neural network model s have been mistakenly characterized as being incapabl e of exhibiting sys-
tematic or generative behavior (e.g., Fodor & Pylyshyn, 1988). There have been many demonstra-
tionsthat neural network models can learn to perform systemati c mappings which appear to conform
to the rule-like behavior observed in humans. For example in the domain of language processing,
networks learn to perform “regular” or systematic mappings for pronouncing words from orthogra-
phy, producing the past-tense marking, etc., whileat the sametime capturing some of the subtl ety and
irregular behavior found in these domains (Rumelhart & McCleland, 1986; Seidenberg & McClel-
land, 1989; Plaut et al., 1996). However, despitetheinaccuracy of the claim that neural networkscan



18 LEABRA

S (T Y I () T = = (| [ = (] I T ) I =
N S () ) s I I ) I (I = 1 =
I (T [ ) I o LI R N 1Cw ) I I =
(I o 1 I W W Y e N [ () I I =
[ (0 (O ] I 1 [ O [ [ [ [l [ [ [ ] (I )
I I I [ ) ) ) I O I 0 1 [y [ | - -
(T (T [ [ (] S () (T i I N I ) [ =
1 0 o = [ (= [ [ [ [ (D= ) )
I T o T I I T COC IO T e = [ - Jem |- ]|
(IS [ [ ) I () (o I OO e [ = -
(I (N ] (N ) CIECIENC i1 [ i [ |-
(I (O T[T [ oy s D I I () (= CIERCI s
(I () (T ) [ i = N I ) I = T = 1.
I I O Iy ) (= [ - [ = [ [ [ [ [ [ [
(N R [ ) Tl ) (S N (N (it W (T ) ) =y
= = . - .- - - - -
Input Input

Figure 1.2: Weight values for the same hidden unit in a handwritten digit recognition task before and after
training, illustrating the under-constrained nature of feedforward backpropagation networks. Input-to-hidden
weights are indicated in the corresponding input unit, with the area indi cating magnitude and color indicating
sign (white = positive, black = negative)). Given that the inputs consist of visually recognizable digits, these
weights, if constrained by the task, should presumably contain recognizable digit-like patterns after training.
However, itisnot easy to tell which panel showstherandom initial weightsand which showsthem after train-
ing, since the trained weights continue to reflect the residue of their random initialization as much as the con-
straints of the task. In fact @) showstheinitia weights, and b) the trained weights.

not exhibit systematic or generative behavior, it isnot clear in many cases why the network behaves
systematically. It is widely known that, except in a few cases where weight decay is particularly
useful (e.g., Hinton, 1986; Brousse, 1993) or the task is a very small one like XOR, visual inspec-
tion of the weights or activity patterns of unitsin abackprop network reveal s little about how it has
solved the task. Thus, whilethe network as a whole exhibits systematic behavior, it is not immedi-
ately clear from examining the behavior or state of its units exactly why thisis so. Note that while
it ispossibleto devise analyses that illuminate some aspects of the systematic behavior of networks
(see Plaut et a., 1996, for many examples), these typically operate on aggregate behaviors of the
system (e.g., cluster analysis of entire activity patterns, correlations of activity patterns, sensitivity
of the system to manipulations of input unit activity, etc.). Assuch, many of these analyses simply
amount to different ways of demonstrating the aggregate systematic behavior of the network, and do
not specifically say how this arises from the behavior of individual units. Thisisan example of the
kind of problem with neural network models that has led some to complain that they are basically
atheoretical (McCloskey, 1991).

One emphasis of thisthesisison acomparative analysisof generalization in different neural net-
work algorithms, with the objectiveof better understandingitsmechanistic basis. Thefollowing pro-
vides an introductionto the central ideas behind thisanalysis, and a summary of the results, starting
with the feedforward backpropagation algorithm. Backpropagation tends to be “opportunistic” in
solving problems, since it only needs to adapt the weights as much as is necessary to produce the
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Figure 1.3: Combination of hyperplanes for adigit-recognition problem. The input space, which is actually
high-dimensional (of the order of the number of input units), is represented here in two dimensions, with the
activity pattern for different input digits occupying different regions of this space. Each hidden unit carves
thisspace in half, a ong an axis determined by itsweights. The combination of anumber of such hidden units
carves the space into many small regions. Error-driven learning memorizes the correct output for the hidden
activity pattern corresponding to each region, and adjuststhe locations of the regions so that al inputswithin
a region share the same output. This does not constrain the weights of an individua unit very much, since
responsibility is distributed over many units, and the regions need only be sufficient, not necessary.

correct pattern of outputs, and no further. Thus, if the input-output mapping can be solved in many
different ways (asistypically the case), the weightsare significantly under-constrained by the prob-
lem. Asaresult, the weights tend to reflect the residue of their random initial state as much as the
constraints of a given problem, making the units and weightsin these networks difficult to interpret
(see Figure 1.2 for an example of this phenomenon). Given the enormous numbers of neurons and
synapsesin theneocortex, it isalmost certain that representationsthere are highly under-constrained.

It is possible to understand how weights can be under-constrained by a given problem, yet still
enable the network to solve that problem, in terms of the combination of hyperplanes through the
input space produced by the hidden units. Figure 1.3 providesan illustration of thisin the context of
asimpledigit-recognitiontask (see Chapter 5 for actual simulationsof thistask). Each hiddenunitin
the network carves the high-dimensional input space in half, responding positively to inputsin one
half and negatively to inputsin the other, with the hyperplane dividing these halves determined by its
weights. The combination of anumber of such hidden unitscarvesthe spaceinto many small regions
defined by the intersection of their hyperplanes. In order to solvethistask, the error-driven learning
processessentially memorizesthe correct output for the hidden activity pattern corresponding to each
region, and adjusts thelocations of the regions so that all inputswithin a given region have the same
output. For most problems, thisdoes not constrain theweightsof an individual unit very much, since
responsibility for defining the regionsis typically distributed over many units, each making a small
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contribution to carving up the space. Further, the number and location of the regions need only be
sufficient for solving thetask, not necessary. Thus, there are undoubtedly many spuriousregionsl|eft
after training.

Despite being under-constrained by the task, feedforward error-driven networkstypically gener-
alizesurprisinglywell. Thisisprobably duetotheahility of these networkstotreat anovel input with
agraded proportionality based on the similarity of the novel input to known input patterns. Thus,
each hidden unit provides a graded “estimate” of how similar the input pattern is to trained exam-
ples dong its particular hyperplane, and only if the input pattern should move al the way into its
other partition would a hidden unit’sactivity change significantly (i.e., moveto the other side of .5).
This same level of robustness exists in the hidden-to-output mapping as well. Further, it isimpor-
tant that many hidden unitsparticipatein the representation of each input, sothat idiosyncrasies(e.g.,
residual “randomness”) of each hidden unit’s representation can be averaged out in the aggregation
performed by the output units over al of the hidden units.

To summarize, feedforward error-driven algorithms can typically learn and generalize well with
units that are under-constrained by the task. However, despite this apparent success, there are two
important problemswith purely error-driven learning. First, | show in thisthesisthat interactive (as
opposed to feedforward) error-driven networksdo not typically generalizewell. Asdiscussed above,
interactivity isan important criterion both because of its psychological relevance and itsimportance
for performing biologically-plausibleerror-driven learning, and it is a prominent feature of neocor-
tical connectivity. Second, | show that under-constrained representations do not typically support
useful generalization acrosstasks, which isan important aspect of human generativity — the ability
to apply knowledge learned in one task on other tasks. Thus, purely error-driven algorithms do not
satisfy all of the functional criteriafor a cortical learning model, since they do not simultaneously
exhibit good generalization and interactive processing.

The principal reason why interactive error-driven networks do not generalize as well as feed-
forward networksis that interactivity leads to an increased sensitivity to small differences between
input patterns. Thus, instead of treating a novel pattern like the familiar patterns which it closely
resembles, an interactive network is more likely to treat it quite differently, resulting in poor gen-
eraization performance. Figure 1.4 illustratesthisin terms of the butterfly effect, which derivesits
name from the idea that, in the turbulent, interactive dynamics of the weather, a butterfly flapping
itswingsin China can lead to a hurricane in the Caribbean six months later! To the extent that an
interactive network operatesin asimilarly turbulent activation space, the iterative processing of two
similar inputs can diverge quite dramatically over time. However, interactive networks can al so ex-
hibit attractor dynamics, where similar inputsresult in roughly the same fina activity state (which
can thusbethought of ashaving abasin of attraction around it). Attractor dynamicsshouldin theory
lead to better generalization. The butterfly-effect sensitivity and attractor behavior are two sides of
the same coin. Which behavior isexpressed in a given network depends on the nature of itsweights,
which define the rel ative turbulence or smoothness of the activation space through which interactive
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Figure1.4: llustration of thebutterfly effect for interactive networks, where small initial differencesare mag-
nified over processing, resulting in large fina differences. Shown are 2 initial points, 1 and 2, and their (hy-
pothetical) trgectory through a two-dimensiona state space. In afeedforward network (e.g., BP - backprop-
agation), only one iteration of processing takes place, which does not allow for differences to be magnified
significantly. In contrast, an interactive network (e.g., GeneRec, the interactive, biologically plausible form
of error-driven learning described in Chapter 2) requires many iterationsof updating, alowing differencesto
be magnified greatly.

settling progresses.

It is because an interactive network is so much more sensitive to noisy weights (which lead to a
turbulent activation space) than a feedforward one that the under-constrained nature of the weights
in an error-driven network result in worse generalization in this case. This suggests that the way
to solve this problem isto eliminate the turbulence in the weights. A number of approaches to this
problem have been taken (though typically in afeedforward network), generally involving different
ways of imposing further constraints or regularizers on the abjective function optimized by learn-
ing. Perhaps the most widely used technique is weight decay, where weights have a pressureto be
zero, so only important weightswill remain. Instead of approaching thisproblem from apurely com-
putational perspective, the hypothesis pursued here is that the neocortex has properties which will
provide useful constraints on learning, and that these constraints correspond to the self-organizing
(associative) learning component of LEABRA.

There are two properties of LEABRA which solve the problems associated with the under- con-
strained nature of theweightsinapurely error-driven network as described above. Thefirst property
is activity competition, which forces hidden unitsto compete amongst themselves for the ability to
represent a given input pattern. This causes individual hidden units to take greater responsibility
for representing specific input patterns, and thus causes their weights to more closely correspond to
theimportant distinctionsbetween different inputs. Further, the activity constraintsthemselveshave
a damping effect on the activation dynamics of the network, reducing its sensitivity. The second
property is Hebbian associative learning, which causes a unit’s weights to become aligned with the
correlational structure or self-structure of the input patterns. Thus, weights reflect something like
the principal component or center-of-mass of theinputsfor which agiven unit isactive (Oja, 1982;
Linsker, 1988). Thisresultsin a much smoother pattern of weights, and thus a smoother activation
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Figure 1.5: Effect of the self-organizing learningin LEABRA on hidden unit weightsin the digit recognition
task. a) Shows a diagram like that of Figure 1.3 for the weights that develop under LEABRA. Instead of
each digit being represented by the intersection of many different hyperplanes, individua hidden unitsdevel op
weightsthat represent the principal components of the digits, represented by the more constrained receptive
fields of the units. This resultsin “smoother” settling in the network (note the units are not actually radial-
basis function units— thisis intended to indicate the limited extent of the weights). b) Shows atypical set
of weightsfor a LEABRA hidden unit (compare to Figure 1.2), which clearly capturesthe visual structure of
thedigits 7 and 2.

space for an interactive network to settle through. The combined impact of these two properties on
therepresentationsformed by hidden unitsin thedigit recognitiontask isshownin Figure 1.5, which
can be compared to Figures 1.3 and 1.2. Thus, unlike the purely error-driven network, the weights
for LEABRA units clearly reflect the structure of the environment (which isvisually sdlient in this
case becausetheinput stimuli are visual representationsof digits). Theresultspresentedin Chapter 5
show that these weights result in significantly better generalization than an interactive error-driven
network, and even somewhat better generalization than a feedforward one. Chapter 6 exploresthe
issue of generalizationin greater detail, and provides specific evidence to support the above anaysis
regarding the nature of generalization in an interactive network.

Finally, it should be noted that the evidencefor good generalizationin attractor networksreported
by Plaut et a. (1996) does not contradict the above analysis because the method used to train their
“attractor” network did not actually devel op significant weights from the output back to the hidden
units, meaning that they were essentially using afeedforward network. Simulations reported in this
thesisusing the biologically feasible GeneRec error-driven |learning algorithm, which requires sym-
metric bidirectional weightsin order to obtain useful error signals, show that atruly interactive net-
work does not typically generalize well.
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The Representation of Structure and Cross-Task Generalization

There areimportant implicationsof thetypes of representationsformed by LEABRA for the abil -
ity of the network to transfer knowledge learned on one task to a novel task (cross-task generaliza-
tion). Indeed, this type of generalization requires more from the network than simply the ability to
exhibit agraded, proportional response to novel stimuli. Instead, it must be able use existing repre-
sentationsof the environment in novel ways. Thereisreason to believethat thebiasin LEABRA to-
wards representing the correlational structure of the environment will be even more useful for cross-
task generalization than it isfor simple within-task generalization, for the following reasons.

First, correlational structure reflects which features or properties of the environment tend to
co-occur, which is an important aspect of the structure of things in the real world, given that co-
occurrence is often associated with causal relationships and the meaning of items (e.g., in lexica
semantics, co-occurrence of words within a relatively small window of text has been shown to be
highly correlated with other measures of semantic relatedness, T. K. Landauer, personal communi-
cation). It isimportant to note that since LEABRA isan interactive network, both input and output
patterns contribute equally to defining this correlationa structure, which can thus include the cor-
relations between input-output pairs. Thisinput-output correlationa structure typically defines the
systematicities of the input-output mappings. Thus, in addition to the structure over the different
input patterns that is typically thought of in the context of correlationa learning, LEABRA units
carve up the input space along dimensionsthat correspond to the systematicitiesthat are predictive
of corresponding outputs. Further, the sensitivity to correlational structure exists a al levelsin a
LEABRA network, so that correlations among higher-level, more abstracted representations are as
important as lower-level correlations among items directly in the input and output patterns.

At amorebasic level, given that the activity of unitsin a neura network depends on being acti-
vated by other units (which therefore must also be active), it seems that correlational relationships
areintrinsically meaningful in the context of neural processing systems, sincethey determine which
unitsare activated in a given context, and which are not. Thus, the tendency of associativelearning
to clarify and reinforce the basis of support for a given representation should make them useful for
awide range of tasks that tap the same underlying structure captured by these representations. Fi-
nally, it should be noted that the error-driven learning component of LEABRA playsacritical role by
constraining the associative learning to pick up on functionally rel evant aspects of the correlationa
structure — those aspectsthat help to actually solve the mapping problem.

In summary, the LEABRA a gorithm hasabuilt-in biasto represent the correlational structure of
the environment, at multiplelevelsof abstraction, and influenced by the “ consequences’ of an input
aswell asitsown intrinsic structure. This bias should cause the network to represent the important
structure of the environment to a much greater extent than a purely error-driven network. It isthis
ability to represent theimportant structure of the environment in thefirst place that allowsLEABRA
to generalizeto novel testing patternsthat sharethisstructure. The advantage of thisapproach over a
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purely error-driven network should be most evident when anovel task (as opposed to simply anovel
stimulus) is processed in an environment the network has been exposed to previously in a different
task context. If the LEABRA network has represented the important structure of the elementsin a
given environment (i.e., what items/propertiestend to “go together”), then it should be able to more
easily learn to do different thingswith these elements compared to a network which has not cleanly
represented thisstructure. Thisissueisexplored further in Chapters5 and 6, and isimportant for un-
derstanding how human knowledge can be so flexibly used and recombined to solve novel tasks, and
may have important implicationsfor the ability to verbally access the contents of internal represen-
tations. Finally, as an added benefit, it should be more straightforward to explain network behavior
as adirect consequence of itsindividual units.

Learning to Re-represent in Deep Networks

An apparently difficult problem can become much easier to solveif it is represented in the right
way. The psychological literature contains many examples of “insight” problemswhich require one
to re-represent a problem in order to arrive at the correct solution. Similarly, it is clear that compu-
tation in the brain depends critically upon many levels of processing which re-represent the input
signals in successive stages, with each stage building on the computations performed in the previ-
ousone. For example, in perhapsthe most well- understood cortical system, thevisual system of the
monkey, thereare at | east 5 gross, anatomically separated | evel sof processing before neuronsthat fire
selectively for object stimuli are found, and it is likely that important sequential computations take
place within anatomically defined regions, raising the number of functional layers of computation
into the tens (Desimone & Ungerleider, 1989; Van Essen & Maunsell, 1983; Maunsell & Newsome,
1987). If the brain instead tried to go directly from retinal input to invariant object representations,
the task would likely be impossible.

Thus, it seems clear that a model of learning in the cortex must be capable of developing over
multiple hidden layers successivelevel s of representationsthat enableit to solve difficult problems.
Thisis another instance where the benefits of the combination of associative and error-driven learn-
ing in LEABRA should be evident. It iswidely known that adding hidden layers to a backpropa-
gation network almost never improves performance, despite the potential increase in computational
power that they add. While it is true in theory that any kind of input/output mapping can be per-
formed in asingle hidden layer, proofs of thisrely on the ahility of anetwork with a huge number of
hidden unitsto memorize each training exampl e, which does not allow for the kind of generalization
and systematicity that are representative of efficient re-representation solutionsin deeper networks.

A classic example of a problem which benefits from multiple hidden layersis the “family trees’
problem of Hinton (1986), where the network learns the family relationships for two isomorphic
families, and is capable of generalizing to relationship instances it was not trained on. It does this
by representing in an intermediate hidden layer the individuasin the family so as to make explicit
their functional similarities(i.e., individual swho enter into similar rel ationshipsare represented sim-
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ilarly). However, it turnsout that the deep network used in thisexamplemakesit difficult for apurely
error-driven network to learn, and, in simul ationsreported bel ow, learning time actually decreases by
using a network with a single hidden layer instead of the original deep network (and generalization
isimpaired, but not completely eliminated). Finally, thispoor depth scaling of error-driven learning
is even worse in interactive networks, where training times are twice as long as in the feedforward
case, and up to 7 timeslonger than in LEABRA.

Perhaps a useful anal ogy for understanding why error-driven learning doesnot work well in deep
networks, especially interactive ones, is that of balancing a stack of poles. It iseasier to balance one
tall pole than an equivalently tall stack of poles placed one atop the other, because the corrective
movements made by moving the base of the pole back and forth have a direct effect on asinglepole,
whilethe effectsareindirect on poleshigher up in astack. Thus, with astack of poles, the corrective
movements made on the bottom pole have increasingly remote effects on the poles higher up, and
the nature of these effects depends on the position of the poleslower down. Similarly, the error sig-
nalsin adeep network have increasingly indirect and remote effects on layers further down (away
from thetraining signal at the output layer) in the network, and the nature of the effects depends on
the representations that have devel oped in the shallower layers (nearer the output signal). With the
increased non-linearity associated with interactive networks, this problem only gets worse.

One way to make the pole-balancing problem easier isto give each pole alittle internal gyro-
scope, so that they each have greater stability and can at least partialy balance themselves. The self-
organizing learning principlesbuiltinto LEABRA should provide exactly thiskind of self- stabiliza-
tion, sincethey lead to theformation of useful representationsevenintheabsenceof error signals. At
aslightly more abstract level, the LEABRA model isgenerally more constrained than apurely error-
driven learning al gorithm, and thus hasfewer degrees of freedom to adapt through learning. Thiscan
be thought of as limiting the range of motion for each pole, which would also make them easier to
balance. The hypothesisthat LEABRA will learn better than a purely error-driven algorithmin deep
networksis explored in Chapter 7, where LEABRA is shown to be capable of learning significantly
faster than these error-driven networks, while exhibiting comparable generalization performance.

The issue of learning in deep networksis potentially important for many current psychological
models. For example, the spelling-to-sound model described in Plaut et a. (1996) corrects for the
weaknesses of an earlier model (Seidenberg & McClelland, 1989), by representing theinput and out-
putin adifferent, more systematic way, thereby allowing the systemto better capture theregul arities
underlying the reading of regular words, and improving performance on nonword reading.® It isthis
kind of re-representation to capture the systematicities of agiven domain that seemsto underlie the
brain’s success in solving difficult computational problems, except that here the re-representationis
performed by the researchers, not the model! Thus, as the authors themselves note, a more satisfy-

6This is not to say that the Seidenberg and McClelland (1989) representations are more like the surface input/output
features used in reading aloud, but the Plaut et al. (1996) representations do emphasize the regul arities more than both the
earlier representationsand the surface features.
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ing model would be one that discovers an appropriate sequence of re-representations of stimuli that
more closely resembletheraw inputsand outputsthat are being modeled. Thereare many other cases
in the literature where important assumptions regarding the input and output representations have
been made, yet it remains to be demonstrated that such representationswould actually be formed in
a“deeper” version of thetask by the type of algorithm being used to process those representations.

Learning Interactive Tasks

It has been emphasized above that many of the failures of purely error-driven networks are par-
ticularly evident when interactive networks are used. However, none of the tasks which have been
used so far depend critically on the use of an interactive network. An example of atask which does
require such a network, and illustrates some of the psychological importance of such networks, isa
version of the Hinton (1986) family trees problem where any two input cues can be given to retrieve
athird piece of information. Thus, one can ask how two people are related, who is the mother of a
given person, or whose son isagiven person, etc. Clearly, people are able to use multiple different
subsets of cues to retrieve information and make inferences, and interactive networks are a natural
way of modeling such behavior given that they allow information to propagate in any direction in
order to answer a given question.

Despite the close relationship between the interactive and standard feedforward versions of the
family trees task, it turns out that | was unable to get a standard recurrent error-driven backpropa-
gation algorithmto learn the interactive version. However, the GeneRec biologically-feasibleerror-
driven learning algorithm, which requires symmetry between reciprocal weights and preservesthis
viaaconstraint in the algorithm, isableto learn thistask in roughly the same amount of timeit takes
tolearn the standard version. It appearsthat the symmetry constraint isimportant for making knowl-
edge learned in solving the problem in one direction useful for solving the problem in other direc-
tions, and networks without such a constraint suffer from severe interference from learning in dif-
ferent directions. The LEABRA agorithm, which uses GeneRec for its error-driven learning com-
ponent, also learned the interactive problem easily, in less than half thetime it took GeneRec. This
result isimportant becauseit showsthat whileit might be possibleto get somewhat better generaliza-
tion out of the backpropagation version of an interactive network, which does not have a symmetry
constraint and thus does not exhibit strong butterfly-effect and attractor dynamics, thereisacost as-
sociated with thisin not being able to learn interactive tasks. Thus, the only agorithm that provides
both good generalization and the ability to learn interactive problemsis LEABRA.

Additional Functional Implications of LEABRA

There are anumber of potential benefits of combining error-driven and associativelearningin ad-
dition to the generalization and deep networks i ssues which constitute the main focus of thisthesis.
Many of thesearerelated to ideas about L EABRA's performance described above, but they focuson
different behavioral implications. For example, the structured nature of the representations devel-
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oped by LEABRA could have implications for understanding how people are able to perform ana-
logical reasoning. To the extent that individual representationsin the network reflect the systematic-
itiesin agiven domain, it should then be easier for these representationsto be used in other domains
which share the same systematic relationships. The cross-task generalization studies described in
this thesis provide some evidence along these lines, but they fall short of actually modeling human
data or addressing the complexities of analogical reasoning tasks. This remains a topic for future
research.

Another caseinwhichthe useof associativeand error-driven learning might beimportantisinun-
derstanding various developmental phenomena. For example, in Karmiloff-Smith (1992) and work
by others, the idea that learning continues beyond the point of competence has been developed. In
particular, this post-competence learning is described as reflecting a reorganization of the way that
conceptsarerepresented. It seems possiblethat thiscan beinterpreted asthe effect of self-organizing
learning that continues to operate even in the absence of the error signals required for error-driven
learning. LEABRA providesanatural framework for understanding how representationsare affected
by both error signals and “internal” forces resulting from the self-organizing learning from the be-
ginning of learning to beyond competency.

In particular, the post-competency representational development in standard error-driven neural
network model's, which might be defined as the period from when the network is producing outputs
within sometolerance of thetargetsto when the error goesto zero, istypically found to be dominated
by the process of memorizing the peculiaritiesof thetraining set. Incontrast, the human learning data
showsthat representations become more generalized, more categorical, and more accessibleto other
domains of knowledge (Karmiloff-Smith, 1992). Interestingly, these properties are consistent with
what would be expected from LEABRA &fter the error signalsbecome |ess dominant in shaping the
representations, at which point the self-organizing | earning becomes the dominant force. Some evi-
dence for these aspects of LEABRA are provided the various simulations described later, but much
more work remains to be done on thisissue.

There is another, perhaps simpler, facet of this post-competency issue, which has to do with ex-
plaining behavioral evidence for learning when performance is already perfect. For example, there
are many examplesin the priming literature which suggest that the mere processing of an item will
result in faster subsequent processing. This has been explained by McClelland, McNaughton, and
O'Reilly (1995) in terms of small weight changesin the cortical systemsthat represent and process
the given item. While, in the absence of error signdls, it is clear that a purely error-driven network
would not exhibit this phenomenon, the associative learning aspect of the LEABRA a gorithm will
cause learning to occur based on the mere activity of neurons. This has been confirmed by Stark
(1993) in amodel of paired-associate priming, where it was found that amodel using LEABRA ex-
hibited the correct priming behavior while a purely error-driven network did not. It should be noted
that thisassociativity property isconsistent with the conditionsnecessary to induce synaptic changes
in cortical neurons, as will be discussed below.
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Finally, while it is true that error-driven learning is generally superior for solving many prob-
lems, there are certain tasks where there are specific computational reasons why associative learn-
ingiscrucia. Thus, instead of focusing on the advantages of associative learning in the context of
error-driven learning, one can ask if there is an advantage to including error-driven learning into an
otherwise purely associative learning model. In fact, purely associative or self-organizing models
often get stuck inlocally optimal solutions, duein part to the positivefeedback nature of associative
learning— once agiven unit comesto represent some part of theinput space, thistypically getsrein-
forced by making the associ ations between the inputs and the unit even stronger. The result is often
aunit which representstoo much of theinput space, making distinctionswithinthis space difficult or
impossible. In theory, an error-driven component in the learning algorithm will encourage relevant
distinctions (i.e., those distinctions necessary to solve the input-output mapping) to be made, thus
improving the reliability of otherwise self-organized learning.

Chapter 8 provides preliminary resultsfor some of theseideas, and presents other functional im-
plications of the LEABRA agorithm.

Biological Aspects of LEABRA

LEABRA is proposed specifically as a model of abiological system, the neocortex. However,
it isafairly abstract model, and, despite the incorporation of several significant aspects of cortical
biology, the detail ed rel ationshi p between its computational propertiesand those of neuronsand net-
works of neurons has yet to be fully specified. Assuch, it is reasonable to wonder to what extent it
can redlly be taken seriously as a biological model. The argument in favor of viewing it as such
relies on the idea that the neocortex can be specified as a computational device that is somewhat
abstracted from its specific biological implementation. However, this genera kind of argument, ar-
ticulated clearly by Marr (1982), has been used to justify al sorts of models that | personally, and
many researchersin thefield, would be reluctant to describe asbeing in any way biological. Thekey
test for the biological relevance of acomputational model should be the extent to which the compu-
tations performed by the entitiesin the model can be plausibly related to the underlying biological
features. Thus, short of actually demonstrating that some biological mechanism can really perform
the prescribed computation, amodel which providesa plausiblerolefor anumber of known proper-
ties of the biology, while simultaneously performing functionsknown to be carried out by that same
biological system, should be considered a useful model of the biology.

As mentioned above, LEABRA provides a computational role for several prominent features of
the neocortical neurobiol ogy, including:

e Pervasive inhibitory circuitry implemented by inhibitory interneurons (Douglas & Martin,
1990): Providesactivity regulation that causes unitsto take more responsibility for represent-
ing particular stimuli.
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¢ Prominentinteractiveexcitatory feedback connectivity between principal (pyramidal) neurons
(Douglaset d., 1995; Douglas& Martin, 1990): Providesamechanism for communicating er-
ror signal susing activation-based mechanisms, whichisimportant for performing error-driven
learning in a biologically feasible manner. Also important for flexibly accessing knowledge
in the network, and many other psychological effects.

¢ Observed associative character of synapticlong term potentiation (LTP) and depression (LTD)
(Bear & Malenka, 1994; Artola& Singer, 1993; Linden, 1994): Biases unitsto represent the
correlational structure of the environment, which improves generalization (both within and
across tasks) and learning in deep networks, among other things.

e Dominant role of positive-only neural signalsin communicating between cortical pyramidal
neurons(given that the theinhibitory effects of pyramidal neurons on other pyramidal neurons
is mediated by interneurons which have a very diffuse and non-modifiable inhibitory effect):
This establishes a standard representational form for coding information in the cortex.

Thus, in conjunctionwithitsability to perform psychol ogically and computationally important | earn-
ing that is known to be taking place in the neocortex, the LEABRA algorithm satisfies the stated
constraintsfor being an abstracted biological model.

Further, a detailed mapping of the GeneRec algorithm onto biological mechanisms is proposed
in Chapter 2. Indeed, the proposed biologica mechanism directly supports the ideathat both asso-
ciative and error-driven factors influence synaptic modification in cortical neurons. In addition, bi-
ological properties of cortical neurons and networks provideinspiration for several other functional
properties of the LEABRA agorithm. However, at thispoint, LEABRA remainsrelatively abstract,
providing a level of modeling useful for addressing complicated functional questions. A particu-
larly noticeable omission in LEABRA is adetailed account of the laminar structure of the neocor-
tex, whichissimply assumed at this point to provide a useful way of arranging input, “hidden”, and
output layersin primary sensory corticies. A next step in this research would be to develop a more
detailed biologica model with realistic cortical neurons which could be used to more thoroughly
explore the biological validity of the LEABRA abstraction (see Chapter 8).

Levels of Analysis and Neural Network Models

Neural network models can be pitched at many different levels of analysis, from detailed mod-
els where unitsin the model correspond to neurons in the brain, up to very abstract models which
either are not localized with respect to neural circuitry, or where units correspond to large functional
regions of the brain. By attempting to incorporate several features of neurons and small networks of
neurons into a computational formalism, the present work is assuming a roughly one-to-one map-
ping between units and neurons. However, the psychological issues being addressed here might be
thought of asrequiringamore abstract level of modeling. Whiletherelationship between psychol og-
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ical and neural levelsof analysisisacomplicatedissue, itispossibleto justify the use of fine-grained
biological constraintsfor psychological modeling for the following reasons.

First, it islikely that the neocortex can be described as having a fractal character, so that it be-
havessimilarly at different levelsof analysis. Therearetwo reasonswhy thisshouldbethecase: 1) It
islikely that, in the neocortex, thefunctiona characteristics of long-range connectivity aresimilar to
that of local, short-range connectivity. Pyramida neurons project excitatory synapses both locally
and over larger distances to other brain areas. However, the inhibitory interneurons have primar-
ily local connectivity. Nevertheless, the longer-range excitatory connections synapse both directly
on other pyramidal neurons, and on local inhibitory interneuronsin that area. Thus, both short and
long-range connectivity exhibitsabal ance between excitation and inhibition, meaning that inter-area
interactions might behave according to similar principles as those operating within a given area, or
within smaller structures such as columns. 2) Theindividua effects of neurons on other neuronsis
likely to be roughly similar to the average effect of a population of neurons on another population,
to the extent that both are communicating with signals that resemble average firing rates (and both
have similar weights, activity levels, etc). Of course, the population can encode much more infor-
mation, and is more robust to the effects of noise, but if thisis held constant between the two, their
interactionswill be similar. Thisisthe casein amost all computationally-derived abstract models
like backpropagation, and isalso true of LEABRA. However, there is considerable debate regarding
the important signaling variablein neura firing, and some people believethat averagerate isnot the
relevant one. Itisnot clear what implicationsother neural coding schemeswould have onthisfractal
property of the neocortex. In any case, what can be said for certain at this point isthat a population
of LEABRA unitsbehavessimilarly to asingle, similarly parameterized LEABRA unit, sothat if the
brain were constructed completely out of LEABRA units, the scaling issue would not invalidatethe
importance of the biologically-motivated constraintsused in LEABRA for psychological modeling.

Thisfractal view of the neocortex enables oneto make adistinction between the content and pro-
cessing of information, which isanother way of viewing thescalingissue. Thus, onecan claimthat a
neural network model is performing the same kind of processing as ahuman in a particular task, but
on avery reduced problem that lacks much of the detail ed information content of the human equiva-
lent. Thus, themodel captures some very reduced aspect of the information processing that ahuman
performs, but not with the same richness of content. Of course, many phenomenacan become quali-
tatively different asthey get scaled up or down along this content dimension, but it seems reasonable
to allow that some important properties might be relatively scale invariant. In mapping this scaling
assumption onto the neocortex, one could plausibly argue that each cortical area could be reduced
to handle only asmall portion of the content that it actually does (e.g., by the use of a 16x16 pixel
retinainstead of a16 millionx 16 million pixel retina), but that some important aspects of the essen-
tial computation on any piece of that information could be preserved in thereduced model. If severd
such reduced cortical areas were connected, one could imagine having a useful but simplified model
of some reasonably complex psychological phenomena. While many of the actua simulations con-
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ducted inthisthesisare not i ntended to map onto any known cortical areas, itisstill useful toimagine
that asimilarly configured chunk of neocortex could perform the task performed by the model.
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Chapter 2

Biologically Feasible Error-Driven
L earning: GeneRec

Given that theoverall goal of LEABRA isto provideamodel of learning in the cortex that uses both
error-driven and associativelearning, it isessential that the error-driven component can be performed
inabiologically feasiblemanner. Thischapter presentsan algorithm called generalizedrecirculation
or GeneRec whichiscapableof doingjustthat.'. Unliketheassociativelearning and other properties
of LEABRA, which are more biologically inspired and can bedirectly rel ated to known properties of
the cortex, the error-driven component is inspired more by computational necessity than by specific
properties of the cortex. Nevertheless, as will be discussed in greater length later in this chapter,
there are a number of ways in which the GeneRec agorithm makes contact with salient properties
of the cortex.

A long-standing objectionto the error backpropagationlearning algorithm (BP) (Rumelhart, Hin-
ton, & Williams, 19864) isthat it isbiologically implausible(Crick, 1989; Zipser & Andersen, 1988),
principally because it requires error propagation to occur through a mechanism different from ac-
tivation propagation. This makes the learning appear non-local, since the error terms are not lo-
cally available as a result of the propagation of activation through the network. Severa remedies
for this problem have been suggested, but none are fully satisfactory. One approach involves the
use of an additional “error-network” whose job is to send the error signalsto the original network
viaan activation-based mechanism (Zipser & Rumelhart, 1990; Tesauro, 1990), but this merely re-
places one kind of non-locality with another, activation-based kind of non-locality (and the problem
of maintaining two sets of weights). Another approach usesaglobal reinforcement signal instead of
specific error signals (Mazzoni, Andersen, & Jordan, 1991), but thisis not as powerful as standard
backpropagation.

! Note that this chapter is acopy of a paper entitled “Biologically Plausible Error-driven Learning using Local Activa-
tion Differences: The Generalized Recirculation Algorithm” which has been submitted for publication in Neural Compu-
tation. Thus, it is completely self-contained except for the references, which appear at the end of the thesis

33
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The approach proposed by Hinton and McClelland (1988) is to use bi-directional activation re-
circulationwithin asingle, recurrently connected network (with symmetric weights) to convey error
signals. In order to get thisto work, they used a somewhat unwieldy four-stage activation update
processthat only worksfor auto-encoder networks. This paper presents a generalized version of the
recirculation algorithm (GeneRec), which overcomes the limitations of the earlier algorithm by us-
ing ageneric recurrent network with sigmoidal unitsthat can learn arbitrary input/output mappings.
The GeneRec algorithm shows how a general form of error backpropagation, which computes es-
sentially the same error derivatives as the Almeida-Pineda (AP) algorithm (Almeida, 1987; Pineda,
1987h, 19874, 1988) for recurrent networks under certain conditions, can be performed in a biolog-
ically plausiblefashion using only locally available activation variables.

GeneRec uses recurrent activation flow to communicate error signalsfrom the output layer to the
hidden layer(s) viasymmetric weights. Thisweight symmetry isan important condition for comput-
ing the correct error derivatives. However, the “catch-22" is that GeneRec does not itself preserve
the symmetry of the weights, and when it is modified so that it does, it no longer follows the same
learning trgjectory as AP, eventhoughit iscomputing essentially the sameerror gradient. Theempir-
ical relationship between the derivatives computed by GeneRec and AP backpropagationisexplored
in simulations reported in this paper.

The GeneRec agorithm has much in common with the contrastive Hebbian learning algorithm
(CHL, ak.a. the mean field or deterministic Boltzmann machine (DBM) learning algorithm), which
also uses locally available activation variables to perform error-driven learning in recurrently con-
nected networks. This algorithm was derived originally for stochastic networks whose activation
states can be described by the Boltzmann distribution (Ackley, Hinton, & Sejnowski, 1985). In this
context, CHL amounts to reducing the distance between two probability distributionsthat arise in
two phases of settling in the network. This algorithm has been extended to the deterministic case
through the use of approximations or restricted cases of the probabilistic one (Hinton, 1989b; Pe-
terson & Anderson, 1987), and derived without the use of the Boltzmann distribution by using the
continuous Hopfield energy function (Movellan, 1990). However, al of these derivations require
problematic assumptions or approximations, leading some to conclude that CHL is fundamentally
flawed for deterministic networks (Galland, 1993; Galland & Hinton, 1990).

It isshowninthispaper that the CHL algorithm can be derived instead asavariant of the GeneRec
algorithm, which establishesa more genera formal rel ationship between the BP framework and the
deterministic CHL rule than previous attempts (Peterson, 1991; Movellan, 1990; LeCun & Denker,
1991). This relationship means that al known fully general error-driven learning agorithms that
use local activation-based variables in deterministic networks can be considered variations of the
GeneRec algorithm (and thus, indirectly, of the backpropagation agorithm as well). An important
feature of the GeneRec-based derivation of CHL isthat therel ationship between thelearning proper-
ties of BP, GeneRec, and CHL can be more clearly understood. Another feature of thisderivationis
that itiscompletely general with respect to the activation function used, allowing CHL -likelearning
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rulesto be derived for many different cases.

CHL is equivalent to GeneRec when using a simple approximation to a second-order accurate
numerical integration technique known as the midpoint or second-order Runge-Kutta method, plus
an additional symmetry preservation constraint. The implementation of the midpoint method in
GeneRec simply amounts to the incorporation of the sending unit’s plus-phase activation state into
the error derivative, and as such, it amounts to an on-line (per pattern) integration technique. This
method resultsin faster learning by reducing the amount of interference due to independently com-
puted weight changes for a given pattern. Thiswould explain why CHL networks generaly learn
faster than otherwise equiva ent BP networks (e.g., Peterson & Hartman, 1989; Movellan, 1990). A
comparison of optimal learning speeds for all variants of GeneRec and feedforward and AP recur-
rent backprop on four different problems is reported in this paper. The results of this comparison
are consistent with the derived relationship between GeneRec and AP backpropagation, and with
the interpretation of CHL as a symmetric, midpoint version of GeneRec, and thus provide empirical
support for these theoretical claims.

Thefinding that CHL did not perform well at al in networkswith multiple hidden layers (“deep”
networks), reported by Galland (1993), would appear to be problematic for the claim that CHL is
performing afully general form of backpropagation, which can learn in deep networks. However, |
was unableto replicate the Galland (1993) failure tolearn the“family trees’ problem (Hinton, 1986)
using CHL. In simulations reported below, | show that by simply increasing the number of hidden
units (from 12 to 18), CHL networks can learn the problem with 100% success rate, in a number
of epochs on the same order as backpropagation. Thus, the existing simulation evidence seems to
support the ideathat CHL is performing a form of backpropagation, and not that it is a fundamen-
tally flawed approximation to the Boltzmann machine as has been argued (Galland, 1993; Galland &
Hinton, 1990).

Given that the GeneRec family of algorithms encompasses all known ways of performing error-
driven learning using locally-available activation variables, it provides a promising framework for
thinking about how error-driven learning might beimplemented in the brain. To further thisgoal, an
explicit biological mechanism capable of implementing GeneRec-style learning is proposed. This
mechanism is consistent with avail able evidence regarding synaptic modification in neurons in the
neocortex and hippocampus, and makes further predictions.

Introduction to Algorithms and Notation

In additionto theoriginal recircul ation algorithm (Hinton & McClelland, 1988), thederivation of
GeneRec depends on ideas from several standard learning agorithms, including: feedforward error
backpropagation (BP) (Rumelhart et al., 1986a) with the cross-entropy error term (Hinton, 1989a);
the Almeida-Pineda (AP) agorithm for error backpropagation in a recurrent network (Almeida,
1987; Pineda, 1987b, 19873, 1988); and the contrastive Hebbian learning algorithm (CHL) used in
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| Layer (index) || Net Input Activation |
Input (s) — s; = stimulusinput
Hidden (k) n; =Y wiisi k= o(n;)
Output (o) Mk =3 wikh;  or = o(mk)

Table2.1: Variablesina3layer backprop network. o(n) isthestandard sigmoidal activationfunctiono(n) =
/(1 +e ).

the Boltzmann machine and deterministic variants (Ackley et a., 1985; Hinton, 1989b; Peterson &
Anderson, 1987). The notation and equations for these algorithms are summarized in this section,
followed by abrief overview of therecirculation agorithmin the next section. This providesthe ba-
sisfor the development of the generalized recirculation agorithm presented in subsequent sections.

Feedforward Error Backpropagation

Thenotationfor athree-layer feedforward backprop network usesthe symbolsshownintable2.1.
Thetarget values are labeled ¢;. for output unit &, and the pattern-wise sumis dropped since the sub-
sequent derivationsdo not depend onit. Thecross-entropy error formulation (Hinton, 1989a) isused
because it eliminates an activation derivative term in the learning rule which is also not present in
the recirculation algorithm.

The cross-entropy error isdefined as:
E = Ztklog Ok—l—(l—tk)log(l—ok) (2.1
k

and the derivative of E with respect to aweight into an output unit is:

0F _  dE do; I
ow;i, ~ doy dny, ow;i,
1L (1 — tk):| ,
2k h
or (1 — Ok) o (ﬂk) J
= (tk — Ok)hj (22)

whereo’(n;) isthefirst derivative of the sigmoidal activation function with respect to the net input:
or(1 —ox), whichiscanceled by the denominator of the error term. In order to train theweightsinto
the hidden units, the impact a given hidden unit has on the error term needs to be determined:

9E _ -~ dE do Oy
Oh; N P doy, dny, Oh;
= - Z(tk — Ok)’w]’k (2.3
k

which can then be used to take the derivative of the error function with respect to the input to hidden
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unit weights:
OF _ O dh; 9y,
0wij N ah]‘ d'r]]' 0’!1}2']‘
= =Y (tk — op)wjro’(n;)s; (2.4)

k

which providesthe basis for adapting the weights.

Almeida-Pineda Recurrent Backpropagation

The AP version of backpropagation is essentially the same as the feedforward one described
above except that it allowsfor the network to have recurrent (bidirectional) connectivity. Thus, the
network istrained to settleinto a stable activation state with the output unitsin thetarget state, based
on agiven input pattern clamped over theinput units. Thisistheversion of BP that the GeneRec al-
gorithm, which a so usesrecurrent connectivity, approximatesmost closely. The same basic notation
and cross-entropy error term as described for feedforward BP are used to describethe AP algorithm,
except that the net input terms (r7) can now include input from any other unit in the network, not only
thosein lower layers.

Theactivation statesin AP are updated according to adiscrete-time approximation of thefollow-
ing differential equation, which isintegrated over time with respect to the net input terms?:

d .
% = —n; + Y wijo(n) (25)
This equation can be iteratively applied until the network settlesinto a stable equilibrium state (i.e.,
until the changein activation state goes below a small threshold value), which it will provably do if
theweightsare symmetric (Hopfield, 1984), and often evenif they arenot (Galland & Hinton, 1991).

In the same way that the activations are iteratively updated to allow for recurrent activation dy-
namics, the error propagation in the AP algorithm is aso performed iteratively. The iterative error
propagation in AP operates on anew variabley; which representsthe current estimate of the deriva-
tive of the error with respect to the net input to the unit, 3_5] This variable is updated according

to:
dy;

=Y +0'(n;) Ewkjyk + J; (2.6)
%

where J; isthe externally “injected” error for output units with target activations. This equation is
iteratively applied until the y; variables settle into an equilibrium state (i.e., until the change in y;
fals below asmall threshold value). Theweights are then adjusted asin feedforward BP (2.4), with
y; providing the % term.

2|t is also possible to incrementally update the activations instead of the net inputs, but this limits the ability of units
to change their state rapidly, sincethe largest activation value is 1, while net inputs are not bounded.
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| Layer | Phase || Net Input Activation |
Input (s) — — s; = stimulusinput
Hidden (h) | - n; =i wiisi + X wejop  hy =o(n;)
+ 77]'+ =3 wijsi + Y, wkjo) h;— = 0(77;)
Output (o) | - M, = 2 wikh; o, =o(ng)
+ — 02_ = 1%

Table 2.2: Equilibrium network variables in a three layer network having reciprocal connectivity between
the hidden and output layers with symmetric weights (w;; = wy;), and phases over the output units such that
thetarget is clamped in the plus phase, and not in the minus phase. o(n) isthe standard sigmoidal activation
function.

Contrastive Hebbian Learning

The contrastive-Hebbian learning algorithm (CHL) used in the stochastic Boltzmann machine
and deterministic variants is based on the differences between activation states in two different
phases. Asinthe AP algorithm, the connectivity is recurrent, and activation states (in the determin-
istic version) can be computed according to (2.5). Aswill be discussed below, the use of locally-
computabl e activation differences instead of the non-local error backpropagation used in the BP and
AP algorithmsis more biologically plausible. The GeneRec agorithm, from which the CHL ago-
rithm can be derived as a specia case, uses the same notion of activation phases.

Thetwo phases of activation states used in CHL are the plus phase states, which result from both
input and target being presented to the network, and provide a training signal when compared to the
minus phase activations, which result from just the input pattern being presented. The equilibrium
network variables (i.e., the states after theiterative updating procedure of (2.5) has been applied) for
each phasein such asystem are labeled asin table 2.2.

The CHL learning rulefor deterministic recurrent networks can be expressed in terms of generic
activation states a (which can be from any layer in the network) as follows:

1 -
ZA“’” = (a,fa,j) —(a; a; ) (2.7
wherea; isthesending unit and a; isthereceiving unit. Thus, CHL issimply the difference between
the pre and post-synaptic activation coproducts in the plus and minus phases. Each coproduct term
is equivalent to the derivative of the energy or “harmony” function for the network with respect to

the weight:

E = Z Z a;a;w;; (2.8)
it

and theintuitive interpretation of thisrule isthat it decreases the energy or increases the harmony
of the plus-phase state and vice-versafor the minus-phase state (see Ackley et al., 1985; Peterson &
Anderson, 1987; Hinton, 1989b; Movellan, 1990, for details).
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The Recirculation Algorithm

The original Hinton and McClelland (1988) recirculation algorithm is based on the feedforward
BP agorithm. The GeneRec agorithm, which is more closely related to the AP recurrent version
of backpropagation, borrows two key insightsfrom the recirculation algorithm. These insightspro-
videameans of overcoming the main problem with the standard backprop formulation from aneural
plausibility standpoint, which isthe manner in which a hidden unit computesits own error contribu-
tion. Thisisshownin (2.3). The problem isthat the hidden unit is required to access the computed
quantity (%), which dependson variablesat the output unit only. Thisisthe crux of thenon-locality
of error information in backpropagation.

The first key insight that can be extracted from the recirculation algorithm is that (2.3) can be
expressed asthe difference between two terms, each of which look much likeanet-input to the hidden
unit:

OF
— = — Ztk’w]‘k — E 0L Wk (2.9
Oh; - -

Thus, instead of having a separate error-backpropagation phase to communicate error signals, one
can think in terms of standard activation propagation occurring via reciprocal (and symmetric)
weightsthat come from the output unitsto the hidden units. Theerror contributionfor thehidden unit
can then be expressed in terms of the difference between two net-input terms. One net-input term
isjust that which would be received when the output units had the target activations ;. clamped on
them, and the other is that which would be received when the outputs have their feed-forward acti-
vation values oy,.

In order to take advantage of a net-input based error signal, Hinton and McClelland (1988) used
an auto-encoder framework, with two pools of units: visible and hidden. The visible units play the
role of both the input layer and the output layer. Each training pattern, which isits own target, is
presented to the visibleunits, which then project to a set of hidden units, which then feed back to the
same visible units. The input from the hidden units changes the state of the visible units, and this
new state is then fed through the system again, hence the name recirculation (see Figure 2.1). As
aresult, the visible units have two activation states, equivalent to ¢, (or s;) and oz, and the hidden
units have two activation states, the first of which is a function of 77]* = > trwg;, which can be
|abeled h;, and the second of which correspondsto 4.

The second key insight from the recirculation algorithm isthat instead of computing adifference
in net-inputsin (2.9), one can useadifference of activationsviathefollowing approximationto (2.4):

0F

ow;;

—(n; = m;)0’ (n;)tx
—(]’I,)]k — h]‘)tk (210)

X

The difference between activation valuesinstead of the net-inputsin (2.10) can be used since Hin-
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Recirculation (Hinton & McClelland, 1988)
T=3

bl O
0@ | ™
tk ////

T=0  Target Pattern

Figure 2.1: Therecirculation algorithm, as proposed by Hinton and McClelland (1988). Activationis prop-
agated in four steps (7" = 0 — 3). 7' = 0 isthetarget pattern clamped on the visibleunits. 7" = 1 isthe
hidden unitscomputing their activation as afunction of thetarget inputs. 7' = 2 isthe visibleunitscomputing
their activations as afunction of the hidden unit stateat 7' = 1. 7" = 3 isthe hidden unit state computed as a
function of the reconstructed visible unit pattern.

ton and McClelland (1988) imposed an additiona constraint that the difference between the recon-
structed and the target visible-unit states (and therefore the difference between 5 and ;) be kept
small by using a “regression” function in updating the visible units. This function assigns output
state (computed at time T = 2) as aweighted average of the target output and the activation com-
puted from the current net input from the hidden units®:

or = Atp + (1 — A)f(me) (211)

Thus, the differencein a hidden-unit’ sactivation valuesis approximately equivalent to the difference
in net-inputstimes the slope of the activation function at one of the net-input values (¢'(7;)), aslong
as the linear approximation of the activation function given by the slope is reasonably valid. Even
if thisisnot the case, aslong as the activation function is monotonic, the error in this approximation
will not affect the sign of the resulting error derivative, only the magnitude. Nevertheless, errorsin
magnitude can lead to errorsin sign over the pattern-wise sum.

Sincethedifference of activationsin (2.10) computesthe derivative of the activation functionim-
plicitly, one can use the resulting learning rule for any reasonable (monotonic) activation function®.

?Note that Hinton and McClelland (1988) used linear output units to avoid the activation function derivative on the
output units, whereas cross-entropy is being used here to avoid this derivative. Thus, the function f(nx) in (2.11) will
either be linear or a sigmoid, depending on which assumptions are being used.

*Note that the output units have to use a sigmoidal function in order for the cross-entropy function to cancel out the
derivative.
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Thiscan beimportant for caseswherethe derivative of the activation functionisdifficult to compute.
Further, the activation variable might be easier to map onto the biological neuron, and it avoidsthe
need for the neuron to compute its activation derivative.

Note that dueto the above simplification, the learning rule for the recircul ation algorithm (based
on (2.10)) isthe same for both hidden and output units, and is essentially the delta-rule. This means
that locally avail ableactivation states of the pre and postsynaptic units can be used to perform error-
driven learning, which avoidsthe need for a biologically troublesome error backpropagation mech-
anism that is different from the normal propagation of activation through the network.

Phase-Based Learning and Generalized Recirculation

Whilethe recirculation algorithmis more biologically plausiblethan standard feedforward error
backpropagation, it is limited to learning auto-encoder problems. Further, the recirculation activa-
tion propagation sequence requires adetailed level of control over the flow of activationthrough the
network and itsinteraction with learning. However, the critical insights about computing error sig-
nals using differences in net input (or activation) terms can be applied to the more general case of
a standard three-layer network for learning input to output mappings. This section presents such a
generalized recirculation or GeneRec a gorithm, which uses standard recurrent activation dynam-
ics (as used in the AP and CHL algorithms) to communicate error signalsinstead of the recircula-
tion technique. Instead of using the four stages of activations used in recirculation, GeneRec uses
two activation phases as in the CHL algorithm described above. Thus, in terms of activation states,
GeneRec isidentical to the deterministic CHL agorithm, and the same notation is used to describe
it.

Thelearning rule for GeneRec issimply the application of the two key insightsfrom the recircu-
lation algorithm to the AP recurrent backpropagation algorithm instead of the feedforward BP algo-
rithm, which was the basis of the recirculation algorithm. If the recurrent connections between the
hidden and output units are ignored so that the error on the output layer is held constant, it is easy
to show that the fixed point solution to the iterative AP error updating equation (2.6) (i.e., where
dﬁ = 0 for hidden unit error y;) is of the same form as feedforward backpropagation. This means
that the same recirculation trick of computing the error signal as a difference of net input (or activa-
tion) terms can be used:

v = o'(m) D wryid
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Thus, assuming constant error on the output layer, the equilibrium error gradient computed for hid-
den unitsin AP is equivalent to the difference between the GeneRec equilibrium net input statesin
the plus and minus phases. Note that the minus phase activationsin GeneRec are identical to the AP
activation states. Thedifference of activation states can be substituted for net input differences times
the derivative of the activation function by the approximation introduced in recirculation, resulting
in the following equilibrium unit error gradient:

y° ~ hf—h7 (2.13)

Note that while the hidden unit states in GeneRec also reflect the constant net input from the
input layer (in addition to the output-layer activationsthat communicate the necessary error gradient
information), thiscancel sout inthe difference computation of (2.13). However, thisconstantinput to
the hidden unitsfrom theinput layer in both phasescan play therol e of the regression update equation
(2.12) inrecirculation. To the extent that thisinput is reasonably large and it biases the hidden units
towards one end of the sigmoid or the other, this biaswill tend to moderate the differences between
h; and hj , making their difference areasonabl e approximation to the differences of their respective
net inputstimes the slope of the activation function.

While the analysis presented above is useful for seeing how GeneRec equilibrium activation
states could approximate the equilibrium error gradient computed by AP, the AP algorithm actually
performsiterative updating of theerror variable(y;). Thus, it would haveto bethecase that iterative
updating of thissinglevariableis equivalent to the iterative updating of each of the activation states
(plus and minus) in GeneRec, and then taking the difference. Thisrelationship can be expressed by
writing GeneRec in the AP notation. First, we define two componentsto theerror variabley;, which
are effectively the same as the GeneRec plusand minus phase net inputs (ignoring the net input from
the input units, which is subtracted out in the end anyway):

dy;"

i —yF + ) wpte (2.14)
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dy:

d—z = —y; + Y wo(m) (2.15)
P

Then, we approximate the fixed point of y; with the difference of the fixed points of these two vari-
ables:
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which can be approximated by the subtraction of the GeneRec equilibrium activation states as dis-
cussed previously.
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Unfortunately, thevalidity of thisapproximationisnot guaranteed by any proof that thisauthor is
aware of. However, thereare several properties of the equationsthat |lend some credibility toit. First,
the part that is afunction of ¢; on the output units, y]-+ , is effectively a constant, and the other part,
y; , isjust the activation updating procedure that both GeneRec and AP have in common. Furthe,
given that the fixed point solutions of the GeneRec and AP equations are the same when recurrent
influencesareignored, and the pattern of recurrent influencesisgiven by the same set of weights, itis
likely that the additional effects of recurrence will beinthe same direction for both GeneRec and AP,
However, short of aproof, these arguments require substanti ation from simulation results comparing
the differences between the error derivatives computed by GeneRec and AP. The results presented
later in the paper confirm that GeneRec computes essentially the same error derivativesas AP in a
three layer network (as long as the weights are symmetric). This approximation deteriorates only
dightly in networks with multiple hidden layers, where the effects of recurrence are considerably
greater.

As in the recirculation algorithm, it is important for the above approximation that the weights
into the hidden unitsfrom the output unitshave the same val uesas the corresponding weightsthat the
output unitsreceivefrom the hidden units. Thisisthe familiar symmetric weight constraint, whichis
also necessary to prove that a network will settleinto astable equilibrium (Hopfield, 1984). Wewill
revisit this constraint several times during the paper. However, for the time being, we will assume
that the weights are symmetric.

Finally, virtually all deterministic recurrent networksincluding GeneRec suffer from the problem
that changes in weights based on gradient information computed on equilibrium activations might
not result inthe network settling into an activation state with lower error the next timearound. Thisis
dueto the fact that small weight changes can affect the settling trgjectory in unpredictable ways, re-
sultingin an entirely different equilibrium activation state than the one settled intolast time. Whileit
isimportant to keep in mind the possibility of discontinuitiesin the progression of activation states
over learning, there is some basis for optimism on thisissue. For example, in his justification of
the deterministic version of the Boltzmann machine (DBM) Hinton (1989b) supplies severa argu-
ments (which are substantiated by a number of empirical findings) justifying the assumption that
small weight changes will generally lead to a contiguous equilibrium state of unit activitiesin are-
current network.

To summarize, the learning rule for GeneRec that computes the error backpropagation gradient
locally viarecurrent activation propagation is the same as that for recirculation, having the form of
thedelta-rule. It can be stated asfollowsin terms of asending unit with activationa; and areceiving
unit with activation a;:

1 _ -
;Awij =a; (a,j —-a;) (2.17)
Asshown above, thislearning rulewill computethe same error derivativesasthe AP recurrent back-
propagation procedure under the following conditions:
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e Iterativeupdating of the error term (y;) can be approximated by the separate iterative updating
of the two activation terms (h].+ and ;") and then taking their difference.

e Thereciprocal weights are symmetric (w;z = wg;).

¢ Differencesin net inputstimes the activation function derivative can be approximated by dif-
ferencesin the activation values.

The Relationship Between GeneRec and CHL

The GeneRec learning rule given by (2.17) and the CHL learning rule given by (2.7) are both
simple expressions that involve a difference between plus and minus phase activations. This raises
the possibility that they could somehow be related to each other. Indeed, as described below, there
are two different ways in which GeneRec can be modified that, when combined, yield (2.7).

The GeneRec learning rule can be divided into two parts, one of which representsthe derivative
of theerror with respect to the unit (the difference of that unit’splusand minusactivations, aj —-a;),
and the other which represents the contribution of a particular weight to thiserror term (the sending
unit’sactivation, a; ). Itisthephaseof thislatter term whichisthesource of thefirst modification. In
standard feedforward or AP recurrent backpropagation, there is only one activation term associated
with each unit, which isequivalent to the minus-phase activation in the GeneRec phase-based frame-
work. Thus, the contribution of the sending unit isnaturally eval uated with respect to thisactivation,
and that iswhy a; appearsin the GeneRec learning rule.

However, given that GeneRec has another activation term corresponding to the plus-phase state
of the units, one might wonder if the derivative of the weight should be eval uated with respect to this
activationinstead. After all, the plus phase activation value will likely be a more accurate reflection
of the eventual contribution of a given unit after other weightsin the network are updated. In some
sense, this value anticipates the weight changes that will lead to having the correct target values
activated, and learning based on it might avoid some interference.

On the other hand, the minus phase activation reflects the actual contribution of the sending unit
tothecurrent error signal, and it seems reasonabl ethat credit assignment should bebased onit. Given
that there are arguments in favor of both phases, one approach would be to simply use the average
of both of them. Doing thisresultsin the following weight update rule:

lAwij = l(a,»_ +af)(at —a}) (2.18)
€ 2 ? 4 J J
Thisisthefirst way in which GeneRec needs to be modified to make it equivalent to CHL. Aswill
be discussed in detail below, this modification of GeneRec corresponds to a simple approximation
of the midpoint or second-order accurate Runge-K uttaintegration technique. The consequences of
the midpoint method for learning speed will be explored in the simulations reported bel ow.
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The second way inwhich GeneRec needsto be modified concernstheissue of symmetric weights.
In order for GeneRec to computetheerror gradient viareciproca weights, theseweightsneed to have
the same value (or at least the same relative magnitudes and signs) as the forward-going weights.
However, the basic GeneRec learning rule (2.17) does not preserve this symmetry:

a; (af — a;) # a,j_(a,'»" -a;) (2.19)

While simulations reported below indicate that GeneRec can learn and settle into stable attrac-
torswithout explicitly preserving the weight symmetry, a symmetry-preserving version of GeneRec
would guarantee that the computed error derivatives are always correct.

One straightforward way of ensuringweight symmetry issimply to usetheaverage (or more sim-
ply, the sum) of theweight changesthat woul d have been computed for each of thereciprocal weights
separately, and apply this same change to both weights. Thus, the symmetric GeneRec learning rule
is:

1
= g (et —a )t a(at — a-
JAwi = g (af —aj)+aj(af —a)

= a,ja,i + a,]-_a,f) —2a:a; (2.20)

Note that using this rule will not result in the weights being updated in the same way as AP back-
propagation, even though the error derivatives computed on the hidden unitswill still be the same.
Thus, even the symmetry preserving version of GeneRec is not identical to AP backpropagation.
Thisissuewill be explored in the simulations reported bel ow.

If both the midpoint method and symmetry preservation versions of GeneRec are combined, the
result isthe CHL agorithm:

dwy = S af +a))al - a)) + (6] +a))(aF - a7)
= (a,j_a,j') — (a,,_a,j_) (221)

Note that LeCun and Denker (1991) pointed out that CHL is related to a symmetric version of the
deltarule(i.e., GeneRec), but they did not incorporate the midpoint method, and thuswere only able
to show an approximation that ignored this aspect of the relationship between CHL and GeneRec.

The above derivation of CHL isinteresting for severa reasons. First, it isbased on error back-
propagation (via GeneRec), and not some kind of approximation to a stochastic system. Thiselim-
inates the problems associated with considering the graded activations of unitsin a deterministic
system to be expected values of some underlying probability distribution. For example, in order to
computethe probability of agiven activation state, one needsto assumethat theunitsare statistically
independent (see Hinton, 1989b; Peterson & Anderson, 1987). While Movellan (1990) showed that
CHL can be derived independent of the Boltzmann distribution and the concomitant mean-field as-
sumptions, his derivation does not apply when there are hidden unitsin the network.
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Figure 2.2: The midpoint method. At each point, atrial step istaken aong the derivative at that point, and
the derivative re-computed at the midpoint between the point and the trial step. This derivativeis then used
to take the actua step to the next point, and so on.

Further, the consequences of the relationship between CHL as derived from GeneRec and stan-
dard error backpropagation (i.e., that CHL usesthe faster midpoint integration method and imposes
a symmetry-preservation constraint) should be apparent in the relative learning properties of these
algorithms. Thus, this derivation might explain why CHL networks tend to learn faster than equiv-
alent backprop networks. Finally, another advantage of a derivation based on the BP framework is
that it issufficiently general asto allow CHL-likelearning rulesto be derived for avariety of different
activation functions or other network properties.

The Midpoint Method and the GeneRec Approximation to it

Aswas mentioned above, the use of the average of both the minus and plus phase activations of
the sending unit in the GeneRec learning rule corresponds to an approximation of a simple numeri-
cal integration techniquefor differential equations known as the midpoint or second-order accurate
Runge-Kutta method (Press, Flannery, Teukolsky, & Vetterling, 1988).

The midpoint method attains second-order accuracy without the explicit computation of second

derivatives by evaluating thefirst derivatives twice and combining the results so as to minimize the
integration error. It can beillustrated with the following simple differential equation:

dy(t)

7 Fy()) (2.22)

The simplest way in which the value of the variable y can be integrated is by using a difference
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equation approximation to the continuous differential equation:

Yr41 =y + €f (w1) + O(€%) (2.23)

with astep size of ¢, and an accuracy to first order in the Taylor series expansion of f(y;) (and thus
an error term of order €2). This integration technique is known as the forward Euler method, and
is commonly used in neural network gradient descent algorithms such as BP. By comparison with
(2.23), the midpoint method takes a“trial” step using the forward Euler method, resultingin an es-
timate of the next function value (denoted by the *):

Yre1 = Y + €f (yr) (2.24)

This estimate is then used to compute the actua step, which is the derivative computed at a point
halfway between the current y; and estimated y;, , values (see Figure 2.2):

_I_ *
v = v+ of (S0 1 o(e) (225
In terms of a Taylor series expansion of the function f(y;) at the point y;, evaluating the derivative
at the midpoint asin (2.25) cancels out the first-order error term (O (€?)), resultingin a method with
second-order accuracy (Press et a., 1988). Intuitively, the midpoint method is able to “anticipate”
the curvature of the gradient, and avoid going off too far in thewrong direction.

There are anumber of ways the midpoint method could be applied to error backpropagation. Per-
hapsthe most “ correct” way of doingit would beto run an entire batch of training patternsto compute
thetrial step weight derivative, and then run another batch of patterns with the weights half way be-
tween their current and the trial step valuesto get the actual weight changes to be made. However,
thiswould require roughly twice the number of computations per weight update as standard batch-
mode backpropagation, and the two passes of batch-mode learning is not particularly biologically
plausible.

The GeneRec version of the midpoint method as given by (2.18) isan approximation to the “ cor-
rect” versionin two respects:

1. The plus-phase activation value is used as an on-line estimate of the activations that would
result from aforward Euler step over the weights. This estimate has the advantages of being
avail ablewithout any additional computation, and it can be used with on-lineweight updating,
solving both of the major problems with the “correct” version. The relationship between the
plus-phase activation and aforward Euler step along the error gradient makes sense given that
theplus-phaseactivationisthe“target” state, whichisthereforein thedirection of reducingthe
error. Appendix A givesamore formal analysis of thisrelationship. This analysis showsthat
the plus phase activation, which doesnot depend on thelearning rate parameter, typically over-
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estimates the size of atrial Euler step. Thus, the use of the plus-phase activation means that
the precise midpoint is not actually being computed. Nevertheless, the anticipatory function
of thismethod is still served when thetrial step is exaggerated. Indeed, the simulation results
described below indicate that it can actually be advantageous in certain tasks to take a larger
trial step.

2. Themidpoint method isapplied only to the portion of the derivativethat distributesthe unit’s
error term amongst its incoming weights, and not to the computation of the error term itself.
Thus, the error term (aj — a; ) from (2.18) is the same as in the standard forward Euler in-
tegration method, and only the sending activations are evaluated at the midpoint between the
current and the trial step: (a; + a;). This selective application of the midpoint method is
particularly efficient for the case of on-line backpropagation because a midpoint value of the
unit error term, especially on a single-pattern basis, will typically be smaller than the origina
error value, sincethetria step isin the direction of reducing error. Thus, using the midpoint
error value would actually slow learning by reducing the effective learning rate.

To summarize, the advantage of using the approximate midpoint method represented by (2.18)
isthat it is so simple to compute, and it appears to reliably speed up learning while still using on-
linelearning. While other more sophisticated integrati on techni ques have been devel oped for batch-
mode BP (see Battiti, 1992 for areview), they typically require considerable additional computation
per step, and are not very biologically plausible.

The GeneRec Approximate Midpoint Method in Backpropagation

In order to validate the idea that CHL is equivalent to GeneRec using the approximation to the
midpoint method described above, this approximation can be implemented in a standard backprop-
agation network and the relative learning speed advantage of this method compared for the two dif-
ferent algorithms. If similar kindsof speedupsare found in both GeneRec and backpropagation, this
would support the derivation of CHL as given in this paper. Such comparisons are described in the
following simulation section.

There are two versions of the GeneRec approximate midpoint method that are relevant to con-
sider. One is a weight-based method which computes the sending unit’s trial step activation (k)
based on the tria step weights, and the other is a simpler approximation which uses the unit’s error
derivativeto estimate the trial step activation. In both cases, the resulting trial step activation state
h} is averaged with the current activation value ; to obtain a midpoint activation value which is
used as the sending activation state for backpropagation weight updating:

1 1,
ZA’w]’k = E(hj + h]’)(tk — o) (2.26)

This corresponds to the GeneRec version of the midpoint method as givenin (2.18). Notethat in a
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three-layer network, only the hidden-to-output weights are affected, since thereis no trial step acti-
vation vaue for theinput units.

In the BP weight-based midpoint approximation, the trial step activation is computed as if the
weights had been updated by the trial step weight error derivatives as follows:

-0FE
77»'( = S; | wi; + €
> ( T Owy )
R = o(n)) (2.27)

wheree;,; isalearning-rate-like constant that determinesthe size of thetrial step taken. Notethat, in
keeping with the GeneRec approximation, the actual learning rate ¢ is not included in this equation.
Thus, depending on the relative sizes of ¢;; and ¢, the estimated trial step activation given by (2.27)
can over-estimate the size of an actual tria step activation. In order to evaluate the effects of this
over-estimation, arange of ¢; values are explored.

The BP unit-error-based method uses the fact that each weight will be changed in proportion to
the derivative of the error with respect to the unit’s net input, %, to avoid the additional traversa
of theweights:

—0FE
Y — po4e F
77] n; + €t 37]]
R: = o(n)) (2.28)

where F is the number of receiving weights (fan-in). In this case, the trial step size parameter ¢;;
also reflects the average activity level over the input layer, since each input weight would actually
be changed by an amount proportional to the activity of the sending unit. The comments regarding
€:s above aso apply to this case.

Notethat it isthe unit-error-based version of the midpoint method that most closely corresponds
to the version used in CHL, since both are based on the error derivative with respect to the unit, not
theweightsintothe unit. Asthe simulationsreported bel ow indicate, the midpoint method can speed
up on-lineBP learning by nearly afactor of two. Further, the unit-error-based versionisquitesimple
and requireslittle extra computation to implement. Finally, whilethe unit-error-based version could
be applied directly to Almeida-Pineda backpropagation, the same is not true for the weight-based
version, which would require an additional activation settling based on thetria step weights. Thus,
in order to compare these two ways of implementing the approximate midpoint method, the results
presented below are for feedforward backprop networks.
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Simulation Experiments

Thefirst set of simulationsreported in this sectionisacomparison of thelearning speed between
severa varieties of GeneRec (including symmetric, midpoint, and CHL) and BP with and without
the midpoint integration method. This givesa general sense of the comparative learning properties
of the different algorithms, and providesempirical evidencein support of the predicted rel ationships
amongst the algorithmsinvestigated. In the second set of simulations, a detailed comparison of the
weight derivatives computed by the Almeida-Pineda version of backpropagation and GeneRec is
performed, showing that they both compute the same error derivatives under certain conditions.

Learning Speed Comparisons

Whileit is notorioudly difficult to perform useful comparisons between different learning algo-
rithms, such comparisons could provide some empirical evidence necessary for evaluating the the-
oretical claims made above in the derivation of the GeneRec a gorithm and itsrelationshipto CHL.
Notethat theintent of thiscomparisonisnot to promote the use of one algorithm over another, which
would require a much broader sample of commonly-used speedup techniques for backpropagation.
The derivation of GeneRec based on AP backpropagation and its relationship with CHL via the
approximate midpoint method makes specific predictions about which agorithms will learn faster
and more reliably than others, and, to the extent that the following empirical results are consistent
with these predictions, this provides support for the above analysis. In particular, it is predicted that
GeneRec will be able to solve difficult problemsin roughly the same order of epochs asthe AP al-
gorithm, and that weight symmetry will play an important role in the ahility of GeneRec to solve
problems. Further, it is predicted that the midpoint versions of both GeneRec and backprop will
learn faster than the standard versions.

Overal, the results are consistent with these predictions. It is apparent that GeneRec networks
can learn difficult tasks, and further that the midpoint integration method appears to speed up learn-
ing in both GeneRec and backpropagation networks. This is consistent with the idea that CHL is
equivalent to GeneRec using this midpoint method. Finally, adding the symmetry preservation con-
straint to GeneRec generally increases the number of networksthat solvethetask, except inthe case
of the4-2-4 encoder for reasonsthat are explained below. Thisis consistent withideathat symmetry
isimportant for computing the correct error derivatives.

Four different simulation tasks were studied: XOR (with 2 hidden units), a 4-2-4 encoder, the
“shifter” task (Galland & Hinton, 1991), and the “family trees’ task of Hinton (1986) (with 18 units
per hidden and encoding layer). All networks used 0-to-1 valued sigmoidal units. The backprop-
agation networks used the cross-entropy error function, with an “error tolerance” of .05, so that if
the output activation was within .05 of the target, the unit had no error. In the GeneRec networks,
activation valueswere bounded between .05 and .95. In both the GeneRec and AP backpropagation
networks, initial activation valueswere set to 0, and a step size (dt) of .2 was used to update the ac-
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Euler Midpoint
Err Method | FFvs. Rec || NonSym Sym NonSym Sym
BP FF BP — BPMid —
Rec AP — — —
Act Diff FF — — — —
Rec GR GRSym | GRMid CHL

Table 2.3: Relationship of the agorithmstested with respect to the use of local activationsvs. explicit back-
propagation (BP, Act Diff) to compute error derivatives, feedforward vs. recurrent (FF, Rec), forward Euler
vs. the midpoint method (Euler, Midpoint), and weight symmetrization (NonSym, Sym). GR is GeneRec.

tivations. Settling was stopped when the maximum change in activation (before multiplying by dt)
was less than .01. 50 networks with random initial weights (symmetric for the GeneRec networks)
wererun for XOR and the 4-2-4 encoder, and 10 for the shifter and family trees problems. Thetrain-
ing criterion for XOR and the 4-2-4 encoder was .1 total-sum-of-sgquares error, and the criterion for
the shifter and family trees problemswasthat all unitshad to be on theright side of .5 for all patterns.
Networks were stopped after 5,000 epochsiif they had not yet solved the XOR, 4-2-4 encoder and
shifter problems, and 1,000 epochs for family trees.

A simple one-dimensional grid search was performed over the learning rate parameter in order
to determine the fastest average learning speed for agiven algorithm on a given problem. For XOR,
the 4-2-4 encoder, and the shifter tasks, the grid was at no less than .05 increments, while a grid
of .01 was used for the family trees problem. No momentum or any other maodifications to generic
backpropagation were used, and weightswere updated after every pattern, with patterns presentedin
arandomly permuted order every epoch. The results presented below are from the fastest networks
for which 50% or more did not get stuck in alocal minimum. Thiscriterion isreally only important
for the XOR problem, since the algorithms did not typically get stuck on the other problems.

The agorithms compared were as follows (see table 2.3):

BP Standard feedforward error backpropagation using the cross-entropy error function.
AP Almeida-Pinedabackpropagation in arecurrent network using the cross-entropy error function.

BP Mid Wt Feedforward error backpropagation with the weight-based version of the approximate
midpoint (2.27). Severa different values of thetrial step size parameter ¢;; were used in order
to determinetheeffects of overestimatingthetrial step asisthe casewith GeneRec. Thevalues
were: 1, 5, 10, and 25 for XOR and the 4-2-4 encoder, .5, 1, and 2 for the shifter problem,
and .05, .1, .2, and .5 for the family trees problem. Thelarge tria step sizes resulted in faster
learning in small networks, but progressively smaller step sizes were necessary for the larger
problems.

BP Mid Un Feedforward error backpropagation with the unit-error based version of the midpoint
integration method (2.28). The same trial step size parameters asin BP Mid Wt were used.
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| Algorithm | ¢ N Epcs SEM
BP 1.95 37 305 58
AP 140 35 164 23

BPMidwWwtl | 1.8 39 268 59
BPMidWt5 | 025 25 326 79
BPMidWt10 | 0.25 34 218 25
BPMidWt25 | 035 27 215 40
BPMidUnl | 140 40 222 28
BPMidUn5 | 1.05 34 138 38
BPMidUn10 | 040 26 222 10
BPMidUn25 | 030 31 178 37

GR 020 9f 3795 267
GR Sym 060 31 334 71
GR Mid 175 33 97 46
CHL 180 28 59 18

Table 2.4: Results for the XOR problem. ¢ isthe optimal learning rate, N is the number of networks that
successfully solved the problem (out of 50, minimum of 25), Epcs is the mean number of epochs required to
reach criterion, and SEM is the standard error of this mean. Algorithms are as described in the text. 1 Note
that thiswas the best performance for the GR networks.

GR The basic GeneRec agorithm (2.17).
GR Sym GeneRec with the symmetry preservation constraint (2.20).
GR Mid GeneRec with the approximate midpoint method (2.18).

CHL GeneRec with both symmetry and approximate midpoint method, whichisequivaentto CHL
(2.7).

XOR and the 4-2-4 Encoder

Theresultsfor the XOR problemare shownintable 2.4, and thosefor the 4-2-4 encoder are shown
intable2.5. Theseresultsarelargely consistent with the predictionsmade above, with the exception
of an apparent interaction between the 4-2-4 encoder problem and the use of weight symmetrization
in GeneRec. Thus, it is apparent that the plain GeneRec algorithm is not very successful or fast,
and that weight symmetrization is necessary to improve the success rate (in the XOR task) and the
learning speed (in the 4-2-4 encoder). Aswill be shown in more detail below, the symmetrization
constraint isessential for computing the correct error derivativesin GeneRec.

However, the symmetry constraint also effectively limits the range of weight space that can be
searched by the learning algorithm (only symmetric weight configurations can be learned), which
might affect itsability to get out of bad initial weight configurations. Thiseffect may be compounded
inan encoder problem, wheretheinput-to-hiddenweightsal so have atendency to become symmetric
with the hidden-to-output weights. Thus, while the symmetry constraint isimportant for being able
to computethe correct error derivatives, it also introduces an additional constraint which canimpair



O'Reilly 53

| Algorithm | ¢ N Epcs SEM
BP 240 50 60 51
AP 2.80 50 54 3.6

BPMidWt1 | 1.70 50 60 4.3
BPMidWt5 | 1.65 50 48 2.8
BPMidWt10 | 235 50 45 3.6
BPMidWt25 | 225 50 37 3.0
BPMidUnl | 220 50 54 4.2
BPMidUn5 | 210 50 42 25
BPMidUn10 | 210 50 40 29
BPMidUn25 | 1.95 50 34 18

GR 060 45 418 28
GR Sym 140 28 88 29
GR Mid 240 46 60 34
CHL 120 28 77 18

Table 2.5: Resultsfor the 4-2-4 encoder problem. ¢ isthe optimal learning rate, N isthe number of networks
that successfully solved the problem (out of 50), minimum of 25, Epcsisthe mean number of epochs required
to reach criterion, and SEM isthe standard error of thismean. Algorithmsare as described in the text.

learning, sometimes dramatically (asin the case of the 4-2-4 encoder). Notethat on larger and more
complicated taskslike the shifter and family trees described bel ow, the advantages of computing the
correct derivatives begin to outweigh the disadvantages of the additional symmetry constraint.

The other main prediction from the analysisis that the approximate midpoint method will result
in faster learning, both in BP and GeneRec. This appears to be the case, where the speedup relative
to regular backprop was nearly two-fold for the unit-error based version with atrial step size of 25.
The genera advantage of the unit-error over the weight based midpoint method in BP isinteresting
considering that this corresponds to the GeneRec version of the midpoint method. The speedup in
GeneRec for both the CHL vs GR Sym and GR Mid vs GR comparisons was substantial in general.
Further, it is interesting that the approximate midpoint method alone (without the symmetrization
constraint) can enable the GeneRec algorithm to successfully solve problems. Indeed, on both of
these tasks, GR Mid performed better than GR Sym. This might be attributable to the ability of the
midpoint method to compute better weight derivatives which are less affected by the inaccuracies
introduced by the lack of weight symmetry. However, note that while this seems to hold for all of
the three-layer networks studied, it breaks down in the family trees task which requires error deriva-
tivesto be passed back through multiple hidden layers. Also, only onthe 4-2-4 encoder did GR Mid
perform better than CHL, indicating that there is generally an advantage to having the correct error
derivatives viaweight symmetrization in addition to using the midpoint method.

An additional finding is that there appears to be an advantage for the use of arecurrent network
over afeedforward one, based on acomparison of APvsBP results. Thiscan be explained by thefact
that small weight changes in a recurrent network can lead to more dramatic activation state differ-
encesthanin afeedforward network. In effect, therecurrent network hasto do lesswork to achieve a
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| Algorithm | ¢ N Epcs SEM
BP 125 10 76.2 6.4
AP 1.35 10 56.8 4.2

BPMidWt.5| 040 10 636 4.8
BPMidWt1 | 045 10 425 29
BPMidWt2 | 035 10 47.0 35
BPMidUn.5| 030 10 480 17
BPMidUnl | 035 10 412 3.3
BPMidUn2 | 015 10 518 3.8

GR 010 1 1650 —
GR Sym 090 10 105 5.0
GR Mid 065 10 842 134
CHL 070 10 427 22

Table 2.6: Results for the shifter task. ¢ isthe optima learning rate, N is the number of networks that suc-
cessfully solved the problem (out of 10), Epcs isthe mean number of epochs required to reach criterion, and
SEM isthe standard error of thismean. Algorithmsare as described in the text.

given set of activation states than does afeedforward network. Thisadvantagefor recurrency, which
should be present in GeneRec, is probably partially offset by the additional weight symmetry con-
straint. Further, recurrency appears to become aliability in networks with multiple hidden layers,
based on the family trees results presented bel ow.

The Shifter Task

The shifter problem is alarger task than XOR and the 4-2-4 encoder, and thus might provide a
more realistic barometer of performance on typical tasks.” The version of the shifter problem used
here had two 4 bit input patterns, one of which was a shifted version of the other. There were three
values of shift, -1, 0, and 1, corresponding to one bit to the left, the same, and one bit to the right
(with wrap-around). Of the 16 possible binary patterns on 4 bits, 4 were unsuitable because they
result in the same pattern when shifted right or left (1111, 1010, 0101, and 0000). Thus, there were
36 training patterns (the 12 bit patterns shifted in each of 3 directions). The task was to classify the
shift direction by activating one of 3 output units. Whilelarger versions of thistask (more levels of
shift, more bitsin theinput) were explored, this configuration proved the most difficult (in terms of
epochs) for a standard BP network to solve.

The results, shown in table 2.6, provide clearer support for the predicted relationshipsthan the
two previous tasks. In particular, the midpoint-based speedup is comparable between the BP and
GeneRec cases, and the role of symmetry in GeneRec is unambiguously important for solving the
task, asis evident from the almost complete failure of the non-symmetric version to learn the prob-
lem. However, itisinterestingthat even in thismore complicated problemthe use of the approximate
midpoint method without the additional symmetrizing constraint enables the GeneRec networksto

®Note that other common tasks like digit recognition or other classificationtasks were found to beso easily solved by a
standard BP network (under 10 epochs), that they did not provide auseful dynamicrangeto makethe desired comparisons.
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| Algorithm | ¢ N Epcs SEM
BP 039 10 129 3.0
AP 030 10 181 11

BPMidWt.05| 037 10 131 6.4
BPMidWt.1 | 038 10 130 5.1
BPMidWt.2 | 021 10 136 6.0
BPMidUn.05| 024 10 127 6.4
BPMiduUn.1 | 023 10 114 6.7
BPMiduUn.2 | 019 10 123 8.7

GR — 0 — —
GR Sym 020 10 409 14
GR Mid — 0 — —
CHL 010 10 328 23

Table 2.7 Resultsfor the family trees problem. ¢ is the optimal learning rate, N is the number of networks
that successfully solved the problem (out of 10, minimum of 5), Epcs is the mean number of epochs required
to reach criterion, and SEM isthe standard error of thismean. Algorithmsare as described in the text.

learn the problem. Neverthel ess, the combination of the approximate midpoint method and the sym-
metrizing constraint (i.e., the CHL algorithm) performs better than either alone.

Asinthe previoustasks, there appears to be an advantage for the use of arecurrent network over
a non-recurrent one, as evidenced by the faster learning of AP compared to BP.

The Family Trees Task

Aswas mentioned in the introduction, the family trees problem Hinton (1986) is of particular in-
terest because Galland (1993) reported that he was unableto train CHL to solvethisproblem. While
| was unable to get a CHL network to learn the problem with the same number of hidden units as
was used in the original backprop version of thistask (6 “encoding” units per input/output layer, and
12 central hidden units), simply increasing the number of encoding unitsto 12 was enough to allow
CHL to learn the task, although not with 100% reliability. Thus, the learning rate search was per-
formed on networkswith 18 encoding and 18 hidden unitsto ensure that networks were capabl e of
learning.

As can be seen from theresults shown intable 2.7, the CHL networkswere ableto reliably solve
thistask within aroughly comparable number of epochs asthe AP networks. Notethat the recurrent
networks (GeneRec and AP) appear to be at a disadvantagerelativeto feedforward BP? on thistask,
probably dueto thedifficulty of shaping theappropriate attractors over multiple hidden layers. Also,
symmetry preservation appearsto be critical for GeneRec learning in deep networks, since GeneRec
networks without this were unabl e to solve thistask (even with the midpoint method).

81t should be noted that the performance of feedforward BP on this task is much faster than previously reported results.
Thisismost likely dueto the useof on-linelearning and not using momentum, which enablesthe network to take advantage
of the noise due to the random order of the training patterns to break the symmetry of the error signals generated in the
problem and distinguish amongst the different training patterns.
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The comparable performance of AP and CHL supports the derivation of CHL viathe GeneRec
algorithm as essentially a form of backpropagation, and calsinto question the anayses of Galland
(1993) regarding the limitations of CHL as a deterministic approximation to a Boltzmann machine.
Itisdifficult to determinewhat isresponsiblefor thefailuretolearn thefamily trees problem reported
inGalland (1993), sincethereare several differencesintheway those networkswere run compared to
the onesdescribed above, includingthe use of an annealing schedul e, not using the .05, .95 activation
cutoff, using activations with -1 to +1 range, using batch mode instead of on-line weight updating,
and using activation-based as opposed to net-input-based settling.

Finally, only the unit-error based midpoint method in backpropagation showed a learning speed
advantage in thistask. Thisis consistent with the trend of the previous results. The advantage of
the unit-error based midpoint method might be due to thereliance on the derivative of the error with
respect to the hidden unit itself, which could be a more reliable indication of the curvature of the
derivative than the weight derivatives used in the other method.

The GeneRec Approximation to AP BP

The analysis presented earlier in the paper shows that GeneRec should compute the same error
derivatives as the Almeida-Pineda version of error backpropagation in a recurrent network if the
following conditions hold:

¢ Thedifference of the plus and minus phase activation termsin GeneRec, which are updated in
separate iterative activation settling phases, can be used to compute a unit’serror term instead
of theiterative update of the difference itself, which iswhat Almeida-Pineda uses.

e Thereciprocal weightsare symmetric. This enables the activation signals from the output to
the hidden units (via the recurrent weights) to reflect the contribution that the hidden units
made to the output error (viathe forward-going weights).

¢ Thedifference of activationsin the plusand minus phasesisareasonabl e approximationto the
difference of net inputstimesthe derivative of the sigmoidal activationfunction. Notethat this
only affects the overall magnitude of the weight derivatives, not their direction.

In order to evaluate the extent to which these conditions are violated and the effect that this has
on learning in GeneRec, two identical networkswere run side-by-side on the same sequence of train-
ing patterns, with one network using AP (with the cross-entropy error function) to computethe error
derivatives, and the other using GeneRec. The standard 4-2-4 encoder problem was used. The ex-
tent to which GeneRec error derivativesare the same as those computed by AP was measured by the
normalized dot product between theweight derivativevectors computed by thetwo algorithms. This
comparison was made for the input-to-hidden weights (I = H) sincethey reflect the error deriva-
tives computed by the hidden units. Sincethe hidden-to-output weightsare driven by theerror signa
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a) GeneRec vs. Almeida-Pineda b) GeneRec vs. Almeida-Pineda
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Figure 2.3: Correspondence (average normalized dot product) of weight derivatives computed by GeneRec
and Almeida-Pineda algorithms for two random initial weight configurations. The weights were yoked to
those computed by GeneRec, and symmetry was preserved by the brute force method. The correspondence
isnearly perfect until late in thetraining of the stuck network, at which point the network has developed very
large weights, which appear to affect the accuracy of the computed weight derivatives.

on the output units, which is given by the environment, these derivatives were aways identical be-
tween the two networks. In order to control for weight differences that might accumulate over time
in the two networks, the weights were copied from the GeneRec network to the AP network after
each weight update. Networks were also run without this*yoking” of the weightsin order to deter-
mine how different the overall learning tragjectory was between the two algorithms given the same
initial weight values. The weights were alwaysinitialized to be symmetric.

Aswasnoted above, the basic GeneRec a gorithm does not preserve the symmetry of theweights,
which will undoubtedly affect the computation of error gradients. The extent of symmetry was mea-
sured by thenormalized dot product between thereciprocal hidden and output weights. Itispredicted
that this symmetry measure will determine in large part the extent to which GeneRec computesthe
sameerror derivativesas AP. In order to test thishypothesis, two methodsfor preserving the symme-
try of the weights during learning were also used. One method was to use the symmetry-preserving
learning rule shown in (2.20), and the other was a “brute-force” method where reciprocal weights
were set to theaverage of thetwo values after they were updated. The advantage of thislater method
isthat, unlikethe (2.20) rule, it does not change the computed weight changes.

The parameters used in the networks were: activation step size (dt) of .2, initial activations set
to 0, settling cutoff at .01 maximum changein activation, learning rate of .6, and initial weights uni-
formly random between +.5.

Themain result of thisanalysisisthat the GeneRec a gorithm typically computes essentially the
same error derivatives as AP except when the weights are not symmetric. This can be seen in Fig-
ure 2.3, which showstwo different networks running with weights yoked and using the brute-force
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a) GeneRec vs. Almeida-Pineda b) GeneRec vs. Almeida-Pineda
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Figure 2.4: Correspondence (average normalized dot product) of weight derivatives computed by GeneRec
and Almeida-Pineda algorithms for two random initial weight configurations. The weights were yoked to
those computed by GeneRec. No symmetry was imposed on the weights. The correspondence appears to be
roughly correlated with the extent to which the weights are symmetric.

symmetrizing method. Theweight derivatives computed by GeneRec haveanormalized dot product
with those computed by AP that is nearly always 1, except when the weights got very large in the
network that was stuck in alocal minimum. This result shows that GeneRec usually computes the
appropriate backpropagation error gradient based on the difference of equilibrium activation states
in the plus and minus phases, supporting the approximation given in (2.16).

In contrast, when no weight symmetrizing is being enforced, the correspondence between the
GeneRec and AP weight derivatives appears to be correlated with the extent to which the weights
are symmetric, as can be seen in Figure 2.4. Indeed, based on results of many runs (not shown), the
ability of the GeneRec network to solvethe task appeared to be correlated with the extent to which
the weights remain symmetric. Note that even without explicit weight symmetrization or a symme-
try preserving learning rule, the weights can become symmetric due to afortuitous correspondence
between weight changes on the reciprocal sets of weights.

Using the symmetry preserving rule (2.20) resulted in weight changes that were typically dif-
ferent from those computed by AP, even though the above results show that the error derivatives at
the hidden unit were correct. Thisis simply due to the fact that symmetric GeneRec has an addi-
tional symmetry preserving term which is not present in AP. Neverthel ess, the symmetric GeneRec
algorithm resulted in non-yoked learning trajectories which mirrored those of the AP algorithm re-
markably closely. A representative exampleisshownin Figure 2.5. It isdifficult to be certain about
the source of this correspondence, which did not occur in non-yoked networks using the brute-force
symmetry preservation method.
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Figure 2.5: Learning trgectories and error derivative correspondence for non-yoked AP and GeneRec net-
works with the same initial weights. a) Shows standard GeneRec without any weight symmetrization. b)
shows GeneRec with the symmetry preserving learning rule. Even though thisrule does not result in the net-
works computing the same weight updates, they follow aremarkably similar learning trgjectory. Thisis not
the case for regular GeneRec.
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Figure2.6: a) Correspondence (average normalized dot product) of weight derivativescomputed by GeneRec
and Almeida-Pineda agorithms for a family trees network. The weights were yoked to those computed by
GeneRec, and symmetry was preserved by the brute force method. 7 = A isthe “agent input” to the “ agent
encoding” hidden layer weights, A = H isthe “agent encoding” to the central hidden layer weights, and
H = P isthehidden layer to the “patient encoding” layer weights. The correspondence isnot as good as a
that for thethree layer network, but remains largely above .9. b) Showsthelearning trgjectory for just the AP
algorithm, which is not smooth like feedforward BP.
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Finally, there is some question asto whether GeneRec will compute the correct error derivatives
in anetwork with multiplehiddenlayers, where the differencesin theway GeneRec and AP compute
the error terms might become more apparent due to the greater influence of recurrent setting in both
the minus and plus phases. Also, based on the kinds of approximations made in deriving CHL as
a deterministic Boltzmann machine, and the results of simulations, Galland (1993) concluded that
the limitations of CHL become more apparent as the number of hidden layers are increased (i.e., in
“deep” networks).

To addressthe performance of GeneRec in adeep network, the same analysisas described above
was performed on the family trees network (Hinton, 1986) with the brute-force symmetrization and
weight yoking. This network has three layers of hidden units. Normalized dot-product measure-
ments of the error derivatives computed on the weightsfrom the “agent input” to the “ agent encod-
ing” hiddenlayer I = A, “agent encoding” tothe central hiddenlayer A = H, andthe hidden layer
to the “ patient encoding” layer H = P. Theseweightsare 3, 2, and 1 hidden layers (respectively)
removed from the output layer. Figure 2.6a shows that GeneRec still computes largely the same er-
ror derivativesas AP backpropagation evenin this case. The normalized dot product measureswere
usually greater than .9, and never went below .7. The discrepancy between GeneRec and AP tended
to increase as training proceeded for the deeper weights (I = A). This showsthat as the weights
got larger, the differences between GeneRec and AP due to the way that the error is computed over
recurrent settling became magnified.

One of the primary problems with CHL that was emphasized by Galland (1993) is the jumpy
character of the error function over learning, which was argued to not provide much useful guidance
in learning. However, Figure 2.6b shows that the AP algorithm also suffers from a bumpy error
surface. The frequency of the AP bumps seems to be a bit lower, but the amplitude can be higher.
Thisindicatesthat the bumpinessis due to the recurrent nature of the network, where small weight
changes can lead to very different activation states, and not to a deficiency in the learning algorithm
per se.

Possible Biologica |mplementation of GeneRec Learning

The preceding analysis and simulations show that the GeneRec family of phase-based, error-
driven learning rules can approximate error backpropagation using locally available activation vari-
ables. Thefact that these variablesare availablelocally makesit more plausible that such alearning
rule could be employed by real neurons. Also, the use of activation-based signals (as opposed to
error or other variables) increases plausibility because it isrelatively straightforward to map unit ac-
tivation onto neural variables such as time-averaged membrane potential or spiking rate. However,
there are three main features of the GeneRec a gorithm that could potentially be problematic from a
biological perspective: 1) weight symmetry; 2) the origin of plusand minus phase activation states;
3) the ability of these activation states to influence synaptic modification according to the learning
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rule. These issues are addressed below in the context of the CHL version of GeneRec (2.7), since
it isthe overal best performer, and has a simpler form than the other GeneRec versions. Since the
neocortex is the single most important brain area for the majority of cognitive phenomena, it isthe
focus of thisdiscussion.

Weight Symmetry in the Cortex

There are two ways in which the biologica plausibility of the weight symmetry requirement in
GeneRec (which was shown above to be important for computing the correct error gradient) can
be addressed. One isto show that exact symmetry is not critical to the proper functioning of the
algorithm, so that only a rough form of symmetry would be required of the biology. The other isto
show that at least thisrough form of symmetry isactualy present in the cortex. Data consistent with
these arguments are summarized briefly here.

As afirst-order point, Hinton (1989b) noted that a symmetry preserving learning algorithm like
CHL, when combined with weight decay, will automatically lead to symmetric weightseven if they
did not start out that way. However, this assumes that all of the units are connected to each other
in thefirst place. Thismore difficult case of connection asymmetry wasinvestigatedin Galland and
Hinton (1991) for the CHL learning algorithm. 1t wasfound that thealgorithmwasstill effective even
when all of the connectivity wasasymmetric (i.e., for each pair of non-input units, only one of thetwo
possi bl e connecti onsbetween them existed). Thisrobustnesscan be attributedto aredundancy inthe
waysinwhich theerror signal information can be obtained (i.e., agiven hidden unit could obtain the
error signa directly from the output units, or indirectly through connectionsto other hidden units).
Also, note that the absence of any connection at all isvery different from the presence of connection
with anon-symmetricweight val ue, whichistheform of asymmetry that wasfound to be problematic
intheabove anaysis. Intheformer case, only asubset of theerror gradient informationisavailable,
while the latter case can result in specifically wrong gradient information due to the influence of
the non-symmetric weight. Due to the automatic symmetrization property of CHL, the latter caseis
unlikely to be a problem.

In terms of biological evidence for symmetric connectivity, thereis some indication that the cor-
tex isat least roughly symmetrically connected. At thelevel of identifiable anatomical subregionsof
cortex, the vast mgjority of areas (at least within the visua cortex) are symmetrically connected to
each other. That is, if area A projectsto area B, area A also receives aprojectionfrom areaB (Felle-
man & Van Essen, 1991). At the level of cortical columns or “stripes” within the prefrontal cortex
of the monkey, Levitt, Lewis, Yoshioka, and Lund (1993) showed that connectivity was symmet-
ric between interconnected stripes. Thus, if a neuron received projectionsfrom neuronsin a given
stripe, it also projected to neuronsin that stripe. The more detailed level of individual neuron sym-
metric connectivity isdifficult to assess empirically, but there is at least no evidence that it does not
exist. Further, given that there is evidence for at least rough symmetry, detailed symmetry may not
be critical since, asdemonstrated by Galland and Hinton (1991), CHL can use asymmetrical connec-
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tivity aslong asthereis some way of obtaining reciprocal information through a subset of symmetric
connectionsor indirectly via other neuronsin the same area.

Phase-Based Activationsin the Cortex

Theorigin of the phase-based activationsthat are central to the GeneRec algorithmtouchesat the
heart of perhaps the most controversia aspect of error-driven learning in the cortex: “where does
the teaching signal come from?’ In GeneRec, the teaching signd is just the plus-phase activation
state. Thus, unlike standard backpropagation, GeneRec suggeststhat the teaching signal isjust an-
other state of “experience” in the network. One can interpret this state as that of experiencing the
actual outcome of some previous conditions. Thus, the minus phase can be thought of as the expec-
tation of the outcome given these conditions. For example, after hearing the first three words of a
sentence, an expectation will develop of which word is likely to come next. The state of the neu-
rons upon generating this expectation is the minus phase. The experience of hearing or reading the
actual word that comes next establishes a subsequent locomotive state of activation, which serves
as the plus phase. This idea that the brain is constantly generating expectations about subsequent
events, and that the discrepancies between these expectations and subsequent outcomes can be used
for error-driven learning, has been suggested by McClelland (1994) as a psychologica interpreta-
tion of the backpropagation learning procedure. It is particularly attractive for the GeneRec version
of backpropagation, which uses only activation states, because it requires no additional mechanisms
for providing specific teaching signal sother than the effects of experience on neural activation states
in amanner that iswidely believed to be taking place in the cortex anyway.

Further, there is evidence from ERP recordings of electrical activity over the scalp during be-
havioral tasksthat cortical activation states reflect expectationsand are sensitiveto differential out-
comes. For example, the widely-studied P300 wave, which is a positive-going wave that occurs
around 300 msec after stimulus onset, is considered to measure a violation of subjective expectancy
which is determined by preceding experience over both the short and long term (Hillyard & Picton,
1987). In more formal terms, Sutton, Braren, Zubin, and John (1965) showed that the P300 ampli-
tude is determined by the amount of prior uncertainty that is resolved by the processing of a given
event. Thus, the nature of the P300 is consistent with the ideathat it represents a plus phase wave of
activation following in arelatively short time-frame the development of minus phase expectations.
While the specific properties of the P300 itself might be due to speciaized neural mechanisms for
monitoring discrepancies between expectations and outcomes, its presence suggests the possibility
that neurons in the mammalian neocortex experience two states of activation in relatively rapid suc-
cession, one corresponding to expectation and the other corresponding to outcome.

Finally, note that for most of the GeneRec variants, it seems that the neuron needs to have both
the plusand minus phase activation signalsin reasonably close temporal proximity in order to adjust

"Thisis just to demonstrate that such expectations are being generated and it is salient when they are violated.
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Minus Phase Variables

Plus Phase Variables | a;a; = 0 ([Ca’t];near 0) a; a; =1 ([Ca’"]; eevated)
a,faj ~0 Awij =0 A’wi]' = — (LTD)
a,fa,}" ~ 1 Awij =+ (LTP) Awij = 0*

Table 2.8: Directions of weight change according to the CHL rulefor four qualitative conditions, consisting
of the combinationsof two qualitativelevels of minus and plus phase activation coproduct values. The minus
phase activation coproduct is thought to correspond to [C'a?*];. Increases in synaptic efficacy correspond to
long-term potentiation (LTP) and decreases are long-term depression (LTD). * Thiscell isnot consistent with
the biol ogical mechanism because both [C'a?*]; and synaptic activity lead to LTP, not the absence of LTP. See
text for adiscussion of thispoint.

its synapses based on both values. Thisis consistent with the relatively rapid expectation-outcome
interpretation given above. However, CHL isaspecia case, sinceit issimply thedifference between
the coproduct of same-phase activations, which could potentially be computed by performing sim-
ple Hebbian associative learning for the plus phase at any point, and at any other point, performing
anti-Hebbian |earning on the minus phase activations (Hinton & Segjnowski, 1986). Thisleaves open
the problems of how the brain would know when to change the sign of the weight change, and how
thiskind of global switch could be implemented. Also, people are capable of learning thingsrela-
tively quickly (within secondsor at |east minutes), so thisphase switchingisunlikely tobeafunction
of the difference between REM sleep and waking behavior, as has been suggested for phase-based
learning algorithms (Hinton & Sejnowski, 1986; Linsker, 1992; Crick & Mitchison, 1983). While
it might be possibleto come up with answers to these problems, a temporally local mechanism like
that suggested above seems more plausible.

Synaptic Modification Mechanisms

Having suggested that the minusand plus phase activationsfoll ow each other inrapid succession,
it remains to be shown how these two activation states could influence synaptic modification in a
manner largely consistent with the CHL version of GeneRec (2.7). It turns out that the biological
mechanism proposed below accounts for only three out of four different qualitative ranges of the
sign of the weight change required by CHL (see table 2.8). Specifically, the proposed mechanism
predicts weight increase to occur when both the pre and postsynaptic neurons are active in both the
plusand minus phases, whereas CHL predictsthat theweight changein thiscondition should bezero.
Thus, the proposed mechanism corresponds to a combination of CHL and a Hebbian-stylelearning
rule, the computational implications of which are the subject of the remainder of thisthesis, which
shows that the combination of error-driven and associative learning can be generally beneficial for
solving many different kinds of tasks. However, for the purposes of the present paper, the crucial
aspect of the following mechanism isthat it provides the error correction term, which occurs when
the synaptic coproduct a;a; waslarger in the minus phasethan in the plusphase. Thisisthedefining
aspect of the error-driven learning performed by CHL, since the other qualitative ranges of the CHL
learning rule are similar to standard Hebbian learning, asis evident from table 2.8.
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For GeneRec-style learning to occur at acellular and synaptic level, the neuron needsto be able
to retain sometrace of the minus phase activati on statethrough the time when the neuron experiences
its plus phase activation state. Reasoning from the ERP data described above, thistime period might
be around 300 millisecondsor so. A likely candidate for the minus phase traceisintracellular Ca?*
([Ca**];), which enters the postsynaptic areaviaNMDA channelsif both pre and postsynaptic neu-
rons are active. To implement a GeneRec-style learning rule, this minus phase [C'a?*]; trace needs
to interact with the subsequent plus phase activity to determine if the synapseis potentiated (LTP)
or depressed (LTD). In what follows, the term synaptic activity will be used to denote the activation
coproduct term a;a;, which is effectively what determinestheamount of [Ca?*]; that entersthrough
the NMDA channel (Collingridge & Bliss, 1987).

There aretwo basic categories of mechanism which can providethecrucial error-correcting mod-
ulation of the sign of synaptic modification required by CHL . One such mechanism involvesaninter-
action between membrane potential or synaptic activity and [Ca?*];, while another dependsonly on
thelevel of [Ca?*];. Further, there are many waysin which these signalsand their timing can affect
various second-messenger systemsinthe cell to providethe necessary modulation. Infavor of some-
thing like the first mechanism, there is evidence that the mere presence of postsynaptic [Ca?t]; is
insufficient to cause LTP (Kullmann, Perkel, Manabe, & Nicoll, 1992; Bashir, Bortolotto, & Davies,
1993), but it is unclear exactly what additional factor is necessary (Bear & Malenka, 1994). One
hypothesisisthat LTP depends on the activation of metabotropic glutamate receptors, which are ac-
tivated by presynaptic activity and can trigger various mechanismsin the postsynapti c synaptic com-
partment (Bashir et a., 1993). On the other hand, a proposed mechanism that depends only on the
level of postsynaptic[Ca?*]; (Lisman, 1989), hasreceived some recent empirical support (reviewed
in Lisman, 1994; Bear & Malenka, 1994). This proposal stipul atesthat increased but moderate con-
centrationsof postsynaptic[C'a?*]; lead to LTD, while higher concentrationsleadto LTP. Artolaand
Singer (1993) argue that thismechanism isconsistent with the ABSlearning rule (Hancock, Smith, &
Phillips, 1991; Artola, Brocher, & Singer, 1990; Bienenstock, Cooper, & Munro, 1982), which stipu-
latesthat there are two threshol dsfor synaptic modification, ®* and @ . A level of [C'a**]; whichis
higher than the high threshold © * leadsto LTP, whilealevel whichislower than thishigh threshold
but above the lower ©®~ threshold leadsto LTD.

Either of the above mechanisms would be capable of producing the pattern of synaptic modifica-
tion shownin table 2.8 in the context of a proposed mechanism defined by the following properties:

1. Some minimal level of [Ca®*]; is necessary for any form of synaptic modification (LTP or
LTD).

2. [Ca**); changes relatively slowly, and persists for at least 300+ milliseconds. This allows
[Ca?*]; to represent prior minus phase activity, even if the synapseis not subsequently active
in the plus phase.

3. Synaptic modification occurs based on the postsynapticstate after plus phaseactivity. Thiscan
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happen locally if synaptic modification occurs after around 300+ milliseconds since the entry
of Ca?* intothe postsynapticarea (and the plusphase activity stateslast for at |east thislong).
Alternatively, there could be a relatively global signal corresponding to the plus phase that
triggers synaptic modification (e.g., as provided by dopaminergic or cholinergic modulation
triggered by systems sensitive to the experience of outcomes following expectations).

4. If [Ca**); was present initialy (in the minus phase) due to synaptic activity, but then the
synaptic activity diminished or ceased (in the plus phase), LTD should occur. Thiswould be
expected from the mechanisms described above, either because of an explicit interaction be-
tween synaptic activity at the time of modification in the plus phase and the trace of [C'a**];
from the minus phase, or because the minus phase [Ca**]; will have decayed into the LTD
range by the time modification occurs in the plus phase.

5. If synapticactivity istaking placeinthe plus phase state, sufficient [Ca®*]; ispresent and LTP
occurs. Note that this means that any time the plus-phase activation coproduct (a;" a;f) isrea
sonably large, regardless of whether there was any prior minus phase activity, theweightswill
beincreased. Thisleadsto acombined CHL and Hebbian learning rule as discussed above.

Thereisdirect evidencein support of several aspects of the proposed mechanism, some of which
was discussed above, and indirect evidence in support of most of the remainder. Since the empirical
literature on LTP and LTD is vast, only a brief summary will be given here (see Artola & Singer,
1993; Bear & Malenka, 1994; Linden, 1994; Malenka & Nicoll, 1993, for recent reviews). It should
be noted that most of these findings have been described both in the hippocampus and neocortex,
and appear to be quite general (Artola& Singer, 1993; Linden, 1994). Also, note that the NMDA
receptor itself isnot subject to potentiation, so that the current value of the synaptic weight does not
haveto beincluded in learning rules, which isin accordance with GeneRec.

With respect to point 1, the importance of [Ca®*]; for LTP has been known for awhile (e.g.,
Collingridge & Bliss, 1987), and itisnow clear that itiscritical for LTD aswell (Brocher, Artola, &
Singer, 1992; Mulkey & Maenka, 1992; Hirsh & Crepel, 1992). In support of point 2, thetime course
of [C'a?*]; concentration has been measured in severa studies (e.g., Jaffe, Johnston, L asser-Ross,
Lisman, Miyakawa, & Ross, 1992; Perkel, Petrozzino, Nicoll, & Connor, 1993), and it appears to
berelatively long-lasting (on the order of 1 or more seconds), though it isnot clear that these results
reflect what would happen under less invasive conditions.

Asfor point 3, Malenka, Lancaster, and Zucker (1992) found that a significant time period (up
to 1-2 seconds) of enhanced postsynaptic [Ca®*]; was necessary for LTP induction. Also, typical
LTP and LTD induction regimes involve constant stimulation at a given frequency for time periods
longer than asecond. However, the preci setime course of synaptic potentiationneedsto bestudiedin
greater detail to evaluate thisissuefully. With respect to the existence of aglobal learning signd, the
ERP datadescribed earlier and therole of neuromodul atory systemslike dopamine suggest that such
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monitoring systems might exist in the brain. For example, Schultz, Apicella, and Ljungberg (1993)
describe the important role that dopamine playsin learning and responding to salient environmental
stimuli. However, these modulatory effects are probably not of an all-or-nothing nature, and, given
that LTP and LTD can be induced by the direct electrical stimulation of individual neurons, it is not
likely that learning is completely dependent on aglobal signal.

To summarize, the proposed synaptic modification mechanism is consistent with severa find-
ings, but aso requires further mechanisms. As such, the proposal outlined above constitutes a set
of predictionsregarding additional factors that should determinethe sign and magnitude of synaptic
modification.

Conclusions

Theanalysisand simulationresults presented inthis paper support theideathat the GeneRec fam-
ily of learning algorithmsare performing variations of error backpropagation in a recurrent network
using locally available activation variables. However, thereisno singleGeneRec algorithmwhichis
exactly equivalent to the Almeida-Pineda algorithm for backpropagationin recurrent networks since
GeneRec requires symmetric weightsyet it is not itself symmetry preserving.

Theideathat the CHL algorithmisequivalentto asymmetry preserving version of GeneRec using
the midpoint integration method is supported by the pattern of learning speed resultsfor the differ-
ent versions of GeneRec, and by the learning speed increases obtained when using the approximate
midpoint integration method in backpropagation networks. Further, it was shown that CHL (and
symmetric GeneRec without the midpoint method) can reliably learn the family trees problem, call-
ing into question the idea that CHL is a fundamentally flawed learning algorithm for deterministic
networks, as was argued by Galland (1993). Thus, the weight of the evidence suggests that CHL
should be viewed as a variation of recurrent backpropagation, not as a poor approximation to the
Boltzmann machine learning algorithm.

However, as a consequence of the differences between GeneRec and AP backpropagation
(mainly the symmetry constraint), one can expect GeneRec to have somewhat different character-
istics compared to standard backpropagation algorithms, and it may turn out that these differences
have implications for psychologica or computational models. Thus, the present analysis does not
imply that just because there exists a biologically plausible form of backpropagation, all forms of
backpropagation are now biologically plausible.

Finally, while CHL gave the best performance of the GeneRec networksin three out of the four
tasks studied in this paper, the symmetry preservation constraint ended up being aliability in the 4-
2-4 encoder task. Thus, the GeneRec-based derivation of CHL can have practical consequencesin
the selection of an appropriate algorithm for a given task. Also, thisderivation allows oneto derive
CHL-like agorithmsfor different activation functions, and other network parameters.

Perhaps the most important contribution of this work is that it provides a unified computa-
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tional approach to understanding how error-driven learning might occur in the brain. Given that the
GeneRec learning rules are quite possibly the most simple and local way of performing avery gen-
eral and powerful form of learning, it seems plausible that the brain would be using something like
them. The specific biological mechanism proposed in this paper, which is consistent with severa
empirical findings, provides a starting point for exploring this hypothesis.
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Appendix A: Plus Phase Approximation to Trial Step Activations

The relationship between the plus-phase activation of a GeneRec hidden unit j (hj) and that
which would result if an Euler weight update step were taken to reduce the error (denoted A7) can
be more formally established. Thisisdone by simply re-computing the activation of the hidden unit
based on theweightsafter they have been updated from the current error derivatives. Usingthebasic
GeneRec algorithm with the difference of net-input termsinstead of activation terms (this makesthe
computation easier), thetrial step (starred) weightswould be as follows:

wy; = wij+esi(n —n;)o'(n)) (2.29)
wp; R wg;+ eop (nf —n7)o'(n}) (2.30)

Note that the original value of o, is used here, whereas in the exact computation of the midpoint
method in a recurrent network, the output activation value would change when the weights are
changed. However, itisimpossibleto expressin closed form what thisvaluewould be sinceit would
result from a settling processin the recurrent network, so the origina valueisused as an approxima-
tion to the actual value. Thisisthe only sensein which the following analysisis approximate.
Thetria step weightsabove can then be used to compute the net-input that the unit would receive
after such weight changes (denoted n7) asfollows (usingthefact that ;" = >, siwi; + 2= 0 we;):

n R Esiwi*j—l—zo;w};j
7 k
~ Zsiwij+20;wkj+ " —n;) eo’ (n;) (Zs —I—ZO ) (2.31)
7 k

To simplify, let:
u = eo’ (n;) (Zs —I—Zo ) (2.32)

Which gives:

X

niu+n; (1 - u)
= pfifu=1 (2.33)

j

Thus, the plus-phase net-input (and therefore activation) is equivalent to aforward Euler step if
the learning rate e is set so asto meet the conditionsin (2.33):

1
o'(n;) (Zi 5T+ 2 01;2)

(2.34)

€ —

Using afixed learning rate which is smaller than that given by (2.34) would result in a starred (trial
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step) activation value which isin the same direction as the plus-phase activation value (since the
term is bounded between zero and one) but not quite as different from the minus phase value.
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Chapter 3

Theoretical Principlesfor Neural
L earning

The devel opment of an understanding of the theoretical principlesunderlying neura network learn-
ing and behavior has played an important role in advancing thisfield. These principles can provide
the basisfor deriving new learning a gorithms, and they are important for understanding why certain
algorithmstend to work better than others. This chapter providesa brief introduction to the theoreti-
cal framework of statistical estimation, which providesa coherent and useful way of viewing neural

networks. Some basic findingswithinthisframework suggest that thereisa correspondence between
how many constraintsor prior assumptionsare built into anetwork, and how easily the network will

learn and how well it will generalize.

One can consider the role of associative learning and activity constraints which are part of the
LEABRA learning algorithm as embodying abstract, principled assumpti onsabout the nature of gen-
eraly useful representations. Thereare a set of three such representational principlesthat are devel -
oped in thischapter, which form the theoretical basis of the LEABRA algorithm: entropy reduction,
information preservation, and standard representational form. These principles are based on ideas
that have been used to understand purely self-organizing algorithms, and thus are capable of devel-
oping useful representations even in the absence of error signas. However, a central hypothesis of
thisthesisisthat error signals are needed in order to select and shape these representations so that
they will be appropriate for a given task. In the simulations reported later in the thesis, it will be
shown that, while performance is often surprisingly good in LEABRA without error-driven learning
based on these representational principles, it isaways better with error-driven learning.

In addition to the three principles regarding the development of useful representations, a set of
principles regarding their implementation are developed. These implementational principles, the
main one of which is aso based on findings within the statistical estimation framework, play an
important role in shaping the LEABRA agorithm. The main implementation principle is that of
favoring fixed constraints over adapting ones. Further principlesinclude the favoring of robust over
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Figure 3.1: Schematic representation of the estimation problem.

fragile implementations, the use of biological inspiration where possible, and being careful not to
violate biological feasibility. The impact of some of these principlesis explored by comparing al-
ternative formulations of LEABRA that violate them.

The Bias/Variance Dilemma and the Importance of Strong Models

Artificial neural networkscan bethought of asaclassof statistical estimationdevices. Under this
view, the goal of neural network learning is that of estimating or inferring the appropriate internal
representationsfor the " structure” or regul arities of the training environment, given some number of
samples from that environment. One can divide the estimation problem into two components: the
model and its parameters. Figure 3.1 shows a schematic representation of the estimation problem.
As depicted, there isaworld or environment (a.k.a. the distal stimuli) that is constituted by a par-
ticular set of states. These states are “hidden” because they are not directly known — instead, they
must be estimated from the visible states of the environment (ak.a. the proximal stimuli), which are
available directly to the estimator. The job of the estimator is to use the sample of visible states to
fit the parameters of an internal model of the world. This process can be thought of as learning the
inverse of the mapping function that relates the hidden states of the world to the visible states (e.g.,
learning inver se optics to reconstruct the origina 3D world from the 2D projection we receive on
our retinas).

The distinction between the model and the parameters in the estimation processislike a nature-
vs-nurture distinction. The model iswhatever isassumed a priori by the estimator to be true about
the world, and the parameters are whatever is adapted by experience. One of the principa dimen-
sionsaong which estimatorsdiffer isthe extent to which they rely on astrong model versusaclever
parameter adaptation algorithm. For example, one could imagine having avery precise and accurate
model of a particular environment, which would make it relatively easy to estimate because most
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Figure 3.2: Schematic representation of the bias/variance dilemma, where the degree of biasis represented
by thestrength of asmoothnessconstraint infittingalinetothe set of points. If the“true” lineisindeed smooth
but the datais perturbed by i ndependent random noise, a stronger bias gives amore consistent estimate across
different samples of points, whereas a weak bias leads to high variance in the estimates because each new
random sample of pointswill lead to a very different fit. However, if the “true’ lineiswavy, a stronger bias
can lead to persistent biaserror in the estimate.

of the work is done by the model. However, there are two problems with this. One isthat such a
model would be hard to come by, and the other is that it would be rather inflexible — the system
would work well only with environments that happen to fit the model. Some traditional models of
language acquisition have this character, in that they assume that people are born with a universal
language, and learning is simply adapting some parameters of thislanguagetofit theactual language
one experiences (Chomsky, 1965).

Thus, systems with weaker, generalized models, more parameters and smart ways of adapting
them, like neural networks, are attractive for their flexibility and ease of use (since not alot of time
needs to be spent coming up with agood a priori model). However, such systems have problems of
their own: they require many more training examples because they have more parameters; they can
have difficulty coming up with good estimates because they are not sufficiently constrained by the
data contained in the visible states; and they tend to be more sensitiveto noise in the visible states
and therefore less capable of extracting the structure of the environment (i.e., the structure of the
hidden states of the environment).

Theweak model of purely error-driven neural networks iswhat leads to the problems with gen-
erdization and learning in deep networks as described in the introduction. Since the training task
often does not impose enough constraints on the network, and the network does not have a strong
set of constraintsinitsa priori model, thewei ghtsend up reflecting theresidue of their randominitial
values as much as the structure of thetask. Thislack of structure causes problems, especially when
the network is interactive, as it suffers from the butterfly effect, where small initial differences are
magnified over setting through aturbulent activation space. Thus, it seemsthat thereisroomfor im-
provement, especially in interactive networks but probably a so in feedforward ones, by introducing
appropriate constraintsinto the a priori model used by neural networksin learning.

Geman et al. (1992) explain the under-constrained nature of neural networksin terms of the bias/
variance dilemma, which describes the tradeoff between strong vs weak a priori models (see Fig-
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ure3.2 for anillustration). Biasreferstothe extent towhichthereisastrongapriori model “biasing”
the estimation, and variance refers to the degree to which the same estimator will produce different
estimates from different random sampl es of agiven environment. According tothisaccount, theway
to minimize or avoid these problemsisto introduce a stronger model into the estimator. Indeed, this
isexactly the approach that is commonly taken, for example by using aform of weight decay, which
addressesthevariance problem at two levels. At themore general level, weight decay can bethought
of asamore restrictive or precise a priori model which further constrains the kinds of solutionsthat
the network can use (i.e., those with relatively few non-zero weights, Weigand et al., 1991). Also,
it specifically reduces the number of parameters (weights) in the network, which results in fewer
degrees of freedom in the estimator.

However, weight decay isafairly “dumb” constraint, in that it is not itself capable of producing
useful representations— a network using only weight decay will just end up with all zero weights.
In this context, theideabehind LEABRA isthat Hebbian associativelearning can be thought of asa
“smart” form of weight decay, inthat it biases or constrains the network to produce representations
of acertain form, but isal so capabl e of generating useful representationsonitsown. Thus, LEABRA
containsa stronger a priori model which includes constraints on the kinds of representationsit will
form, which areimposed by associativelearning and other factors such asactivity competition. How-
ever, it isimportant that this stronger a priori model in LEABRA does not throw out the essentia
flexibility of neural network learning with the “bathwater” of too many degrees of freedom in the
estimator. It isimportant to realize that thisis fundamentally a tradeoff, but neverthelessit may be
possible(and indeed the performance of LEABRA indicatesthat it is) to constrainthemodel in away
that promotesthe learning of a class of representationsthat are generally useful for a wide range of
psychologically relevant tasks. The following section presents a set of principles which define the
form of such representations.

Three General Principles Regarding the Form of Useful Representations

Withinthe framework of the statistical estimation paradigm described above, it seems somewhat
implausiblethat there could be away of generically constraining an estimator that would be useful
to awide range of problems. Indeed, it should be obviousthat an a priori model that is not appro-
priate for a given problem will impair performance, not help it. Thus, if there are no constraints at
al onthetypesof problemsor environmentsthe estimator will be exposedto, itisthe casethat all a
priori modelsare equally useless (Wolpert, 1992). However, the actual world welivein (as opposed
to the many hypothetical possibleworlds an estimator might be exposed to) has particular properties
that hold quite generally for many of thethingsthat people actually learn about. Theseinclude basic
physical properties like solidity, gravity, support, etc. which have been discussed in the develop-
mental literature (Spelke, Breinlinger, Macomber, & Jacobson, 1992). However, they also include
somewhat more abstract properties, likethefact that thevisual world tendsto be generally “ smooth,”
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in both space and time (Poggio, Torre, & Koch, 1985; Foldiak, 1991; O’ Reilly & Johnson, 1994).
The principles described bel ow are even more abstract than this, and constitutea very general claim
about the nature of the world.

The literature on self-organizing neural network learning rules provides numerous examples of
the application of heuristic a priori principlesto extract generally useful information from an envi-
ronment. Indeed, some believethat these self-organizing rules, implemented using Hebbian associa-
tivelearning and other mechanisms, are sufficient to guide the devel opment of most of the represen-
tations that underly human behavior. While the LEABRA algorithm specifically rejects this claim
by using error-driven learning, the associative learning and other aspects of LEABRA are based on
similar self-organizing principles. In theseterms, the basic idea behind LEABRA isthat these prin-
ciples provide a means of usefully constraining the learning, but not fully determining it.

One example of a self-organizing principleisthe InfoMax principle proposed by Linsker (1988),
which holdsthat representations should maximize the amount of information they convey about the
input signalsthey receive. The InfoMax principle can be instantiated in a neura network using rel-
atively simple Hebbian associative learning rules, and gives rise to useful representations like the
center-surround and oriented receptive fieldsfound in the lower levels of thevisua system. Thefull
spectrum of heuristics underlying most self-organizing learning rules can be described according to
the minimum description length (MDL) framework, which is based on two principles that might be
characterized as succinctness and accuracy (Zemel, 1993; Rissanen, 1986). Basically, MDL states
that the best way of encoding aset of dataiswith the simplest model possi blewhich does not unduly
sacrifice the accuracy of the data when encoded under thismodel. Thus, MDL can be thought of as
aformalization of Ockham’s razor favoring simple models over more complex ones.

Clearly, itispossiblefor succinctnessand accuracy to tradeoff against each other, since the most
accurate model is always a copy of the data itself, which is not very succinct, and many succinct
models do not capture al of the data. Zemel (1993) argues that most self-organizing learning rules
represent some kind of tradeoff between these two principles. For example, Linsker's (1988) Info-
Max principle operates within a context which imposes a relatively fixed succinctness constraint,
leaving accuracy (i.e., information) being the thing which is maximized. Given the generality of the
MDL approach, the first two principles used in LEABRA correspond to particular ways of impos-
ing succinctnessand accuracy constraints. Thethird one represents a pragmatic way to avoid excess
degrees of freedom in the estimation process.

Entropy Reduction: Thisisaparticular form of a succinctnessprinciplewhich isstated herein
terms of the entropy of the state of a single hidden unit 2 as compared to that of the input signal X
that thisunit sees. This principle statesthat ~ should actively try to reduce the entropy of X. Inone
sense, thismeansthat A should be asuccinct representation of X . However, it goesfurther than that,
sinceit isalso desirable for A to be a succinct representation of only apart of X. Thus, implicitin
this principleisthe notion that there are alarge number of different hidden unitsthat participate in
the representation of X, which alows each one of them to individually concentrate on only a part
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of X. For example, a spatially invariant object representation reduces the entropy of a visual input
signal by being equally activefor all the different positionsof agiven object, and not active for other
objectsin any position. Thus, itisignoring any locationinformationin X', and even many variations
in X that nonethel esscorrespond to the same object. We assumethat there are other unitsthat capture
location information regardless of object identity, etc. Categorization and filtering are examples of
entropy reduction: the category ignoresall of the more specific information about the exemplar, and
afilter isinactive for those inputs outside of its sensitivity range.

It isimportant to distinguish between the entropy reduction principleas stated here and Barlow’s
(2989) minimum entropy principle. The minimum entropy principle states that the units should de-
vel op representations such that they form afactorial code, where the summed entropy over all of hid-
den unitswould be at a minimum. Thus, Barlow’s minimum entropy (and many other succinctness
measures) is defined with respect to the aggregate representation over al the hidden units, whereas
the entropy reduction principle as described here is explicitly focused on an individual unit. While
the minimum entropy principletypically impliesthat each unit has roughly the same low probability
of being active, which is consistent with the entropy reduction idea, another consequence of mini-
mum entropy isthat hidden units should be statistically independent of each other. No such restric-
tion isimplied by the entropy reduction principle as stated here. Entropy reduction isintentionally
more vague about what units should encode in part because it is assumed that error-driven learn-
ing will be in effect, which will be responsiblefor determining many aspects of the representation.
This principle merely statesthat there should be forces that shape the activities and weights of units
which encourage them to narrow their focus on a dissociable part of the input signal, and develop
categorical representationsthat apply to many different inputs.

It isimportant to be explicit about what this principle assumes about the nature of the learning
environment. Thisprincipleassumesthat theworld (or at |east that part of it of interest to thelearner)
consists of anumber of dissociableentities, and that each of these entities can be usefully classified
asbelongingin more general categories. Both of these assumptionsare relatively abstract and seem
generaly true of our world.

Information Preservation: Thisisaweak form of the accuracy principle which statesthat hid-
den units should preserve some information about the input signal X . Thus, once some of the “ir-
relevant” information has been eliminated by entropy reduction, it isimportant that the unit remain
sensitiveto some remaining distinctions between input patterns. In the case of invariant representa-
tions, it isimportant that they still provideinformation about which object is being viewed, even as
they ignorewhereit is on theretina. Note that thisis somewhat different, at least in emphasis, than
the strong “reconstructionist” approach of the MDL framework as applied in Zemel (1993), where
the objective is for the hidden unit representations to be able to fully reconstruct the input signal.
Again, the assumption that error-driven learning is also taking place alows one to be more vague
about the actual amount of information that should be preserved. For example, if there are possible
distinctions between input signals which never end up being relevant for any tasks the system per-
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forms, there is no reason to assume that the system should preserve thisinformation. Thisprinciple
simply assumes that some of the differences between entitiesin the world are relevant, and should
be represented.

Standard Representational Form: This principle addresses the case where there are two hid-
den units that both have the same pattern of activity over the set of input signals, but with a sign
change or some other “notational” difference between them. For example, when one unit is active,
the other isinactive, and vice-versa. Sincethesetwo unitswould convey the same essential informa-
tion about the input signal (i.e., the magnitude of their correlation term with the input would be the
same), thisprinciple statesthat thissituation should be avoided by establishing standard forms of en-
coding information. The advantage of doing so isthat the decision about what “form” to cast agiven
representation in represents an additional degree of freedom in the learning (estimation) process that
could be eiminated without losing representational power. For example, the number of degrees of
representational freedom would becutin half if al sign-inverted versionsof the same activity pattern
were eliminated from consideration. In aneural network, it is possibleto have a negative activation
value multiplied by a negative weight, which has the same effect as a positive activation multiplied
by apositiveweight. Theadditional degrees of freedom implicitin thisequivalency are unnecessary,
and could be eliminated. Note that thisis not so much an assumption about the world asit is away
of structuring theinternal representations of the learning system.

As will be described in the next chapter, these constraints are implemented by the Maxin as-
sociative learning rule and ReBel soft k-winners-take-all competitive activation function used in
LEABRA. The activation function limits the number of active unitsin a graded manner (hence the
term soft), which imposes an entropy reduction constraint, and al so establishes a standard represen-
tational form. The learning rule imposes both an entropy reduction and information preservation
constraint in an adaptive, balanced manner.

Implementational Principles

The above discussion of representational principles says nothing about how these ideas should
be implemented in actual neural network algorithms. There are many degrees of freedom in theim-
plementational process, and there might be important differences in the resulting performance that
depend on implementational choices. Thus, the following set of implementation principles are pro-
posed to help constrain these choices. Further, thefirst and perhaps most important principlewill be
substantiated by comparing aternative implementationsthat violate it.

Fixed vs Adapting Constraints: Oneimportant way of carving up the space of possibleimple-
mentations of any kind of principle or constraint in aneural network is along the fixed vs adapting
dimension. A fixed constraint is one that is built into the network as part of the architecture, is not
subject to learning, and cannot be overridden by other constraints. Thus, it can truly be considered
asapart of thea priori model, andislikely to have the beneficial effects of more strongly biasing the
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estimator, as described above. An adapting constraint, on the other hand, is one that is added into
the learning algorithmin order to introduce a pressure on the system to devel op in a certain way, but
it can be contradicted by other pressuresin the learning rule. An adapting constraint typically in-
creases the number of parameters that are being learned, and can thus actually increase the variance
problems associated with the estimator.

Weight decay isagood example of an adapting constraint, which isconsistent with thefact that it
typically takes longer to train a network with weight decay than without. Thus, even though weight
decay can be thought of as providing a more constrained a priori model, the way this constraint is
implemented can have alarge impact on how much the advantages of this more constrained model
are actually exhibited. Consider, for example, a constraint similar in some ways to weight decay,
where only afraction of the connections between units are created in the first place. Thisisafixed
constraint, and networkstrained with it will typically learn faster than a network with weight decay,
if they are capable of learning the problem at all. However, because this constraint is not subject to
modification, it can beinappropriatefor agiven problem, and cause the network to be unabletolearn
at all. Thus, the optimal implementation of agiven constraintis probably an empirical issuethat can
only be resolved by evaluating the performance of various possihilities.

Some of thisempirical investigationisundertakenin thisthesiswith respect to the different ways
of implementing the three representational principles described above. The optimal version repre-
sented by LEABRA uses fixed constraints to implement entropy reduction and standard represen-
tational form, but adapting constraints to implement additional entropy reduction and information
preservation. Thisversion is compared to one where everything is done with adapting constraints.

Robust vs Fragile Mechanisms: There are often fragile and more robust ways of implement-
ing a given constraint. In general, the robust implementation is favored in the development of the
LEABRA agorithm. For example, an activity constraint could be implemented by setting a rela-
tively high threshold (or a large negative bias) on units. However, thisis not robust to overall dif-
ferences in levels of activation, and requires precise tuning of the threshold parameter for a given
problem. A more robust version would automatically set the threshold according to some measure
of activity level intheunits. Asinthisexample, it isoften the casethat avery simpleimplementation
isfragile, whereasit takes a dlightly more complicated mechanism to makeit robust. As another ex-
ample of this, an activity constraint that isimposed by direct lateral inhibition between units, which
seems simple and straightforward, turns out to be highly unstable except when only a single unit is
allowed to be active. Thus, a slightly more complicated but much more robust implementation via
the ReBel soft k-winners-take-all functionisused in LEABRA.

Biological I nspiration: Wherever possible, theknown propertiesof the cortical biology areeval -
uated in terms of their relationshipto agiven principle. For example, a prominent feature of cortical
circuitry isrecurrent inhibitory feedback from interneurons. While conclusive evidenceis not avail-
able, learning has not been demonstrated in these inhibitory synapses, suggesting that they might
implement a relatively fixed form of a constraint on the activity of excitatory neurons. Thus, it is
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tempting to interpret this as evidence that the brain uses afixed activity constraint, which would be
oneway of implementing the entropy reduction principle. Given that thisbiological property issyn-
ergistic with the computational principles of entropy reduction and fixed constraints, it is therefore
all the more desirableto includeit in the algorithm. Similar arguments can be made about biologi-
cal propertieslike recurrent connectivity, and the fact that most neural communication in the cortex
appears to be excitatory, as will be discussed | ater.

Biological Feasibility: Cases where it is highly unlikely that the biology could implement a
given property of thealgorithmare avoided. Thus, explicit error backpropagationisavoided in favor
of aversion of error-driven learning that can use locally available, activation-based signa's, which
is much more biologically feasible. Thisis different than biological inspiration, since error-driven
learning in thismanner is certainly not a prominent known feature of the cortical biology. Thiscon-
straint isnot avery strong one, though, because aside from glaring problemslikenon-locality or con-
tradiction of well-established facts, it is often impossible to argue that one implementation is more
biologically feasible than another.
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Chapter 4

|mplementing the Principlesin
Self-Organizing M echanisms

The preceding chapter provides the theoretical basis for the implementation described in this chap-
ter of the two self-organizing components of the LEABRA agorithm. Thefirst component is based
on a mathematical framework called relative belief (ReBel), which is used to derive a network ar-
chitecture and activation function that implement a fixed form of the entropy reduction principle
based on activation constraints, and establish a standard representational form. The second compo-
nent is a self-organizing, Hebbian associative learning rule called Maxin, which isderived using the
ReBel framework, and implements both entropy reduction and information preservation in an adap-
tive manner. The combination of both the activity constraints and the associative learning rule con-
stitutetheimplementation of thea priori model based on therepresentational principlesdescribedin
the previouschapter. In LEABRA, these are assumed to work in conjunctionwith athird component
which isthe biologically feasible GeneRec error-driven learning algorithm described in Chapter 2.

The next section of this chapter describes a particularly effective way of combining error-driven
and self-organizing learning, which provides an error-driven component to the learning of self-
structure representations of theinput and output patterns. In a standard error-driven learning frame-
work, the error signals are based, in psychological terms, on the difference between an expectation
generated inresponseto aninput, andtheactual outcomeor output. The MaxIn self-organizinglearn-
ingin LEABRA causesthenetwork to represent the correl ational self-structure of theindividual pat-
terns (input and output) themsel ves (in additionto the correlational structurein theinput-output map-
ping). For the same reasons that both error-driven and associative learning work better for learning
i nput-output mappings, the combination of these two should work better for representing theindivid-
ual self-structure of the input and output patterns. Thus, a mechanism for introducing error signals
into the development of these representationsis needed. Such amechanism, called the auto-encoder
(AE) version of LEABRA, is described in the third section of this chapter.
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Figure 4.1: Canonicd circuit of the neocortex, adapted from Douglas et a. (1989). Thalamic input comes
primarily tolayer 4, but also to other layers. Excitatory neuronsinthe superficia layers (2 + 3) project to other
cortical areas, and localy to the deep layers (5 + 6) and to themselves. All excitatory inputsand outputsal so
contact the GABA cdlls, which provide inhibition to the excitatory neurons, and to themselves. Excitatory
neuronsin thedeep layers project to subcortical and thalamic areas. This circuit describes the basic properties
common to all cortical areas.

Architecture and Neura Activation: The Relative Belief Framework

The foundation of any learning algorithm isin its architecture and the way that units communi-
cate and relate to each other within the network. This architectural foundation defines the signals
on which learning operates. As described in the previous chapter, one of the central ideas behind
LEABRA isthat as many constraints as possible should be built into the architecture as a priori bi-
ases. Thisconstrained architecture will reduce the size of the space that |earning hasto explore, and
potentially providericher signalsto inform the direction that learning should take.

Since there is aconsiderable amount of data available regarding the basic structure and circuitry
of the neocortex, the implementational principle of biological inspiration can be taken seriously in
considering the basic properties of neural architecture and activationthat should beincorporatedinto
LEABRA. A brief overview of thisdatais presented bel ow, together with theinterpretation of it used
in the ReBel activation function. Thisisfollowed by a discussion of someimportant computational
issues for theimplementation of activity constraints. Finally, the ReBel function is presented in de-
tail.

Inspiration from the Neocortex

It is possibleto provide a canonical circuit diagram for cortical connectivity that describes the
basic connectivity common to all cortical areas (Creutzfeldt, 1977; Szentagothai, 1978; Shepherd,
1988; Douglaset al ., 1989, seeFigure4.1). Theexcitatory and inhibitory connectivity in the neocor-
tex is stereotyped and highly regular, with excitatory connections existing both within and between
areas of cortex, but inhibitory connections occurring only within relatively small localized regions.
The principal excitatory cells (pyramidal neurons) project only excitatory neurotransmitter (gluta-
mate) onto both local inhibitory interneurons, and onto other pyramidal neurons, both in other areas
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and in typically well defined patterns within the same cortical area. The GABAergic inhibitory in-
terneurons, which al so receive excitatory connectionsfrom the external projectionsthat synapseonto
the principal neuronsin thelocal region, have inhibitory synapses on excitatory cells that surround
them. Both thisinhibitory circuitry and restrictions on the sign of information signalsin neocortex
can berelated to the representational principles of entropy reduction and standard representational
form, and to the critical properties of the ReBel activation function.

Entropy Reduction Through Inhibitory Circuitry

The activation constraints imposed by the ReBel activation function, while functionally moti-
vated, take aform which is based on an interpretation of the role of inhibitory interneuron circuitry
in cortical systems (including the three-layered cortex of the hippocampal formation). Many re-
searchers have viewed the inhibitory circuitry as providing a negative feedback system that effec-
tively normalizesor controlstheoverall level of activity of the principal excitatory neurons. Thus, as
more neuronsget more active, they a so activate theinhibitory interneuronsmore, resultingin greater
inhibition, which checksthe growth of activity. Thisactivity regulationisespecially important given
the positive feedback 1oops that exist between recurrently connected principal neurons, which can
lead to an unstable cascade of activity if not checked — witness the phenomenon of epilepsy, which
occurs when the inhibitionis insufficient to regulate the excitatory activity.

The activity regulation imposed by the inhibitory circuitry can be thought of as an implementa
tion of theentropy reduction principle, inthat neuronsin aregionreceive inputsfrom many areas, but
reduce thisto a representation having a limited number of active neurons. Computationally, thisin-
hibition has the effect of inducing a competition between neurons, a property which has been shown
in many self-organizing neural network modelsto result in unitsthat specialize on representing dif-
ferent aspects of the input, which isalso consistent with the entropy reduction principle.

The effect of feedback inhibition can be idealized in terms of a k-winners-take-all (KWTA) func-
tion, which correspondsto a negativefeedback system with afixed stable point that isthe same (i.e.,
approximately k& unitsactive out of N total at any given time) regardless of thetotal amount of exci-
tation coming into agivenlayer (Gibson, Robinson, & Bennett, 1991; O’ Reilly & McCldland, 1994;
McNaughton & Morris, 1987; Torioka, 1979). In effect, the inhibition provides a floating threshold
for activity based on overall levels of activity in the layer. Whilethe KWTA form of thisthreshold
is clearly an idealization of the actua dynamics of the inhibitory system, it is a useful one that is
probably not too far from the truth. The ReBel activation function imposes a soft KWTA constraint
on the activations of units within a layer, which is soft in the sense that the constraint is imposed
in agraded (as opposed to binary) manner. As such, it corresponds to one way of generalizing the
commonly-used soft WTA or SoftMax activation function to the case where multiple units (instead
of only one) are alowed to be active at the same time.

While the mathematical framework used to develop the ReBel function is based on Bayesian
hypothesi s-testingideas and i s somewhat removed from aplausible biol ogical implementation, there
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isneverthelessaclear distinctionin thetwo termsthat make up the ReBel equation between the phys-
iological properties assumed of individual neurons, and those of the inhibitory interneuron circuitry
of the cortex. Theindividua neuron is assumed to have a propensity for activity which isasimple
sigmoidal nonlinear function of the input to the neuron. However, thisindividual propensity for ac-
tivity is modulated (multiplied) by afunction of theratio of the individual activity over that of other
neuronsin the layer asreflected in the inhibitory inputs coming from the inhibitory interneurons. It
isthislatter term which implementsthe KWTA constraint, which acts much like shunting inhibition
on thefiring rate of excitatory neurons. Thus, ReBel can be thought of asarelatively simple analyti-
cal approach to understanding therole of theinhibitory interneuronsin controlling the activity levels
of principal excitatory neurons. Future research will be focused on determining how well thissim-
plification approximates amore realistic form of soft KWTA behavior based on simulated inhibitory
interneuron circuitry.

Sandard Representational Form Through Sgn Constraints

The constraints on the signs of the activations and weights of pyramidal neocortical neurons can
be thought of as implementing a standard representational form, asfollows:

Positive-only Activations: Information is transmitted by neurons only when they are active.
Thus, unlike some artificial neural network units, which can take on negative and positive activation
states, real neurons can only emit signals ranging from 0 (no spikes) up to some positive number of
spikesper second (with amaximum of around 200 or so). Thisconstraint makes senseinterms of the
standard representational form principle, since representations are forced to use positive activation
asasignal, whereas (-1..1) units can use both negative and positive activations as asignal.

Positive-only Weights: Representational neurons (pyramidal neurons) only communicate di-
rectly viaexcitatory weights. In combinationwith positive-only activations, thisuniquely constrains
the form of signalsthat neurons can use, which is obviously in accord with the standard representa-
tional form principle. Thus, in a system with positive-only activations and weights, a given input-
output mapping (in one layer) can be implemented with only one set of weights (assuming the in-
put/output patterns are non-redundant). In contrast, a system that allowed either negative weightsor
activationscould implement the same i nput-output mapping in different ways by variously canceling
out the influences of pairs of unitswhich contribute positive and negative inputs.

Whileit could be argued that the local-circuit inhibitory neurons are sending specific inhibitory
signals, thismay not be a very plausible hypothesis, since these neuronstend to interact with alarge
number of local excitatory neuronsusing GABAergic synapses, which have not been showntobeca
pable of associative, activity-based modification. Thus, whatever information they convey islikely
applied without | earning-driven specificity to alarge number of neurons. In addition, thefiring speci-
ficity of the inhibitory interneuronsin electrophysiological recordingsis very poor — they tend to
fireat arelatively constant, high rate. These propertiesare consistent with therole of theseinterneu-
rons as providing arelatively fixed activity constraint, and not with a role in representing specific,
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|earned information.

To summarize, the picturethat emerges from consideration of these general properties of the neo-
cortex isthat the brain has severa fixed constraintswhich are consistent with the entropy reduction
and standard representational form principles. These fixed constraints can be directly incorporated
intoLEABRA viathe ReBd activation function, resulting in bothincreased biological relevanceand
the computational advantages associated with these constraints.

Computational Issues in Activity Regulation

While the fixed constraints suggested by the biology on the sign of activations and weights are
fairly unambiguous in their meaning and implementation, the issue of activity regulation and its
computational effects is considerably more complex. To explore the space of possible activity con-
straints, one can begin by examining the extreme cases. At one extreme, a standard backprop net-
work has no activity constraints, and has completely distributed representations. In such networks,
itisuseful tothink of theunits as each representing asub-dimension of theinput space, with theacti-
vation of the unit signaling the value of agiven input pattern a ong this dimension. Thus, the hidden
units provide a set of useful “basis vectors’ for representing the input, and a large number of such
units cooperate to represent a given input pattern. An important advantage of distributed represen-
tationsis this ability to represent instances by a combination of relevant features, which facilitates
many kindsof neural processing, including pattern completion, generalization, similarity-based pro-
cessing, etc. (Hinton, McClelland, & Rumelhart, 1986; Seidenberg & McClelland, 1989). For these
reasons, the ability to learn and use distributed representations has been identified in thisthesis as
one of three critical functional propertiesfor a model of neocortical learning.

However, it seems that distributed representations can be taken too far. An example of this
was discussed in the introduction, where the problemati c consequences of unconstrained distributed
representations were reviewed. Essentially, without a pressure to specialize, units can have quite
random-looking weight vectors and still enable the problem to be solved. Thus, one way of avoid-
ing thisproblem isto employ aform of entropy reduction via activity regulation, which would have
the effect of forcing units to be more selectivein what they represent, and hopefully therefore more
likely to pick up on important structure in the environment.

In addition to the motivation for activity constraints based on entropy reduction, thereisan im-
portant practical motivationfor activity constraintsin systemsemploying Hebbian associativelearn-
ing. It iscommonly known that Hebbian learning, sinceit is essentially a positive feedback system,
suffers from a “rich-get-richer” problem that can lead to one or a few units taking over the entire
representational space. Activation-based competition (e.g., the prototypical competitivelearningal-
gorithm described by Rumelhart & Zipser, 1986) is one way in which this problem is dealt with,
since it forces some units to take responsibility for the current input pattern and others not to. In
the larger context of the main goal of thethesis, which isto explore combined associative and error
driven learning systems, this means that some kind of activity constraint is necessary for such an
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endeavor.

The extreme form of activity regulation is awinner-take-all (WTA) activity constraint, where a
singleunit represents an entireinput pattern. Thiskind of localist representation obviously lacksthe
crucial advantageof distributed representations— theahility to represent instancesby acombination
of relevant features. Despitethe clear advantagesof distributed representations, WTA functionshave
beenwidely usedinthe self-organizing literature. Asidefrom the conceptual and practical simplicity
of the WTA approach, it also hasaparticularly useful statistical interpretationin termsof aBayesian
analysisof unit representations (Nowlan, 1990), and for the gating network in the mixture of experts
framework (Jacobs, Jordan, Nowlan, & Hinton, 1991). Thisanalysismakesit possibleto understand
theroletheactivity constraintisplaying at amathematical level, and it can be used to derivelearning
algorithmsthat are consistent with the WTA model.

It seems reasonabl e that the intermediate case between afully distributed and a WTA representa-
tion, a sparse distributed representation (e.g., the ReBel KWTA function), might represent the best
tradeoff between the advantages of adistributed representation and the benefits of activity regulation
(see Dayan & Zemel, 1995; Zemel, 1993, for similar arguments). In this case, only a subset of the
unitsare allowed to be active at any given time, which introduces both cooperation and competition
into the representation — the active units have to cooperate to represent the current input pattern,
but they also have to compete with the other unitsto get active in the first place. This should result
in each unit picking up on significant regularitiesin the input/output space, resulting in adistributed
representationthat isal so more systematic. WhileZemel (1993) associatesasparsedistributed repre-
sentation with Barlow’s (1989) minimum entropy principle, thistendsto emphasize the redundancy
elimination or competitiveaspectsof therepresentati on over the cooperativeaspects. Indeed, onead-
vantage of adistributedrepresentation over alocalist oneisthat it providesuseful similarity structure
for subsequent processing by deeper hidden layers — redundancy elimination attempts to remove
this structure by making each unit statistically independent. Thus, there must be a tradeoff between
competition and cooperation.

Unfortunately, it can be difficult to develop aformal treatment like that of the WTA function for
the intermediate case between the fully distributed and WTA models. In the WTA case, al units
are treated as mutually exclusive and exhaustive, which is easily formalized, whilein thefully dis-
tributed case, they are treated as independent, meaning that the aggregate probability of apatternis
just the product of the individual unit probabilities, which is also easy to formalize. However, in a
sparse distributed or KWTA system, there is a dependency between the units which can be hard to
expresswithout having to eval uate probabilitiesover al possiblecombinationsof active units, which
quickly becomes impossiblein even moderately-sized networks (not to mention the problems with
biological plausibility of this kind of computation). Nevertheless, there are several classes of ap-
proaches that have been developed formally. Perhaps the simplest of these is to continue to treat
each unit individually, but to do so in away that makes the activity of each unit relative either to
a fixed threshold or other pre-specified probability distribution (e.g., Zemel, 1993) or to a function
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computed over other units in the same pool. A particular version of this latter approach iswhat is
used in the ReBel function.

Other approaches to formalizing sparse distributed representations involve using the assump-
tion that each bit in the output representation is driven by a single underlying cause (i.e., unit) in
the hidden layer to constrain activity levels (Dayan & Zemel, 1995), or a noisy-or function that ac-
complishes roughly the same thing (Saund, 1994, 1995). In some sense, thisis just another way
of implementing a WTA constraint, but it offers more flexibility than a strict WTA in that different
hidden units can simultaneously be active as long as they are responsible for different output bits.
Finally, more complicated hierarchical systems have been used to get around the WTA assumption.
For example, Jordan and Jacobs (1994) have devel oped a hierarchical version of the mixtures of ex-
perts framework, and Dayan, Hinton, Neal, and Zemel (1995) have devel oped a hierarchical model
where activities in the previous layer are constrained by generative models in subsequent hidden
layers. Thislatter form of constraint isvery genera in that it can be anything a set of hidden units
can encode. However, all unitsin each layer are treated as conditional ly independent to simplify the
mathematics, so it might be that these networkswill suffer from being underconstrainedin much the
same way as a backprop network.

Relative Belief (ReBel) Analytical Framework

With theissuesdiscussed abovein mind, thekey design criteriafor the ReBel activation function
are asfollows:

e Total activation over alayer should have arelatively fixed KWTA upper bound (i.e., no more
than & active units). A fixed maximum is needed to provide a strong impetus for the special -
ization of representations (entropy reduction), and to control the associative learning positive
feedback syndrome.

¢ Flexibilityintotal activation should exist in the range between 0 and & active units, depending
on how the unitslearn to carve up the representationa space. This alows representations to
not participatein a given form of processing when they are not relevant.

¢ Unit activationshould be graded, and reflect both theindividual level of support aunit receives
fromitsinputs, aswell as the strength of arelative comparison to other unitsin the layer.

These criteria can be met with a function based on a simple characterization of the canonical
cortical circuit described previously. In particular, one can separate the activity of a neuron into
two components: 1) Theindividua propensity for activity based on levels of excitatory input from
other cortical neurons or thalamus; 2) The comparative propensity for activity relative to the level
of inhibitory input, which is a function of the activity of other neuronsin the layer. In the ReBel
model, these two terms are represented by probability functions, and have a multiplicativerelation-
ship. Thus, the overall probability of firing isthe combination of two independent factors represent-
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Figure 4.2: Hypothesis-testing framework for unit activationsin ReBdl. Units represent hypotheses defined
by their weightsto input units. The overall likelihood of a hypothesisis a function both of the absolute level
of support and therelative level of support compared to other hypothesesin the layer, which is computed by
comparison to anull hypothesis i, which represents the probability of amiddling hypothesis.

ing the individual and relative probability of firing. Further, the relative term based on inhibitory
input is defined so as to be greater than .5 for the & units with the greatest individual probabilities
for activity, and lessthan .5 for the remainder, establishing the fixed KWTA upper bound on activity.
The multiplicativerelationship of the relative term with the individual probability allows flexibility
between 0 and & units because the individual probability of a“winning” unit may nonetheless be
rather low.

The formal derivation of ReBel is based on Bayesian hypothesistesting as diagrammed in Fig-
ure 4.2. Hidden units are considered to represent hypotheses & ;, as parameterized by their weights
from input units, which represent the datax,, of pattern p out of environment X (or thebelief values
of other hidden units, in multi-layer networks). The activation value of a hidden unit represents the
graded “belief” inthetruth-valueof itshypothesis, as eval uated by using equationsfor manipul ating
probabilitiesin validity-preservingways. However, asis often the case in the Bayesian framework,
these probabilitiesare better thought of in terms of the probability that a“ reasonable agent” (defined
as follows) would believe the hypothesisto be true, rather than in terms of observable frequencies
of events occurring in the world.

The appropriate interpretation of the graded belief values used in ReBel can be clarified some-
what by considering an alternativeinterpretation to the onejust provided. In thisinterpretation, the
belief value represents an estimate of the degree to which the hypothesisistruein thereal world, as
opposedtojust theextent towhichitisbelieved to betrue by the network. Inthisalternativecase, we
specifically assume that thingsin the world have graded (continuous) states of truth-value, and that
our network istrying to accurately represent these graded valuesin the activations of the unitsin the
network. An example of this can be considered in the case of representing the orientation of lines.
If the unit is representing the hypothesis*the input containsa vertical line,” and anot-quite-vertical
lineispresented in the input, one might expect the unit to produce agraded belief value that reflects
the extent to which the lineis not quite vertical (e.g., .85). Under the aternative interpretation, we
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would consider thisto represent an underlying not-quite-verticality of the linein the real world.

In contrast, the actual usage of belief valuesin ReBel is somewhat different in an important and
potentially subtle way. In order to make this clear, we need to distinguish between the true (distal)
states of theworld and the apparent (proximal) states (ak.a. evidence) of theworld, whichisall that
we (the network) have available to eval uate the true states of the world. ReBel assumesthat thetrue
states can be cast as binary-valued entities (i.e., the line is either vertical or it is not vertical), and
further that the apparent states are noisy, transformed, etc. reflections of the true states (e.g., there
are distortionsdue to optics, atmospheric distortion, retinal coding, etc.).

The belief in the truth value of any hypothesis is based on the fit between the apparent states
and what we imagine the apparent states generated by the true states would be. Thisfit, called the
likelihood can be written in Bayesian terminology as P(x,|k;). In other words, we expect certain
forms of evidence in the case of a particular hypothesis, and evauate the truth value on the match
between this expected evidence and the actual evidence (apparent states). Due to the noise, etc, this
match is rarely going to be perfect, but some fits are better than others. If we imagine the noise
to be random (not systematically biased in favor of any specific hypothesis), then it is improbable
that a good fit is dueto noise, and in genera, the extent to which the evidence fits our expectations
should make usmore confident that our hypothesisistrue. Thus, we can use the goodness-of-fit of the
evidence asaway of expressing the our degree-of-belief in the hypothesized true state of the world.
Of course, when comparing different hypotheses, we need to take into account the prior probabilities
of these different hypotheses, which iswhat effectively entersinto the evaluation of P(k;|x,) asa
function of thelikelihood P(x,|k;).

Thus, | can havea.85 degree of belief that agiven lineisvertical based onavisua stimuluswhich
might (in the true state of the world) be not quite vertical. This .85 does not reflect the certain belief
(knowledge) that thelineisactually .85 off of vertical (definedin some as-yet-unspecifiedway). This
interpretation of belief beliesboth the presence of noise, and perhaps moreimportantly for the ReBel
perspective, the context in which the hypothesisis being evaluated. Thus, the .85 value reflects that,
given some level of uncertainty due to noise, etc, my subjective belief in the verticality of theline
giventhecurrent evidenceis.85. Asalinegetsmore vertical, the evidence becomes more consistent
with that expected of a vertical line, and the belief value typically increases. In ReBel, the actual
values of belief vary with the nature of the space of hypotheses being entertained. For example, one
could have alarge number of very narrowly tuned detectors representing hypotheses of lines being
at very small increments (which could be taken to the continuouslimit), or one could have a fewer
broadly tuned detectors representing hypotheses of lines being at 45 degrees (for example). In the
former case, theexpected level of uncertainty regarding thefit between the evidenceand thetrue state
may be sufficiently low that it makes senseto have afine-grained set of hypotheses. Inthelatter case,
the uncertainty may be greater, so that it isnot useful to consider that fine-grained of hypotheses.

In neural network terms, this example is reminiscent of the coarse vs. localist coding issue. As
such, the expected level of uncertainty isonly onefactor that might influence the spacing and tuning
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Figure 4.3: Example of a simple 2-layer network for representing the features of digits. The input layer
represents the image of a digit, and the hidden layer contains units that represent the presence of oriented
linesin each of 3 different regions of theinput. Thus, A, isthe hypothesisthat “there isa 45 degree linein
the lower third of theinput”, which isnot very probablein the given example. ThereisakWTA constraint of
4 active unitsover thewhole hidden layer, so that with the’ A’ input, the relative component of ReBel lowers
the activity of two of the hidden units, whilethe 'i’ input activates so few hidden units that the individual
component of ReBel resultsinless than 4 total unitsactive.

of hypotheses — issues of efficiency, relevance to environmentally important distinctions, etc. are
also critical. In ReBel, the weights are what determine the nature of the hypothesis, which, given
that the weights have exact values at specific pointsin time, correspond to a specific (i.e., binary)
hypothesisabout thetrue state of theworld. The ReBel function then providesameans of evaluating
the evidence for this hypothesis as a function of the fit between these weights and the sending unit
activations, which provide the evidence. Built into this processis an expectation of uncertainty (i.e.,
in the evidence about the true state of the world provided by the sending unit activations, and in the
specific weight values). Thevaluesof the weights, and the belief states of other hypotheses, can both
influence the effective level of thisuncertainty. Thus, itistherole of the learning to determine these
parameters by adapting the weights.

In order to provide aspecific example of how ReBel works, consider the simpledigit-recognition
network shown in Figure 4.3. The hidden layer contains units which represent hypotheses such as
“thereisa45 degreelineinthelower third of theinput,” and multiplesuch hypothesescan betrueof a
giveninputimage. Thetwo exampleinputsillustratethe contributionsof theindividua and relative
(KWTA) componentsof the ReBel functionto the overall belief (activation) valueof thehidden units.
Assumethat thereisakWTA constraint such that only 4 hidden units can be active. Thus, when the
‘A’ input is presented, the relative component of ReBel, which implements thiskWTA constraint,
causes two unitswhich would have areasonablelevel of individua support from theinput to have a
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lower (below .5) overall belief value. In contrast, the i’ input resultsin significant individual levels
of belief for only 3 units, so that this component of the ReBel function causes the resulting belief
level to below for thetop unit, practically non-existent for any fourth potential unit. Thus, theoverall
activity level ends up being below the maximum of 4 — thisis an important property of the ReBel
function.

The two components of ReBel (individual and relative) amount to two different ways of evalu-
ating the truth-value of the unit’s hypothesis, which can be thought of as two variants of the basic
hypothesis represented by the unit. The individual evaluation of the truth-value of & ;, denoted h;
considers whether the data indicates the hypothesisistrue (k; = TRU E or smply h’) compared
only to the possibility that itisnot true (h; = FALSE or simply h%), without consideration for the
gpace of other hypothesis which might also account for the data. Thus, using the above example,
the evaluation of this hypothesisfor dataindicating aline at a 45 degree angle would, regardl ess of
the status of other hidden units, alwaysresult in a high truth value (near 1), while a-45 degree angle
would result in a low truth value (near 0). Intermediate angles values would presumably produce
intermediate truth values (e.g., a 0 degree angle would result in a.5 individual truth value).

In contrast, the relative evaluation of the truth-value of 4 ;, denoted h;?, considers whether the
dataindicates the hypothesisrepresented by thisunitistrue (k7 = T RU E or simply A7) compared
relativeto anull hypothesis, A;. Thisnull hypothesisis computed asafunction of the other hypothe-
sesin the layer, which iswhat makes it arelative evaluation of the given hypothesis, and it ends up
acting like afloating threshold of inhibitionfor the KWTA function. Thus, using the previous exam-
ple, the null hypothesisfor the ‘A’ input might actually be quite strong, since there are more units
that could be activated than the 4 allowed. Thus, only those 4 that are very strongly supported by
the input will end up being more probabl e than this strong null hypothesis. In contrast, the ‘i’ input
resultsin ardatively weak null hypothesis.

It istheuseof thisnull hypothesisinstead of an explicit consideration of all possiblecombinations
of the other hypotheses that makes this approach analytically tractable. However, this also means
that the relative evaluation is only as meaningful as the null hypothesis, since it does not provide
any objectively meaningful probability value as afunction of the combination of other hypothesesin
the layer. Thistradeoff isjustifiable given theintractahility of the fully combinatorial case, together
with a biastowards thinking that the brain islikely to use reasonable shortcuts.

Having defined all of the critical terms, it is now possibleto expressthe overall ReBel function:

ReBel(h;,x,) = P(h%,Rh%|x,) (4.1)

7177
which basically saysthat the belief in thetruth value of the hypothesisrepresented by unit 5 is equal
to the probability of the two variants of the hypothesis(i.e., the two ways of evaluating it) giventhe

current input pattern. If we assumethat thesetwo ways of evaluatingthe hypothesisare conditionally
independent of each other (which is probably at least approximately true), then the ReBel function
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can bewritten in terms of the product of two terms, oneindividual and onerelative, whichisexactly
what isdesired:
ReBel(h;,x,) = P(h§|xp)P(h§|Xp) (4.2)

The following two sections address the definition and computation of each of these two terms.
Both sectionsrely on the same Bayesian mathematics, whichisreviewed herefirst. In both ways of
evaluating the hypothesis, there are two mutually-exclusive, exhaustive hypothesesthat are consid-
ered. In theindividual case, one hypothesisis that hé istrue, and the other isthat it isfase. In the
relative case, one hypothesisis that h; istrue, and the other is that hg istrue. We will label thefirst
of these hypotheses p and the other one ¢. In each case, we want to evaluate P(p|z), which can be
expressed using Bayes' formula:

Plole) = TR (43)
Because we are considering only two mutually exclusive, exhaustive hypotheses (p and gq), the
probability P(z) can be written in terms of its probability under each of these hypotheses (e.g.,
P(z|p)P(p) + P(z|q)P(q)), whichresultsin the following simplification of (4.3):

P(plz) =

= (4.4)

Thisexpressionisparticularly interesting, because it makes an important link with the oddsratio
of p over ¢, whichis:

O(p,q) =

=2
8

(4.5)

8|8
3
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Odds ratios (or more commonly, the natural log of the odds ratio) provide the starting point for a
widevariety of applicationsrelevant to hypothesistesting and belief assessment (Pearl, 1988; Kass &
Raftery, 1993; Anderson, 1990). Thelink between (4.4) and thelog of the odds ratio comes viawhat
might be called a“normaization” of the log odds onto the (0..1) scale appropriate for probabilities.
Since the log odds gives a value that can range over the real values, a squashing function like the
logistic can be used to normalizeit. Indeed, the application of the sigmoidal logistic function:

. 1
S'Lg(:c) = m (46)
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to the log odds ratio of p over ¢ gives an expression nearly identical to (4.4):

. 1
Sig(log O(p,q)) = 1on PEIRPE) (.7
1+ e 778 Plalg)P(q)

1

P(z|p)P(p)\ "
1+ (7E870)

The only difference is the presence of the gain parameter v that determines the “sharpness’ of the
logistic function.

The following table, adapted from Kass and Raftery (1993), compares standard heuristic evalu-
ations of thelog of the odds ratio to its sigmoidally normalized equivalent asin (4.8):

21og O(p, q) | Sig(logO(p,q)) | Evidencefor p over ¢

Oto2 .5t0.73 Not worth more than a bare mention
2to5 7310 .92 Positive

5t010 9210 .99 Strong

> 10 > .99 Decisive

Thus, the sigmoidal function, which is commonly used in neural networks, can be seen as com-
puting the Bayesian conditional probability of P(p|z) based on thelog odds of two mutually exclu-
sive and exhaustive hypotheses. The resulting probability values can be interpreted in terms of the
reasonable belief in the truth of one hypothesisover the other, as per the abovetable.

Individual Probability

Using the above equations, we can express the individual probability term as follows:

1

" : (Bt
P(xplh?)P(h!)

P(hj|x,) =

4.8
—tlog ——=L—L
P(xpht)P(h?)

Thus, thisindividual probability could be computed by a sigmoidal logistic function, with the net
input (n;) equivalent to: ' '
P(x,|h;)P(h})

o L} 4.9
P(xy|h;) P(h;) 9

n; = log

Hinton and Sejnowski (1983), using the same Bayesian framework, argued that, based on (4.9),

one should consider the weight from a given input unit z; to represent thelog likelihood ratio for that
input unit: '

P(zi|h})

P(ai[h?)

w;; = log
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with the bias weight 8, taken to represent the log prior odds ratio:

0,  log L L) (4.12)
T ) |

J

If thiswere the case, then the standard sigmoidal net input function:
M = Z z;w;; + 0; (4.12)

would result in the appropriate Bayesian expression for theindividua probability of the hypothesis
given the data, assuming that the input units (z;) are binary, and independent, so that a product over
the individua cases can be computed:

P(z;|h
M, = Zmilog ( l_] + log _J

7 (4.13)

Whilethisformulation provides an important starting point, there are a couple of problemswith
thisinterpretation that need to be resolved in order to work well within the ReBel framework. These
are addressed in a subsequent section of this chapter, along with other possibleways of defining this
function, such as with the use of a Gaussian or related functions. However, for the time being, we
can assume that the individual probability is computed according to the sigmoidal logistic function
of the weightstimes the activations:

1

Tte @19

P(hj|x,) =
where n; iscomputed asin (4.12).

Relative Probability

Using the Bayesian framework presented above, we can express the relative probability term as

follows:
1

Pl )P\ T
1+ (7P(xplh5)P(h2))

P(h}|xp) =

(4.15)

Thus, in order to compute this value, we need to define the component terms. There are two central
questions — how to evauate the likelihood term P(x,|A}), and how to define the null hypothesis
h’; such that the terms involving it can be computed.
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The definition of the likelihood term is something that gives the probability of the input vector
x, under the hypothesis A’ . In other words, assuming that »} istrue, how likely isit that we would
observe the input vector x,. Essentialy, this likelihood term ignores any of the relative compar-
isons between other hypotheses, and asks about the specific match between the input vector and the
hypothesis. Thus, it makes sense to adopt the following definition of the likelihood of the relative
evaluation of the hypothesisin terms of theindividual probability of that hypothesis:

P(x,|k}) = P(h!|x,) (4.16)

given that the individual probability provides the relevant information, and it is easily computable
as described above. In probabilisticterms, this meansthat the likelihood used for therelative proba-
bility term isthe same as that used for the individua term, with theinclusion of he prior probability
of theindividual probahility term (and the probability of the dataitself, but thiswill cancel out inthe
oddsratio anyway):

P(Ri|x,) ox P(x,|R})P(hY) (4.17)

Recall that thisindividual prior is effectively implemented by the bias weight of the unit. Thisin-
clusion of the prior probability of the individual hypothesisin the relative likelihood is appropriate
assuming that we want our relative comparison to takeinto account theindividual priorsover thedif-
ferent hypotheseswe are considering, which seems much more reasonabl e than not including them,
for example.

Next, we need to define the null hypothesish;. Theinterpretation of A7 asan “event” that can be
described probabilistically can be given asthe probability that a middling hypothesisamong the set
H of other hypothesesin the layer accounts for the data. With the KWTA assumption used here, a
middling hypothesiscan be defined as one that isless probabl e than the £ most probabl e hypotheses,
but more probabl e than the next most probable hypothesis:

P(hy) = P(hj41) + q[P(R}) — P(hjiq)] (4.18)

where (0 < ¢ < 1) and the subscripts denote a rank-ordering of the hypothesesin the layer from
1 (most probable) to N (least probable). The definitionin (4.18) can be thought of as a functiona
form which can be used to define various conditional probabilitiesof &}, for example:

P(h;|xp) = P(h7l;+1|xp) + q[P(hy|x,) — P(h71;+1|xp)] (4.19)

The P(h;|x,) notation will be used in what follows for simplicity.

It isimportant to notethat it is possibleto define Ay, in waysthat do not depend on specifying an
exact k parameter. In particular, | have used an alternative definition of A} as afunction of the mean
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(P(h7)) and max (max P(h")) probability values over the unitsin the layer:

P(h;) = P(h") + g[max P(h") — P(h")] (4.20)

with ag value of -0.1 providing aroughly 25% activity level. Whilethisway of defining A7 avoids
the need to specify a precise activity level, it ends up performing slightly worse than the “ standard”
KWTA definition (4.18) on the tasksreported later inthisthesis. Nevertheless, it is possiblethat this
or some other way of defining h; might be preferable in other tasks.

By using the definition of thelikelihood in (4.16) and functiona form of (4.18) for the null hy-
pothesisterms, we have addressed most of the terms need to compute the relative probability. The
single remaining issue is that of the prior probabilities, P(h’). These priors can be initialized to
uniform values at the start of processing for a given input pattern, and then iteratively updated as
afunction of the previous ReBdl belief state. This providesa novel form of settling, which works
quite effectively, resulting in typically between 20 to 40 cycles of iterative updating to achieve a
stable probability state (to athreshold of .02 difference between updates) for the entire network.

To summarize, the ReBel function can be computed by evaluating theindividua probability us-
ing a sigmoidal logistic function of the net input to the unit, and computing the null hypothesisas
afunction of these individual probabilities over the layer. The prior probabilities are updated over
settling asjust described. Thus, the ReBel function is as follows:

1

P(h x) P(R7)\ 7
1+ <——P<h;|xp>P<hg>)

ReBel(h;,x,) = P(h}|x,) (4.21)

The appendix Implementational Details of LEABRA describes a number of additiona detailsre-
garding the implementation of the ReBel activation function that make it work well in practice.
These detailsinclude mechanisms that keep the sigmoidal functionsin a useful dynamic range, pre-
serve small activation values for learning, and compensate for overall decreases in activation as
uncertainty propagates through a deep network. In addition, the way in which external inputs are
clamped and the use of thresholds and other techniques to improve computational speed are dis-
cussed.

Functional Properties of ReBel

There are severa important functional properties of the soft KWTA activity constraint imposed
by the ReBel function. As discussed above, this constraint will cause individua units to develop
more specialized representations, which is consi stent with the entropy reduction principle. Thiswill
be a primary issue of investigationin the simulationsreported later. In addition, there are couple of
less obviousimplicationsof ReBel. One, which was mentioned briefly above, isthat ReBel assumes
that the unit activity states represent an underlying binary variable, which corresponds to whether
or not a particular hypothesis appliesto the current input pattern. Thus, it is not appropriate to use
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a) Hopfield b) ReBel

KWTA limit

—Energy
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Time Time

Figure 4.4: Damping effect of the ReBel activity constraints. a) Shows a hypothetical graph of the negative
of theenergy (ak.a “goodness’) of the activation state of a continuousHopfield network over time (settling).
b) Showsa similar hypothetical graph for the ReBel activation function, which effectively has an upper limit
on thetotal energy dueto the KWTA limit. Thus, the net result of ReBdl isto damp the activation dynamics
compared to the Hopfield network.

this function in tasks that require the representation of continuous-valued quantitiesin single units
(of course, it is possible to spread continuous values over multiple bins, each represented by an in-
dividua binary unit). It is easier to justify the use of binary representations on biological grounds
than continuous-valued ones. First of all, neura firing is quite noisy, and thus unlikely to be precise
enough to be encoding continuousvalues. Secondly, there is evidence that in situationswhere con-
tinuousvalues are needed, such as the representation of angular directionin motor control, the brain
appears to use a population code (Georgopoul os, 1990), where the continuous value is represented
as aweighted-average over alarge number of individual units, each of which represents a particular
direction. Thus, the neocortex appears to use, at least in this case, a probabilistic representation of
underlying binary variables.

Another interesting property of ReBel isthat the KWTA activation constraint provides akind of
damping effect on the activation dynamics of the network. Thisisillustrated in cartoon formin Fig-
ure 4.4, which shows two hypothetical plots of the energy functions for a continuous Hopfield net-
work (Hopfield, 1984) and aReBel network. The Hopfield network providesthe activation function
for the deterministic Boltzmann machine, GeneRec, and the Almeida-Pinedaalgorithm. The energy
function isaquadratic scalar measure of the activation state, which isrelated to the interpretation of
anetwork as aphysical system, and can be used to derivelearning rules (Ackley et ., 1985) and to
show that the network will settleinto a stable equilibrium state (Hopfield, 1982, 1984). The energy
functionis:

E= —%ZZaiwija]’ + EH((L]') (4.22)

J ? J
where H (a;) isamessure of the entropy of theactivity state. Itisoften easier to think in terms of the
negative of thisfunction, whichisalso known as*“goodness,” sincethisvalueincreaseswithincreas-
ing activity levels of the units, as is represented in the figure. Thus, the goodness of the activation
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statein ReBel has an upper bound imposed by the activation constraints (for a given set of weights).
This upper bound, and the general tendency of ReBel to maintain activity around the KWTA limit,
servesto restrict therange of energy statesthat the network can exploreover settling. Thisrestriction
or damping of the activation dynamics might make the network less sensitive to changes in input
patterns. As discussed previously, an important problem with interactive networks (like the Hop-
field network) is that they are overly sensitive to small differences in input patterns, and that this
contributes to their poor generalization performance. Thus, the damping effect of ReBel could be
important in this respect, as will be explored in the simulations reported later. Chapter 8 discusses
some other related consequences of the activity constraintsimposed by ReBel.

Biological Propertiesof ReBel

The ReBéd activationfunction can beinterpreted asasummarization of theeffects of theelaborate
inhibitory interneuron system of the neocortex ontheactivity of pyramidal cells. Thenull hypothesis
termwhichisafunctionof A} servesasthe summary inhibitory signal for theunitsin ReBel. Theway
inwhichthisinhibitory signal isusedin ReBel isconsistent with several factsabout inhibitionin real
neurons. First, inhibitory current in neurons has a divisive or shunting effect, since the membrane
potential V,,, (in apassive system, ignoring spatial gradients) is given by:

1dVy, ge gi gi
il PG O S erLCO COR SO Vm)] ~Vm
(4.23)
where g, isthe excitatory conductance, g; is the inhibitory conductance, and g; is the leak current.
The main effect of increased inhibition is to cause the denominator (which is the sum of all con-
ductances) to grow, effectively dividing the impact of the excitatory conductance in thefirst term of
(4.23). Similarly, the inhibitory term which isafunction of A7 in ReBel dividesthe excitatory term.

Another property of ReBel that is consistent with the biology is that the value of the probability
of h;, floats with the total level of excitatory activity in the layer, and is common to al the unitsin
thelayer. Similarly, theinhibitory interneuronsproject diffusely to many pyramidal cellsin thelocal
area, and they are in turn activated by pyramidal cells within the same local area, and by excitatory
inputs coming into the areafrom other regions. However, it isimportant to note that ReBel does not
have much to say about the details of how thisfeedforward and feedback inhibitory circuitry results
in afloating inhibitory threshold like that based on A7 . Indeed, this mechanism might be somewhat
complicated (Gibson et al., 1991), and substantia detailed modeling might be necessary to under-
stand how it works. Given this, ReBel can be seen as an approximation of the net effect of the more
detailed biological inhibitory mechanisms.

Individual Probability Functionsfor ReBel

The computation of the ReBel activation function depends entirely on the evaluation of the in-
dividual probability term, P(h;'. |x,), which is computed as a function of a unit’s weights and the
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activities of the sending units. These individual probability values are similar to the activation val-
ues computed in a standard neural network (e.g., backpropagation), and it was shown above that
the sigmoidal |ogistic function computes thisindividua probability under certain interpretations of
the weights and sending unit activations. However, there is another commonly used neural network
activation function that could potentialy serve as a definition of the individual probability term for
ReBel: the Gaussian. The sigmoid and Gaussian functions bring with them two distinct sets of un-
derlying assumptionsfor the meaning of the weights and their relationship with the sending units.
This section will explore which of these assumptions (or which aspects of them) are more or less
appropriatefor usein LEABRA.

In order to understand the applicability of these functionsin the LEABRA framework, we must
first be clear about the constraints and interpretationsimposed on the unit activities and weights by
LEABRA. In order to be consistent and allow for multi-layered networks, the sending units are as-
sumed to be like the hidden units described above. Thus, they have an activity state which reflects
abelief measure for the truth of some hypothesisrepresented by that unit, ranging between 0 and 1.
The exact interpretation of the weights depends on the individual probability function, but, consis-
tent with the LEABRA framework, we will consider them to also be bounded in the O to 1 range,
and use them as the single parameter that determines the influence of the truth value of the send-
ing unit’s hypothesis on the receiving unit’s hypothesis. In order to fully specify the assumptions
of the individual probability function, we need to know: 1) the nature of the relationship between
the truth value of a given sending hypothesisand the truth value of the receiving hypothesis; 2) how
the weight value modifies, interacts, or otherwise specifies this relationship; 3) how the individual
sending hypothesis contributions are aggregated to obtain an overall probability for the receiving
unit.

These three points will be explored for the sigmoid and Gaussian functions below. It will be
shown that these two functions can be seen as specialized for implementing the two main represen-
tational principles behind LEABRA, entropy reduction and information preservation, respectively.
A new individual probability function that provides a reasonabl e tradeoff between both entropy re-
duction and information preservation, called GausSg, isthen described.

It is important to be clear about the formal status of these functions, since they are described
using a probabilisticframework, but are only really required to provide a continuous-val ued number
between 0 and 1 that reflectsthe truth value or degree of belief in the hypothesisgiven theinput data.
Thus, where there are probahility distributionsinvolved in the derivation (as in the Gaussian case),
it isassumed that expected values are used. Further, it isimportant not to become overly restricted
by the constraintsof the probabilistic framework. Thus, whilethe sigmoid and the Bernoulli (which
can be viewed as a more correct variant of the Gaussian for binary variables) are formally correct as
probability functions, the Gaussian and GausSig are not. Nevertheless, these functions each provide
a novel, useful, and well-defined framework for understanding the relationship between the truth
value of sending units and a receiving unit as mediated by its weights. The lack of formal rigor
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for these functionsis also mitigated by the fact that they are closely related to functions which are
formally correct. Thus, their formal properties can be understood in reference to these functions.
In terms of actual network performance, the GausSig function clearly works the best. This section
conveys the reasons why this should be so, but falls short of proving the case mathematically.

The Sgmoidal Logistic Function

Asdescribed previously, the sigmoidal function computes P(h§ |x,) if eechweightisequal tothe
likelihood ratio of the sending unit under the hypothesis(compared to the the hypothesisbeing fal se),
and the sending units are binary and independent. The previous definition of the bias weight as the
prior ratio in (4.11) is not problematic, and will not be discussed further. Another way of viewing
the likelihood ratio which relaxes some of these assumptionsis to write the equation the other way
around as a definition: ,

P(z;|h%)

— = = Twyj (4.24)

P(z;|h})
where we are now defining the evaluation of thelog likelihood ratio to be the product of the sending
unit belief value (ak.a. activation) timestheweights. Thisallowsthe sending unitsto be continuous-
valued, but they still must be independent, which is probably an assumption that must be lived with.
In any case, thisdefinition of the likelihood ratio hasimportant implicationsfor interpretation of the
impact of the sending unit’struth value on the receiver’s, and the way in which the weight mediates
thisrelationship.

Keepinginmindthesign constraintsimposed by LEABRA, (4.24) impliesthat the contribution of
asending unit to thelikelihood of thereceiver iseither positiveor zero!. Further, theweight can only
determine the degree to which the truth value of the sender supportsthe truth value of the receiver.
Thisrelationship can be understood in terms of the graded implication of the sending hypothesison
the receiving one. Thus, the individual relationship between the truth value of the sending hypoth-
esis on the receiving hypothesisis one of logical implication, which can be denoted z; — hé for
sending hypothesis z; and receiving hypothesish’. The implication relationship is also known as
a conditional relationship. That is, if the sending hypothesisis true, thisimplies that the receiving
hypothesisistrue as well (which isthe familiar modus ponens form of logical deduction). Logical
implication also meansthat if the sending hypothesisisfalse, thisimplies nothing about the truth of
the receiving hypothesis (which people tend to find counterintuitive)?. Unlike the discrete logical
case, the sigmoid function is graded, with the implication relationship mediated by the strength of
the weight. This can be written z; % h; which means that the truth value of the sending unit con-

! Note that prior probabilities (i.e., bias weights) should be rather low, so that some amount of sending input support is
necessary to result in a high truth value on the receiver.

2Note also that the modus tollens form of reasoning, which allows one to conclude that «; is false if hj is false, does
not necessarily apply sincethere are many other factorsthat contribute to thetruth valueof ; besidesz;, and thesefactors
could cause & to be false while z; is true (and the weight between them is strong). It is interesting to note that people
have difficulty applying modustollens.
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tributes to the truth value of the receiving unit as a graded function of the magnitude of the weight.

A particularly important aspect of thisgraded implicationrelationshipisthat it allowsfor asend-
ing hypothesisto have graded levels of relevance in proportion to the weight, with the extreme of
complete irrelevance occurring when w;; = 0. Thisisimportant because it allows areceiving unit
to perform entropy reduction, which is of central importance for the LEABRA framework. There
are two primary forms of entropy reduction that the sigmoid facilitates, filtering and categorization.
Filtering can be performed by simply having zero weightsfrom a set of sending units. This means
that the truth value of the these sending unitsisirrelevant for the receiving unit. Generally speak-
ing, zero-valued weights enable the receiving unit to devel op representations that focus on separate
features present in the input, and ignore other features. Categorization can be performed by hav-
ing the same (nhon-zero) weight value for a set of different sending units, which means that each
such unit will have the same truth-value implication for the receiving unit. Assuming a ReBel-like
activity constraint over these units, and by virtue of the fact that sending units with O truth values
have no impact on the receiver, any subset of activeinputswill result in roughly the same receiving
truth value. Thiscan be thought of as computing alogical OR over these sending units, whichisthe
essence of categorization. It is easy to see that both filtering and categorization reduce the entropy
of the receiving unit relative to that of the sending input pattern.

It isalso important to note that the form of thisfunctionisbiologically plausible, in that the send-
ing unit contributes to the activation of the receiver in proportion to its activity, which is a reason-
able approximation of what happensin biological neurons. Similarly, the weight plays a plausible
role as synaptic efficacy, where greater impact of the presynaptic neuron isfelt from larger weights.
Finally, when the weight goes to zero, the connection could be “pruned” without atering the rela-
tionship between senders and receivers, which providesa potential basisfor theimportant biol ogical
phenomenon of synaptic loss.

The Gaussian and Related Individual Probability Functions

Whilethe sigmoidal function can be understood in terms of graded logical implication, it is most
natural to think of the Gaussian function in probability matching terms. Thus, theweightsof agiven
receiving unit specify that unit’ sexpectation of what probability the sending unit will havewhenever
the receiver is active. The truth value of the receiving unit is high whenever the sending units are
closeto thisexpected probability, and lower when thereis a discrepancy. This probability matching
isalso related to theideathat the truth val ue of the receiving unit should be a function of the proba-
bility with which it would have generated the pattern of sending unit activities (Nowlan, 1990). The
probability matching idea is expressed in the Gaussian by virtue of it being based on the negative
exponentia of the squared distance between the weight and the sending unit probability:

Pgauss(hﬂmi) - e_($i_wij)2 (425)
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Thus, unlikethe sigmoidfunction, thereisno pre-specified implication rel ationshi p between thetruth
of the sending unit’s hypothesis and the receiver’s. For example, if the sending unit is false (near
zero) and the weight is also near zero, the distance will be quite small, and a high truth value will
result. In other words, the receiving hypothesiscan obtai n support from the sending hypothesisbeing
faseif it expectsit to befalse. Thisisnot possibleunder thelogical implicationrelationshipimplied
by the sigmoid with the positive-only weights and activations used in the ReBel framework.

One might describe the Gaussi an rel ationship as being biconditional or if and only if (iff), in con-
trast to the conditional relationship of the sigmoid, with the direction of relationship specified by
the weight value. When the weight is near 1, for example, the relationship between the hypothe-
sesisz; < h; so that if the sending hypothesis z; istrue, then it should influence h§ to be true,
and if z; isfalse, it should influence h;i to be false®. An opposite case holds with a weight near 0,
whichimplies ~z; < hj. Intermediate weight values do not imply graded versions of these cases
— instead they imply an expected probability equal to the weight value. Thus, in contrast with the
sigmoid, the weights in a Gaussian function specify the nature of the relationship between z; and
h; but not the graded strength of that relationship. Furthermore, the Gaussian enables the sending
hypothesisto contributeto the receiving hypothesisbeing true or false, whereas the sigmoid (under
the sign constraints present in ReBel) only alows the sending hypothesisto contribute to the truth
of the receiving hypothesis.

Thus, the Gaussian is loosely speaking more infor mative than the sigmoid with respect to there-
lationship between the sending and receiving hypotheses. However, it isnot very biologically plau-
sible, because it violates many of the basic properties of neural interaction that are captured by the
sigmoid. Thus, sending neurons under the Gaussian should be ableto excite areceiving neuron with
asmall weights when they are not active. Further, as this sending neuron becomes more active, it
should activate the receiver less. Neither of these propertiesis likely to be true of pairwise inter-
actions between excitatory neurons in the cortex. While one might be able to construct networks
involving inhibitory neurons where something approximating a Gaussian function could be imple-
mented, the individual probability function is intended to describe the simple pairwise interaction
between excitatory neurons, while the relative component of the ReBel function describes the ef-
fects of the inhibitory neurons.

To complete the description of the Gaussian, the individual distance contributionsof the sending
units are combined in a multi- dimensional Gaussian function, which, like the sigmoid, is based on
aproduct over theindividual terms. In this case, the product isjustified by assuming that the contri-
butions of the sending units are independent of each other. This product turnsinto an addition as a

3 Again, it is not the casethat the truth value of the receiver h§ can be used to reason about the truth value of the sender

z;.
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result of the exponential function, resulting in:

C_ Xilmi - wy)?
n = T
. 1
Pgauss(h;'lx) = ?6_77] (426)

where ¢ isthe standard deviation of the Gaussian, and K is anormalizing term that is not relevant
for usein ReBel. Notethat it ispossibleto make this o an additional parameter per connection (like
theweight), which would allow the Gaussian to al so express the effective strength of therel ationship
— alarge o means the sender has a weak impact, and a small o gives a strong impact. The use of
this additional parameter is not particularly biologically plausible, however, and it requires its own
learning rule.

The Gaussian computes the difference between the expected sending probabilities (encoded by
the weights) and the observed probabilitiesin a completely uniform manner. Thisis appropriate for
continuous-valued variableswhich are uniformly distributed along a continuum. A related function
which is more appropriate for binary-valued variables such as the sending unit hypotheses assumes
Bernoulli-distributed variables:

Pocrnounti(Bi|zi) = wi (1 — wy;) =0 (4.27)

Thiscan becompared to thedistancemeasure used in the Gaussi an function. Aswasthe casewiththe
Gaussian, the probability of thereceiver under thisfunctionis higher when thereis a match between
the weights and the sending activations. However, unlike the Gaussian, it is not maximal for all
matching values of weight and activation. When the weights indicate that the sending unit should
be off or on with high certainty (e.g., values around .01 or .99 respectively), then matching values
of the activation result in ahigh likelihood measure (near 1). Asthe weight and activation decrease
in certainty towards .5, the probability also approaches .5 (see Figure 4.5).

Finally, as with the Gaussian, the individual Bernoulli probahilities are aggregated by assuming
independence and computing the product over al of them:

Pbernoullz h |X l_Iu)Il 1 - wzy 1 =) (428)
The Entropy Reduction, Information Preservation Tradeoff and the GausSg Function

The differences between the sigmoid and the Gaussian can be described in terms of entropy re-
duction andinformation preservation. Asdescribed above, the sigmoid naturally allowsthe entropy-
reducing filtering (near zero weights) and categorization (logical OR type of relationship) to be en-
coded. In contrast, theweights of the Gaussian (or Bernoulli) determine the specific probabilities of
the sending unitsthat the receiver expects, and the resulting probability provides maximal informa-



104 LEABRA

tionregarding thefit between this expectation and the actual state of the sending units. However, this
information comes at the cost of being unable to perform entropy reduction viafiltering or catego-
rization. Thus, the sigmoid and Gaussian functions can be seen as optimal for the entropy reduction
and information preservation aspects, respectively, of the overall representational objectivesbehind
LEABRA. Aswas the case with the MaxIn learning rule, it may be possible to combine these two
into one unified function, which providesa good tradeoff between the advantages and disadvantages
of both. Such afunction, called GausSg, is described bel ow.

Before describing GausSig, it is useful to consider some of the more practical aspects of the sig-
moid and Gaussian functionsin the context of the ReBel framework. The most relevant aspect of the
ReBel framework hereisthat individual unitscompetewith each other onthebasisof their individua
probability values for the ability to represent input patterns. Thus, it isimportant that the individual
probability function encourage a useful form of competition among the units. Thisiswhere the in-
formativeness of the Gaussian function has a distinct advantage over the sigmoid function, since it
reflects the goodness-of-fit between the input pattern and theweights. It isimpossiblefor aGaussian
unit to fit alarge number of different input patternsvery well, since weightsthat are close to one set
of input patterns will necessarily be further away from dissimilar inputs. For this reason, Gaussian
unitswill do a good job of sharing the representational space across many units. In contrast, it is
quite easy for a sigmoidal unit to match a large number of different patterns, since larger weights
alwaysresultin ahigher probability value, and a unit with large weightsto many inputswill become
consistently activated. On the other hand, it is difficult for a reasonable number of Gaussian unitsto
span a high-dimensional input space (especially with random initial weight values), since each unit
is unableto cover enough territory within the space, whereas sigmoidal units more naturally cover
high-dimensional spaces, even with random weights.

Thus, the greater information preservation of the Gaussian function leads to good differentiation
of the unitsin a competitive situation (it is hard for units to dominate the representational space),
but it simultaneously causes units to become overly-specific, and unable to cover high dimensiona
spaceseasily. In contrast, the entropy reduction properties of the sigmoid can result in poor differen-
tiation of the unitsin acompetitive situation, but they can more easily carve up a high dimensional
space. Thus, at apractical level, it seems clear that something in between the sigmoid and the Gaus-
sian would be desirable.

Theideabehind the GausSig functionistoretain thebroad features of the sigmoid function, given
that it is biologically plausible and that entropy reduction is of paramount importancein LEABRA,
but to introduce a Gaussian-like distance term into the computation of the likelihoodratio. Thisdis-
tanceterm will introduce some degree of sensitivity to the match between theweight and the sending
unit probability, enabling the unit’slikelihood to beamoreinformativefunction of itsweights. Thus,
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the value of the likelihood ratio under GausSig is:

log P(L“L_;) = z;wi(1 — kgauss(z; — wij)Q) (4.29)
P(z;|h})

where k.5 determinesthe overall scaling of the distance term (maximum reasonable valueis4, 2
istypicaly used). Thistermisthe sameasthe standard sigmoid at theimportant boundary conditions
when either z; = 0 or w;; = 0, which preserves the important entropy reduction characteristics of
the sigmoid, and when z; = w;;. However, outside of these values, the likelihood is |ower, due to
the distance term. Thus, it isimportant that the distance factor in GausSig is multiplied by both z;
and w;;, since this preservesimportant features of the sigmoid, and retains the idea that the weights
reflect the importance of the sending unit on the receiver. What GausSig adds over the sigmoid is
the idea that the level of importance attributed to the sending unit should also match the expected
probability of that sending unit as well. This view of the weight as reflecting both relevance and
expected activationvalueisquite consistent with theMaxIn learning rule, aswill be described bel ow,
where the ZSH component causes the weightsto become either near 1 or near 0 as afunction of the
coactivation of the sending unit and the receiver, while the SCL component causes the weights to
match the expected value of the sending unit.

Figure 4.5 showsplotsof al four of theindividua probability functionsdiscussed in this section,
for al values of a single input and weight. It is clear that GausSig exhibits a combination of the
sigmoid and Gaussian properties, and further that itstop half resembles the top half of the Bernoulli
function. It is aso clear that both the sigmoid and GausSig part company with the Gaussian and
the Bernoulli in that small to zero values of weight and sending activation result in lower likelihood
values for the receiver, not larger values. Thisisimportant for biological plausibility, as discussed
above.

In someways, GausSigisuniquely suited to the ReBel activation function, sinceit does not work
very well as a standard activation function (e.g., in a backpropagation network). Thisis because
GausSig assumes that the weights are bounded in the same range as the activations (typically O to
1), since there is some pressure for them to match the activation values. As discussed above, this
resultsinastrictly positivenet input that would have to be compensated for by carefully chosen neg-
ative bias terms to result in an informative pattern of activation over a set of units. In simulations
where the GausSig was substituted for the sigmoid in a standard backpropagation or GeneRec net-
work, it did not work very well for thisreason. However, the ReBel activation functionin LEABRA
automatically compensates for overall levels of activation and sets activation based on the relative
activations of different units. Using the GausSig likelihood functionin LEABRA was never found
toimpair learning on any of thetasks studied, and on most tasksit resulted in significantly faster and
more reliable learning.

While the GausSig function might at first glance appear to represent a departure from biological
plausibility, it can actually be justified based on the effect of synaptic activation on voltage and/or
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Figure 4.5: Four different individual probability functions plotted over the 0-1 range for a single sending
activation (x) and weight (w). &) shows the sigmoid, with offset of .5 and gain of 4. b) shows the Gaussian,
with standard deviation of 1. c) showstheBernoulli. d) shows GausSig, with offset of .5, gainof 4, and £ ;4u s s

of 4.
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calcium sensitive potassium channels. It is known that severa forms of voltage and calcium sensi-
tive potassium channelsexist in cortical pyramidal neurons(Douglas& Martin, 1990), and that these
channels provide a mechanism for adapting the firing threshol ds of heuronsin an activity-dependent
manner. As the membrane potential or calcium level (which is determined in part by synaptic ac-
tivity) of the neuron rises above some level, these channels are opened, and result in an increased
leak current that brings the membrane potential back towards resting level. These channels could
implement a GausSig-like function by generating increased leak current for weak synaptic inputs.
Thus, when a synapse with alarge weight (high synaptic conductance) is infrequently activated by
the sending neuron, thisresultsin arelatively large but transient increase in the local membrane po-
tential, which could be enough to activate the potassium channels, resulting in anet inhibitory effect.
Similarly, the frequent activation of a synapsewith a small weight (weak conductance) would result
in a sustained but weak depolarization, which might be enough to activate the potassium channels,
but not enough to actually contribute sufficient excitation to overcome this increased leak current.
Only in the case of a synapse with a large weight and a frequently firing sending unit would the
increased potassium conductance be overcome by the synaptic excitation, resulting in a net depo-
larization of the cell. Thus, the match between sending unit activity (firing frequency) and synaptic
weight (efficacy) emphasized in GausSig may a so be emphasized in cortical neurons.

Finally, given that the net input under GausSig hasadifferent kind of dependency on the weights
and activationsthan a standard dot product, the derivative of thisinput term with respect to aweight
isdifferent. This derivativeis used in the GeneRec error-driven learning rule, which should there-
fore be altered to use the new derivative whenever the GausSig function is used. The appendix on
implementation detailsof LEABRA containsaderivation of the GeneRec learning rulefor GausSig.
Relatedly, the MaxIn learning ruleisalsoinfluenced by the choice of individual probability function,
as will be discussed bel ow.

Entropy Reduction and Information Preservation: MaxIn Learning

Of the three proposed representational principles on the form of useful information processing,
the standard representational form principleis most effectively handled by the fixed constraints dis-
cussed above. However, both entropy reduction and information preservation probably need to be
implemented with adapting constraints, asit isdifficult to satisfy these opposing forcesin an optimal
way without using an adaptive algorithm that takes advantage of the particular features of specific
environments. The entropy reduction imposed by the ReBel activation function can bethought of as
afirst pass at this constraint, which can be further specified through adapting constraints.

There are potentially many different ways of implementing these constraints. A direct approach
wouldinvolveformulating theinformation-theoretic measures corresponding to each constraint, and
taking the derivative of these with respect to the weights in the network. These derivatives could
then be used for a gradient descent learning procedure. However, a slightly more indirect approach
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was taken because the relevant informati on-theoretic measures are not availablelocally intime (i.e.,
they are time-averaged values). Theresult of this approach is a self-organizing algorithm known as
Maxin, for Maximizing Input | nformation.

The motivations behind MaxIn and its derivation are given in O’ Reilly (1994), which can be
summarized as follows. Essentially, the problem with the direct approach suggested above is that
the information-theoretic measures depend critically on the variance of the unit’s output signal over
time. However, asisargued in O’ Reilly (1994), this introduces atemporal non-locality into the al-
gorithm, the consequences of which are problematic for realistic learning environments where the
statistics of the training sample from the environment are non-uniform with respect to the relevant
categoriesand distinctionsin that environment. Thisnon-uniformity affectsthevalidity of the output
unit signal variance measured over intervals shorter than the grain size of the non-uniformity, and
O'Reilly (1994) showed that this hurt algorithms that are derived on the basis of the output signa
variance.

An example of thisproblem described in O’ Reilly (1994) isthe case of classifying different tree
types. Intherea world, the kinds of trees one sees across different climates are not very uniformly
distributed. Each climate zonetendsto have associated withit adifferent set of trees, from palmtrees
to pinetrees. Thus, if one were to spend several months vacation in the tropics, where palm trees
abound, the unitsrepresenting these kindsof treeswoul d befiring quiteoften, and thosefor the conif-
erous trees would be silent. Then, upon traveling to the Rocky Mountains for the remainder of the
year, thereverse would occur. If oneimaginesthat the entire space of treesisto be represented, then
the appropriate time period to sample variables over is an entire year. However, thisis clearly too
long to wait to learn something new. With shorter time samples, the clustering of category instances
over time will bias estimates of the mean and variance of unit firing rates, which might compromise
the learning algorithm.

The aternative approach taken in MaxIn is to maximize the quality of the input signal infor-
mation, as opposed to the output information. An example of this form of learning is the G-
maxi mization algorithm (Pearlmutter & Hinton, 1986), which uses a sampling method across differ-
ent phases of learning to measure and enhance the response of aunit to meaningful (i.e., correlated)
input signals relative to their response to noise. Input information quality in MaxiIn is defined in a
similar way using the ReBel framework presented above. Thisisdone by making the relative prob-
ability term a comparison between the hypothesis given a particular input signal x,, relativeto the
probability of that hypothesis when the input instead consists of a pure noise vector v,,. Thus, the
null hypothesisin this case, h;, is not a function of the other unitsin the layer as was the case with
hy, in the activation function, but rather on the support given to hypothesis j by an input consisting
of pure noise.

The probability of the null hypothesisis defined by the following functions, which simply sub-
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stitute the pure noise input vector v,, for the actua input vector x,,:

P(hj|xp) P(R}|v,)
P(rY) = P(h?) (4.30)

By substituting & for A; in the ReBel equation (4.21), the MaxIn objective can be expressed for-
mally as.

' 1
MazIn(h;,x,) = P(hj|x,) (4.31)

P(rxp) \ 7
1+ (P(fébcp))
Notethat the prior probability of both the hypothesisand the null hypothesisisthe same, soit cancels
out in the oddsratio asis assumed by (4.31).

In order to actually compute A% directly without resorting to a computationally expensive sam-
pling procedure, the noise vector v, can be defined as a function of the expected value statistics of
the current input vector x,,. First, it isassumed that the input signalsare drawn from abinomial dis-
tribution with a parameter 1, which gives the expected probability that an input bit is active. . can
vary from pattern to pattern. The pure noiseinput vector v, iscomputed asif it came from the same
distributionas that which generated the current input vector, so that x,, can be used asasample from
this distribution to estimate . In this case, the expected value of the activations across a given in-
put pattern is an estimate of .. Thus, the expected noise vector v, under these assumptions simply
consists of avector having each value as the expected value . = N% >z

vp = [y .o, 1] (4.32)

Thus (4.32) and (4.30) can be used together with the definition of the likelihood function for the
relative probability as in (4.16) to compute the P(h”|x,) term in (4.31). Also, it is assumed that
P(v,) = P(x,) o that theseterms cancel each other out in the oddsratio.

In order to obtain the MaxIn learning rule, the derivative of the MaxIn objective function (4.31)
is taken with respect to the weights. This derivative can be used to perform gradient ascent in the
input information signal conveyed by the weights. In order to compute the derivative, we express
the MaxIn function in the following simplified terms:

p = P(hilx,) = f(x,w;) (4.33)
g = P(hj[x,) = f(p, w;) (4.34)
1
1+ (2)

M = pL (4.36)
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resulting in a derivative of the following form:

dM(Z [77’(1—1:)(1 dp 1 dq)+1 dp] (437

5 dw;; E dw;; 5 dw;;

In order to compute the actual derivative, we need to decide upon the definition of the individual
probability function f(). While this could be the same as the sigmoid or GausSig used to compute
the activations, there is no reason to assume that it has to be the same, since this objective function
isdefining learning, not activation updating. Based on first principles, the Gaussian definition of the
individual probability makesmore sensefor MaxIn, sinceit providesamoreinformativesignal about
the fit between the sending activations and the weights, which is exactly what MaxIn is attempting
to optimize. Nevertheless, it is informative to compare the derivatives that result from using the
sigmoid and the Gaussian.

When the derivatives of the p and ¢ functions computed as sigmoids are substituted into (4.37),
theresultis:

I My (1= D)1 =)o — (1 - ) + (1~ p)] @3

where~' isthe gain of theindividua sigmoid function, and 4" isthe gain of the relative one. Com-
parethiswiththe result when a Gaussian definition of theindividual probability isused, which results
in:

DL My (1~ D)~ )+ (o wi)] (4.39)

dw;; 02

The two derivatives both have aterm that is a function of the difference between the input and the
mean (z; — p), with these terms modul ated by the complement of the value of the corresponding p or
g vaueinthe sigmoid case. However, the sigmoid has an additional term which is aways positive,
which comes from the derivative of the sigmoid itself, whichisaways positive. Thus, thisrule will
result in the weights constantly getting larger, which increases the value of the p term (and thus the
MaxIn objective function), but is not what is desired from an associative learning rule. In compar-
ison, the Gaussian derivativeis not adways positive, and is a function of the difference between the
input value and the weight. This has severa desirable properties as discussed below. Thus, based
on first principles and these derivatives, the Gaussian makes sense as a definition of the individual
probability for the MaxIn learning rule.

While the MaxIn learning rule expressed in (4.39) has two key terms ((z; — ) and (z; — w;;))
which will be discussed further below, it also has a couple of other terms which might appear some-
what more complicated (and potentially biologically implausibl€). Theinverse variance constant U%
can be absorbed into the learning rate. The M term, which gives the value of the MaxIn objective
function, could be computed directly. However, it could aso be approximated based simply on the
receiver’s activation value. This simplifies the function considerably, and works well in practice.
Thisleavesthe 1 — L term, which is just the complement of the normalized odds ratio term in the
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Figure 4.6: a) Subtractiveweight normalization (z; — 1) yieldsweight vectors pointing at the corner of a (n-
dimensional) hypercube closest to theinput cluster. b) Multiplicativeweight normalization (z; — w;;) yields
(n-dimensional) spherical weight vectors pointed at the center of cluster of input patterns.

MaxIn learning rule:
1

P(hilxp)\ 7
1+ (riidn)
for which an easy approximation isnot available, but which can be replaced with a constant without
significant loss of performance (i.e., for biological plausibility). However, retaining it in the com-
putational model does increase performance somewhat, for reasons that are discussed below. To

summarize, the MaxIn learning rule can now be written in terms of areceiving activation valuey;,
and optionally the above L. term:

L.=1- (4.40)

1 T
cAwi; =y, (Y Le(z: — p) + (2 — wij)] (4.41)

Interestingly, the two key terms referred to above each have important properties from the per-
spective of the entropy reduction and information preservation constraints. The entropy reduction
constraint is evident in the first term (z; — p) by virtue of its tendency to force the weightsinto a
corner of the hypercube of possible weight states. For units which are often coactivated with the
receiving unit, theterm z; — x will usualy be positive, and the weight will grow steadily towards
its upper bound of 1. The oppositeistrue for units which are not typically coactivated with the re-
ceiver, and these weights will shrink steadily towards the lower bound of 0. Thus, the result is to
force the weights into the maximum/minimum corners of the hypercube of possible weight states
(see Figure 4.6a). This causes the units to form filtering, categorical representations, since differ-
ences among theinputswith near zero weightsare filtered out, and many different patterns of inputs
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on the near-one weights result in the same overall activation (categorization). As discussed earlier,
filtering and categorization are both examples of entropy reduction, as they tend to throw away in-
formation about exemplars (inputs).

Theinformation preservation constraintisimplemented inthesecond term (z; —w;;) sinceitisdi-
rectly related to theupdaterulethat i s obtained when applying the Linsker (1988) InfoMax objective,
which is equivalent to the information preservation constraint. Thisterm has the effect of moving
the weight vector into the center of the input patterns which are coactivated with the receiving unit.
This can be seen by iteratively computing thez; — w;; term for al the different input patterns— the
weight moves towards each input value, and, with asmall learning rate, equilibriatesaround the ex-
pected valueover all patterns (see Figure 4.6b). Thisexpected value providesmaximum information
about the variance of any given input value, which iswhy thisisinformation preserving.

Thus, the MaxIn learning rule, which is derived from the same assumptionsas the ReBel activa
tion function, providesan adapting implementation of the entropy reduction and information preser-
vation principles. Another way of looking at the propertiesof MaxIn isin terms of the positive feed-
back problem associated with any kind of Hebbian associ ativelearning algorithm. Oneway inwhich
this problem is managed is via activation competition (e.g., ReBel). However, MaxIn has two ver-
sions of the other primary mechanism that counteracts the positive feedback problem, which isthe
normalization of the weight vector by subtractive and divisive constraints (Miller & MacKay, 1994;
Goodhill & Barrow, 1994). The subtractive, entropy reduction term (z; — ) has been derived in
terms of azero-sum Hebbian (ZSH) learning rule (O’ Reilly & McClelland, 1992), where the sum of
theweight valuesis maintained at aconstant val ue by subtracting the mean weight change. Themul-
tiplicative, information preservation term (z; — w;;) is used in the soft competitive learning (SCL)
rule (Nowlan, 1990). Thus, these components of MaxIn are also referred to as the ZSH and SCL
components.

It is interesting that these two constraints correspond to the entropy reduction and information
preservation constraints, respectively, and they also play apractical roleinthe ability of the network
to form differentiated representations of the input space. Further, the MaxIn rule dynamically bal-
ances the tradeoff between these two learning components. This occurs because MaxIn weightsthe
entropy reduction term in a manner proportional to the value of L. in (4.40), which changes dynam-
icaly over learning as the ratio of the unit activity over the noise activity increases. Thus, as the
unit devel ops a more discriminating (entropy reducing) response, the entropy reduction component
of thelearningisweighted less strongly, allowing theinformation preservation component to be em-
phasized more.

Auto-Encoder LEABRA: A Pressure to Encode Self-Structure

An important function of the MaxIn associative learning in LEABRA is to form useful repre-
sentations of the correlational structure across patterns of activity to which it is exposed. This self-
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Figure 4.7: Illustration of the nature of the error-driven mappings performed in the auto-encoder form of
LEABRA as compared with standard i nput-output and standard auto-encoder configurations. Primed notation
indicates reconstruction. a) Shows the standard input-output mapping task, where the goa isto produce the
correct output given a particular input. b) Shows the standard auto-encoder mapping, where the goal is to
reproduce the current input pattern (the s notation indicates the reproduced version of that pattern). c) Shows
the auto-encoder version of LEABRA, where the god is to both produce the correct input-output mapping,
and to reproduce both the current input and output patterns. Note that only oneinput and one output layer are
used, but they have two states occurring sequentially in time as represented by the two layersin the figure.

structure across different activity patterns presented in the input and output layers of the network
can be distinguished from the input-output mapping structure, which is what providesthe usual er-
ror signalsfor error-drivenlearning. Asdescribed in theintroduction, representing thisself-structure
contributes to LEABRA’s good generalization performance, both within and between tasks. How-
ever, oneof thecentral ideasbehind LEABRA isthat the combination of error-driven and associative
learning is better than either alone. While the input-output mapping is shaped by both error-driven
and associativelearning in astandard LEABRA network, the representation of self-structure among
the input and output patternsis not. Thus, this section describes a mechanism, called auto-encoder
LEABRA (AE LEABRA), for introducing error-driven learning into the process of learning to rep-
resent self-structure. Note that the auto-encoder error signalsare in addition to the standard input-
output mapping error signals. Thismechanismissimilar to astandard auto-encoder, except that both
the input and output patterns are reconstructed from the hidden activity pattern, by virtue of training
the network to maintain these activity patternsin the absence of any input. It isalso possibleto apply
apurely error-driven version of thismechanismininteractive, error-driven algorithmslike GeneRec.
The merits of this mechanism in both LEABRA and GeneRec are evaluated in the simulations re-
ported in subsequent chapters.

Figure 4.7 shows the relationship between AE LEABRA and standard input-output and auto-
encoder mapping tasks. Both of these standard tasks can be thought of as mapping an input to an
output pattern, where the output in the case of the auto-encoder is simply the same pattern as the
input. Thus, the network is trained in this case to reconstruct the input pattern viathe hidden layer
(which often represents a bottleneck, forcing a compressed representation there). In AE LEABRA,
a standard input-output mapping is performed first (where the output is not a copy of theinput), fol-
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lowed by the task of reproducing the current input and output activity patterns given the current hid-
den unit state. Importantly, the reconstruction of the input and output patterns occurs in the same
layer s asthose patternsoriginally occurred, and not in separate layers asin atraditional feedforward
auto-encoder. This means that the error signals drive learning in the weights connecting the input
and hidden layers, which are the same weights used in performing the input-output mapping task.
Thus, the reconstruction task can also be thought of as maintaining the input and output patternsin
the absence of any external input. The mismatch between the reconstructed (maintained) and the
original input and output activity states serves as an error signa that, together with the error signa
associated with producing the correct output given the input, and the Hebbian associative learning,
driveslearning. Because the reconstruction error signals are present in the same weightsthat drive
processing of the input-output mapping task (due to the fact that patterns are reconstructed in the
original layers), thislearning should provide direct benefits on the mapping task.

The implementation of AE LEABRA is quite simple. First, the network performs the standard
minus and plus phases of settling, where the minus phase has only the input clamped, and the plus
phase has both the input and output clamped. The difference between these two states provides an
error signal regarding the ability of the network to producethe correct output given theinput pattern.
Then, in the auto-encoder version, an additional reconstruction minus phase of settlingis performed
after the plus phase, with the activity values of the hidden units starting in their plus phase state, and
no external input provided to any part of the network. Thisprior state providestheinitia conditions
for settling in the reconstruction phase, and reflects the hidden unit encoding of the original input-
output activity pattern. If the hidden units have sufficiently encoded the input-output activity pat-
terns, then they should be capabl e of reproducing them as the network settles during the reconstruc-
tion phase. In order to eliminate any signal from the actual input and output patternsthemselves, the
activity over these layersis zeroed prior to settling in the reconstruction phase. The reconstruction
task can be made more difficult, and thus potentialy provide astronger learning signal, by decaying
the prior activity state some fraction of the distance towardsthe mean activity level. Decay fractions
from .5 to .8 appear to givethe best performance on the various tasks.

It is also possible to implement the auto-encoder idea in standard error-driven networks, even
non-interactive ones. In non- interactive, feedforward networks, one would need to have additiona
layers for the reconstruction targets, instead of performing the reconstruction in the original input
and output layers. Thus, thismethod would not directly shape the same weightsas used in theinput-
output mapping task, and would be expected to produce less significant results. In an interactive
network like GeneRec, the same implementation asused in LEABRA can a so be used. One simply
retains the activity state from the previous plus-phase state as theinitial conditionsfor setting in the
reconstruction phase. Thus, one can comparethebenefits of thisadditional auto-encoding pressurein
purely error-driven networkswith thosefor theLEABRA agorithm, whereit operatesin conjunction
with Hebbian associative learning. Such comparisons are reported in the simulations later in this
thesis.
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Obviously, theintroduction of thisadditional auto-encoder phase of training requires more of the
biologically feasibleimplementation of this algorithm. In particular, it would require that the affer-
ent input to sensory cortical areas (i.e., from the thalamus) has an alternating character, so that the
cortical neurons are not driven very strongly by this input after having been driven. While some-
thing like this could feasibly be implemented in the biologica system, | am not aware of data that
either supports or refutes such an idea. Nevertheless, M. Hasselmo (personal communication) has
suggested that cholinergic modulation of pyramidal neurons may specifically affect their sensitivity
to extrinsic (non-cortical) inputs, which woul d be consistent with the needs of the auto-encoder idea.
The biological implications of this auto-encoder idea are discussed in greater length in Chapter 8.

Finally, AE LEABRA can be compared to the Helmholtz machine proposed by Dayan et al.
(1995), which is a self-supervised learning algorithm for developing hierarchical representations
of environments, much like a standard auto-encoder. Unlike standard auto-encoders, and like AE
LEABRA, the Helmholtz machine performs both recognition (stimul us-driven processing) and gen-
eration (reconstruction) over the same sets of units. However, while the same units are used in
the Helmholtz machine, two different sets of weights are used. Thus, the central idea behind the
Helmholtz machineisthat theweightsin the network can be dividedinto two parts— aset of bottom-
up recognition weights, and set of top-down generative weights. In the “wake-sleep” version of this
algorithm (Hinton, Dayan, Frey, & Neal, 1995), each set of weightsisused to train the other. During
the“waking” period, therecognition weightsare used during processing of stimuli, and the resulting
activation states used to train the generative wei ghtsso as to generate patterns of activity over thein-
put layer like those observed during recognition. During the “sleeping” period, the opposite occurs:
random activity patternsin the highest hidden layer are used to produce top-down activity patterns,
which train the recognition weights to recognize stimuli consistent with this“generative model”.

While both the Helmholtz machine and AE LEABRA share the goal of reconstructing the in-
put using the same set of units, there are important differences between the two algorithms. 1) AE
LEABRA performs both auto-encoding and input-output mapping tasks, while the Helmholtz ma-
chineonly doesauto-encoding. Thus, AE LEABRA isactually ableto perform arbitrary tasks, while
the Helmholtz machineisrestricted to generating representationswhich may or may not be useful for
solvingagiventask. 2) Both feedforward and feedback weightsin AE LEABRA are activesimulta-
neously for both activation propagation and learning, while the Hel mholtz machine uses only one set
of weightsfor activation propagation and the other for learning at agiven pointin time. This makes
the Helmholtz machine inconsistent with al of the data regarding the role of interactive, bidirec-
tional processing discussed in the introduction, and requires quite el aborate biological mechanisms
to implement the use of different weightsin different waysin the two phases. 3) AE LEABRA has
all of the built-in self-organizing biases described above, while the Helmholtz machine isrelatively
unconstrained. Thus, the Helmholtz machineislikely to suffer from the same types of problems as
purely error-driven learning algorithms like backpropagation and GeneRec.
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Chapter 5

Part |1: Computational Evaluation of
LEABRA

Thisand the following chapters provide an empirical evaluation of the theoretical claims regarding
the LEABRA model of learning in the neocortex developed in the preceding chapters. Thisevau-
ation is focused on the themes described in the introduction, which are summarized briefly bel ow.
Thetasksused in the evaluation are sel ected in the context of ataxonomy of task variablesrelevant to
these themes, together with a consideration of how the properties of LEABRA should interact with
thesevariables. Thus, thistaxonomy, whichisdescribed in detail bel ow, providesabasic framework
for understanding the simulations and the performance of different algorithms on them.

Following the description of the task taxonomy, a summary of the different algorithms and al-
gorithm variants that will be used in the evaluation is presented. Thisincludes the devel opment of
various aternative formulations of the basic ideas behind LEABRA which test some of the imple-
mentational principlesand choicesmadein the standard LEABRA algorithm. In particular, thefixed
(non adapting) activity constraint enforced by the ReBel activation function is compared against a
set of adapting activity constraints derived below. Further, an attempt was made to construct an as-
sociativelearning algorithmthat worked with the adapting activity constraint, but it was not possible
to get a system that worked reliably, for reasons that are explained bel ow.

Finally, this chapter goes on to provide a genera introduction to the basic computational issues
in the context of a handwritten digit recognition task, which clearly illustrates the relative compu-
tational properties of LEABRA and the set of comparison algorithms. The next chapter explores
the issue of generalization in greater detail in a simple combinatorial environment, which allows
more precise parameterization of the generalization problem than the digit recognition task. Thefi-
nal chapter explores the issue of learning relational problems and learning in deep networks, using
the family treestask and variants thereof.

117
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Computationa Themes Explored

Under-constrained representations in purely error-driven networks result in poor generaliza-
tionininteractive networks: Because most problemsinsufficiently constrain theweights of a purely
error-driven network, the representations devel oped by such a network tend to reflect the residue of
the random initial weights as much as the constraints of the task. The ability of under-constrained
weightsto solveeven complex tasks can be explained in terms of the diffusion of representation over
many different hidden units. Each hidden unit makesa small contribution to representing theimpor-
tant regions of theinput space, as described in the introduction. A feedforward network is often able
to generalize quitewell based on thiskind of solution, asit exhibitsa graded, proportional response
based on the similarity of the novel input to known inputs. In contrast, an interactive network like
the biologically feasible GeneRec error-driven algorithm described in Chapter 2 tends to be highly
sensitiveto small differences between input patterns (the butterfly effect), and thus does not gener-
alizewell. Thissensitivity is afunction of the turbulence (noise) in the activation space over which
settling occurs, which tends to be high in under-constrained, error-driven networks. Thus, interac-
tive error-driven networkswill generalize significantly worse than similar feedforward networks on
most tasks, and this should be correlated with the extent to which the network is under-constrained
by thetask. Further, the prediction that interactive networks are highly sensitiveto small differences
in input patterns can be directly tested.

Salf-organizing constraints in LEABRA improve generalization: Since LEABRA uses the
GeneRec learning agorithm, it is necessarily an interactive network, and should therefore be sus-
ceptible to the problems just described. However, the use of the Hebbian associative learning and
activity competition in LEABRA, which together implement the self-organizing learning of useful
representations according to the principles described in Chapter 3, should improve generalization.
The activity competition causes individual unitsto take greater responsibility for representing par-
ticular input patterns, and the associative learning causes these representations to represent the cor-
relational structure of the environment. Both of these should result in a smoother, |ess turbulent ac-
tivation space that leads to better generalization. Further, the activity constraints themselves have a
damping effect on the activation dynamics of the network, reducing its sensitivity. This should also
contribute to better generalization.

LEABRA performs cross-task generalization better than error-driven algorithms: Purely error-
driven networkstend to represent only the distinctionsnecessary to solvethe particular task they are
trained on, since it is only task-driven error that drives learning in these networks. Thus, they do
not necessarily generalize well to novel tasks using the same environment. In contrast, the repre-
sentationsin LEABRA are constrained to represent the correlationa structure of the environment,
in additionto solving the particular task. Such representations should subserve better generalization
to novel tasksin a given environment relative to purely error-driven networks.

LEABRA learnsbetter than error-driven algorithmsin deep networks: Purely error-driven algo-
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rithmsin networkswith many hidden |ayers (deep networks) inevitably learn more slowly than those
with just one hidden layer. Thisislargely because the error signals become more distant and indi-
rect as more hidden layers areintroduced, resulting in slower learning which often does not produce
better final performance in terms of generalization or other measures. However, the self-organizing
learning in LEABRA, which does not depend on potentially distant error signals, should result in
faster learning in deep networks. Unitsat al layersin LEABRA should be devel oping useful repre-
sentations according to the representational principles of entropy reduction and information preser-
vation as implemented in the associative learning and activity constraints. The remote error signals
thus play more of therole of selecting among potentially useful representations, rather than creating
these useful representationsin the first place.

Auto-encoder (AE) LEABRA performs better than regular LEABRA: By providing both error-
driven and associative learning signals for the task of encoding the self-structure of the input and
output patterns, the auto-encoder version of LEABRA should perform better in general than the stan-
dard version, where error signalsare available only for the learning of the input-output mapping.

Fixed (non-adapting) constraintswork better than adapting ones: Since adapting constraintscan
be overridden by other pressures during learning, and in general increase the number of parameters
being adapted, they should provide less of a benefit compared to fixed constraints which truly con-
stitutean a priori model.

LEABRA performs better than standard regularizers like weight decay and noise: Whileit is
clearly impossibleto compare LEABRA with the large number of alternative regularizing functions
that have been developed, it isuseful to compareit with afew of the standard ones. Thus, LEABRA
will be compared with weight decay and the use of noise during training, which are two standard and
reasonably biologically plausibleways of constraining error-driven learning. It is hypothesized that
the associativelearning and activity constraintsin LEABRA, which are capable of generating useful
representations even in the absence of error signals, will perform better than weight decay, which
doesnot itself encourage the formation of useful representations (indeed, it leadsto all-zero weights
if unchecked by error signals). The use of noiseis primarily useful for learning continuous-valued
input-output mappings, where it servesto expand the range of continuous-val ued space searched by
the learning process. In contrast, LEABRA (and the cross-entropy formulation of backpropagation
and GeneRec) are based on theideathat units represent binary values, and all of the problemstested
are of this nature. It is hypothesized that noise will not provide much benefit in this case, asit is
patterns of activity over many units, and not particular values of individual units, that arerelevant in
these problems. Thus, LEABRA should outperform both weight decay and noise.

A Taxonomy of Tasks

Whileit is the case that, at a very generd level, all tasks amount to performing some form of
input-to-output mapping, there are a number of different ways that this mapping can be structured.
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The following is one taxonomy of distinctionsamong various tasks that are likely to be important
for evaluating the performance of different agorithms. In particular, these distinctionsareimportant
for understanding on which tasks and in what way the associative learning and activity constraints
builtinto LEABRA can facilitate learning. This provides a more detailed explication of the general

themes described above, and constitutes an outline of the simulations.

There are two levels of distinctions: One level has to do with how a given item is represented
in terms of a pattern of activity over unitsin the input or output layer (i.e., the self-structure of the
items), and the other hasto do withthe overal task being performed (i .e., the mapping structureof the
rel ationship between inputs and outputs). A given task can be described at both of theselevels. For
each different type of task feature, adiscussion of theimpact of the associative learning and activa-
tion constraintsin LEABRA is presented. It isimportant to note that thistaxonomy is not intended
to be exhaustive, and the distinctions made are not necessarily mutually exclusive. Thus, a given
task may have elements of several of the following properties. For example, the task of pronounc-
ing written words has somerelational elements (e.g., thefinal '€ interacting with the vowel to make
it long), while being substantially combinatorial, since many letters can be pronounced essentially
independently.

Salf-structure of Item Representations

Relational: Therelationshipbetween different unitsin apatterniswhat identifiesan item, not the
activity of any specific unit or set of units. For example, in the handwritten digit recognition task,
digitscan appear invariouslocationsin theinput array, so that what iscommon to agiven digitisthe
rel ationshi p between the pixel's, not the specific pixelsthemselves. Another case of arelational input
iswhen there are different input features that combine to mean different things. Thus, the meaning
of agivenitem isdefined by the relationship between the features present.

LEABRA can facilitate learning with relational stimuli in two ways. Oneis by virtue of the ac-
tivity constraints, which can encourage different subsets of unitsto represent different combinations
of a set of features. Thus, because units have a pressure to be more sparsely active, they will tend
to pick up on conjunctions of input units or features, not on individua ones. This phenomenon has
been studied extensively with respect to representati onsin the hippocampus, which hasavery sparse
level of activity (O'Reilly & McCldland, 1994). While the kWTA property of LEABRA can be
made to reflect the extreme sparsity of the hippocampal system, itislikely that activity levelsin the
neocortex are considerably less sparse. Nevertheless, some degree of conjunctive encoding can be
expected with the roughly 25% activity levels typically used in LEABRA simulations. The other
way inwhich LEABRA can fecilitate learning in these tasksis from well-known properties of Heb-
bian associativelearning, whichwill pick up on the correl ationsthat define the rel ationshi psbetween
input features, and form representationsthat capture the principal components of these correlations
(Oja, 1982; Linsker, 1988).

Combinatorial: Thisisthe opposite of relational — the input is composed of a number of indi-
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vidual featureswhich do not depend on each other for the meaning of a stimuluswithinthetask. Itis
somewhat difficult to come up with naturalistic examples of combinatorial stimuli inapure sense, but
many stimuli have aspects of combinatoriality. For example, numbers can be arranged combinatori-
ally to express any quantity. However, thereis somelevel of meaning in theleft-right rel ationship of
the numbers, so it is not purely combinatorial. Similarly, words within sentences, and letterswithin
words, can be combined in a semi-combinatoria fashion.

The Hebbian associative learning aspect of LEABRA, given that it picks up on correlational
structure, will not necessarily be of value in learning combinatoria problems, especially when the
evidence for combinatoriality in the training set is not overwhelming. Thisis because the spurious
correlations present in a given training set will be encoded by the associative learning. However,
with a sufficiently large training sample, it should be the case that associative learning is helpful in
accentuating the correlations that define an individual feature, while the spurious correlations will
be so small as to be negligible. However, the entropy reduction imposed by the kWTA ReBel ac-
tivation function should be important for learning in combinatorial domains. It encourages units to
specialize on representing dissociable parts of the input, which in a combinatorial domain ends up
being the independent features of the input.

Orthogonal: Thisisthe case wherethereisno informationintheform of overlap between differ-
ent input patternsregarding the rel ationships between different inputs. Whilethiscaseisnot particu-
larly relevant psychologically, it has been used to demonstrate that factors other than input similarity
(whichisnot present at al inthiscase) can determinethe structure of representationslearned by neu-
ral networks (Hinton, 1986).

The effect of LEABRA on learning with orthogonal representationsis studied herein the family
trees problem, which was used in Hinton (1986). Whileit is clear that associative learning will not
be of any particular use with orthogonal inputs, it turns out that in a recurrent network, associative
learning can be driven by correlations across input and output patterns, not just within a given input
pattern. The family treestask does exhibit thiskind of input-output structure (rel ated peopletend to
appear in relationshipswith the same subset of other people), andit islikely that associativelearning
will help in devel oping representationswhich capture this kind of structure.

I nput-Output Mapping Structure

Categorizationtasks: Thesetaskshave amany-to-onerelationship between input and output pat-
terns, where the outputsrepresent groups of input patternsthat all share some categorical properties.
Thedigit recognition task, aswell asawide range of other psychologically relevant tasks, are of this
type.

Given that the entropy reduction principle, which figured heavily in the design of LEABRA,
is intended to encourage the development of categorical representations, it should be the case that
LEABRA performsquitewell on thesetasks, with both the Hebbian associativelearning and activity
constraints being important factors.
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Transformation tasks: These tasks are distinguished from the categorical tasksin that the infor-
mation in the input is not collapsed into a lower-order output signal, rather it is simply transformed
into a different representation in essentially an information-preserving fashion. Thus, these tasks
have a one-to-one rel ationship between input and output patterns, which can typically be character-
ized according to a set of regularitiesand exceptionsto theseregularities. A specia case of thisisan
auto-associator, where the output pattern is the same as the input pattern. Often, the input patterns
for transformation tasks are somewhat combinatorial, in that transformations can be applied on in-
dividua partsof theinput pattern independent of other parts. A classic example of atransformation
task isthe mapping between orthographic and phonol ogical representations of words.

The role of LEABRA in transformation tasks depends on whether the inputs are combinatorial
or not, as discussed above. However, in general, associativelearning can be helpful inlearning sys-
tematic mappings between given componentsto the extent that thereis a strong correl ation between
particular input features and corresponding output features, which istypicaly the case.

Multiple-relationtasks: Thesetaskshavethe property of performing different mapping problems
between an input and output pattern depending on the state of arelationship input pattern. A classic
example of thisisthefamily treestask (Hinton, 1986), where the network hasto answer questions of
the form “so-and-so’s mother iswho?’ Thus, the network has to be capable of devel oping different
transformational mappings depending on the content of the relationship input. Hopefully, there are
shared aspects of the set of transformations over different relationships, so that learning one type of
rel ationship benefits learning others, but thisis not necessarily the case.

Giventhat there are many different level s of systematicity possiblein multiple-relationtasks, and
different levelsof transfer among different relationships, it isdifficult to assesstherole of LEABRA
in thesetasks. The mere fact of having the same inputs mean something different depending on the
state of other inputs(i.e., the relation inputs) is similar to the relational input type described above,
which means that the relatively sparse activitiesin LEABRA might be an advantage.

Classification of Tasks Studied

Thefirst task described bel ow isthe handwritten digit recognition task, which isa good example
of a classification task with relational input features. Since these are cases where the features of
LEABRA should clearly beof benefit, it isimportant to establish thisfirst-order level of performance
before moving on to more complicated cases.

In Chapter 6, the issue of generalization in fully regular domains is studied. One of the ways
thisissue has been examined in the literature is with a transformation task with completely combi-
natorial inputs (Brousse, 1993). Thus, the regularity in this task is the individual mapping between
independent features in the input to their corresponding output pattern. Due to their combinatoria
nature, there can be a huge number of possible input patterns, but good generalization can still be
obtained after training on arelatively small sample. Also, thistask represents one way of approxi-
mating psychologically important tasks like the spelling-to-sound mapping problem, which have a
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Algo1l Algo2 Algo 2 Adds
BP AP Interactivity (recurrence)
AP CHL Weight symmetrizing (and midpoint)
CHL ReBel + CHL | ReBel activation constraints

ReBel + CHL LEABRA MaxIn associativelearning
ReBel + MaxIn LEABRA CHL error-driven learning
LEABRA AE LEABRA | Error-driven self-structure learning

Table 5.1: Key comparisons between the different a gorithms, highlighting what the second a gorithm adds
to thefirst. Thus, a comparison between the performance of these two algorithmswill reveal the importance
of thisfactor.

combinatorial, transformational nature (but not as extreme as in this case). For these reasons, this
task is used as a starting point in investigating generalization. Subsequently, another fully regular
transformational task is explored, this time using a combination of a relational and combinatorial
input encoding. The inputs are horizontal and vertical lines on a simulated retina, so that the line
isdefined in relation to other active points, but each line present in the input is treated combinato-
rially. Thistask has aso been the focus of previous research using different algorithms (Foldiak,
1990; Saund, 1995; Zemel, 1993; Dayan & Zemel, 1995).

In Chapter 7, theissue of learning in deep networksis studied. The chalengein this caseis to
come up with tasks which are sufficiently complicated asto actually require additional layers of pro-
cessing. One way in which this has been explored in the literature is with the family trees problem
(Hinton, 1986), which isamultiple-relation task with localist orthogonal inputs, as described above.
The goal of thistask is essentially to develop systematic representations of the orthogonal inputsin
intermediate “ coding” hidden layers, making the overall task easier for acentral hidden layer which
takesapersoninput and arel ationshipinput and outputsthe correct other person. A modified version
of thistask with distributed input patterns with random similarity relationshipsis aso studied.

Summary of AlgorithmsUsed In Evaluation

A number of standard algorithms are used to compare against the performance of LEABRA on
the tasks studied. In addition, comparisonswith variants of LEABRA enable the contribution of the
different components of LEABRA (activity constraints, Hebbian associative learning, error-driven
learning) to be evaluated (see Table 5.1 for asummary). These algorithmsand critical comparisons
are described bel ow, followed by aderivation of some variations of these algorithmswhich are used
to test the validity of the implementationa principles upon which the design of the LEABRA algo-
rithm is based.

For al algorithms on all tasks, the following common set of parameters were used: individual
training patterns were scored correct if all output unitswere on the correct side of .5, and a criterion
of at least 95% correct performance over all training patternswas used for training time and to begin
the scoring of generalization performance; activationswere in the range between 0 and 1 (for com-
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parison with LEABRA and compatibility with the constraints on the sign of neura activations); no
momentum or other commonly-used |earning mechanisms; on-line (per pattern) weight updating.

For each task, aBP network wastrained on 5 different random subsampl esof trai ning/testing pat-
terns, with 5 random weight initializati ons (networks) per each subsample. The subsampleswiththe
best and worst mean generalization (over the 5 random networks) were then used for the other algo-
rithms, which, due to their interactive nature, required considerably more computational resources
to train. Theresultsfor the best subsample are typically presented in the figures, but results for the
worst subsamplewere comparable, just abit worse. Thus, there was no evidence of a subsample by
algorithm interaction, meaning that the results presented on the one subsample are probably indica-
tive of results on the task in general. Given that the critical results (comparisons between CHL and
LEABRA) were (in al cases except the family trees task) massively significant, no specific statisti-
cal tests were performed. Nevertheless, the standard error of the mean (SEM), which istypically a
good indicator of significance for at test, isreported for al results.

Standard feedforward backprop (BP): This is the predominant learning algorithm used in
the field. To summarize briefly, it consists of a network with feedforward-only connections, and
units which compute their activation value according to the standard sigmoidal logistic function
o(n) = 1/(1 + e=") of the net input n which is the inner (dot) product of the weights times the
activations. Weights are modified by backpropagating the error from the output through the hidden
units, and changing the weights so as to minimize the output error. The cross-entropy formulation
for the error functionwas aways used to equate BP with the GeneRec based | earning. See Chapter 2
for more details. A learning rate of .01 or .1 (the larger learning rate had mixed effects on general-
ization performance) was used, along with an error tolerance of .05, so that if the output activation
was within .05 of the target, the unit had no error. Note that this error tolerance is unrelated to the
training criterion described above.

Deterministic CHL: According to the GeneRec framework presented in Chapter 2, the con-
trastive Hebbian learning algorithm (CHL) used in the deterministic Boltzmann machine (DBM) is
an approximation to backpropagation where the activation signals carried by recurrent weights con-
vey error information. Thisis the same error-driven learning rule that isused in LEABRA, butitis
implemented here in a network without activation constraints, using standard sigmoidal activation
functions, etc. asoriginally derived. Thus, thisalgorithmis the primary onethat LEABRA should
be compared to, since it has the potential to exhibit al of the functional properties of a neocortical
learning algorithm as described in the introduction, whereas the feedforward backpropagation net-
works can not exhibit interactive processing, and are also biologically implausible. CHL networks
used net-input based averaging with a step size of .2. Settling was stopped when the maximum ac-
tivation change (before multiplying by the step size) was below .01.

Almeida-Pineda Backprop: Thisisaversion of error backpropagation which worksininterac-
tive (recurrent) networks. It is closely related to the GeneRec algorithm (see Chapter 2), but does
not have a symmetry constraint on reciprocal weights, and it relies on the biologically implausible
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standard form of error backpropagation. Thisa gorithm provides animportant intermediate case be-
tween backpropagation and GeneRec, since it does not tend to make use of the reciprocal weights
during learning, and thus behaves more like afeedforward network than the symmetric GeneRec al-
gorithm, whilestill being somewhat interactive. The same parameters asfor CHL were used for step
size and stopping settling.

LEABRA: Thisisthemodal version of the algorithm, which usesthe ReBel activation function,
GeneRec biologically feasible error-driven learning via interactive activations, and the MaxIn Heb-
bian associativelearning rule. The GausSig likelihood function is used by default (see Chapter 4),
but results for the sigmoidal function are also reported for comparison. Some tasks show a sensi-
tivity to this difference, while others do not. See the appendix for adiscussion of the other standard
parameters used.

ReBel + CHL (No As): Thispurely error-driven subset of LEABRA, which excludesthe MaxIn
associative learning component, allows the impact of MaxlIn to be evaluated when compared to
LEABRA, and theimpact of the fixed activation constraintsin ReBel when compared to the CHL
algorithm.

ReBel + Maxln (No Err): This purely self-organizing subset of LEABRA, which excludesthe
CHL error-drivenlearning component, shows how well thevariousa priori constraintsimplemented
by MaxIn and ReBel can learn to perform tasksin the absence of specific error information. These
networkswill not typically be able to solve the problem to criterion, but neverthelesstheir learning
and generalization abilities are often surprisingly good.

AE LEABRA: Thisisthe auto-encoder (AE) version of the LEABRA algorithm, described in
Chapter 4, which has error signals shaping the representation of self-structure among the input and
output patterns. This should result in better such representations, and better performance relative to
standard LEABRA.

AE CHL: Thisis an auto-encoder version of deterministic CHL, using the same idea as AE
LEABRA, but obviously without the self-organizing learning.

BP and CHL with simpleweight decay and weight elimination: Some variety of weight de-
cay is the most commonly used remedy for the underconstrained behavior of backprop, and it has
been reported to improve generalization. However, it typically increases training time, probably be-
cause it represents an additional adapting constraint in the error term. Both a simple weight decay
(SWD) (proportional to the size of the weight) and the weight-elimination styleweight decay (WED)
(Weigand et a., 1991) were used. The latter has avanishingly small weight penalty for weightsthat
grow larger than 1, with a stronger weight penalty for smaller weights, and generally works better
than simple weight decay.

BP and CHL with Noise: Neural firing iswell known to be noisy, and it is possible that such
noise might have beneficial effects on the ability of networksto generalize. An (1996) showed that
noise in the input patterns is most likely to produce generalization benefits, so thisis the form of
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noise used for both BP and CHL . However, a more biologically plausible form of additive noisein
the outputs of al unitsin the system was a so tested. It is hypothesized that noise will not provide
much of a benefit on the binary-valued tasks studied in thisthesis.

Backprop with adapting activation constraints: Thisis standard feedforward backprop with
versionsof theadapting activation constraintsdescribed below. Thiswill enablethe evaluation of the
implementational principlewhichfavorsfixed constraints(e.g., the ReBel KWTA activity constraint)
as opposed to adapting ones.

Deterministic CHL with adapting activation constraints: Thisis CHL with versions of the
adapting activation constraints described bel ow.

An Alternative Adapting Activity Regulation Algorithm

The ReBel activation function used in LEABRA imposes a soft KWTA activation constraint on
the units, resulting in graded activationswith afixed upper limit on thetotal activity in alayer. Thus,
despiteits graded nature, it is anon-adapting or fixed constraint. Asdiscussed in the sectiononim-
plementational principlesin Chapter 3, itis hypothesized that thisfixed constraint will resultin more
of the benefits of a constrained a priori model than will adapting constraints. In order to test thishy-
pothesis, a couple of alternative forms of adapting activity constraints are developed here and com-
pared against ReBel in several of the simulationsreported | ater.

The form of adapting activity constraint devel oped here follows the conventional practice of in-
troducing an additional cost term into the overal cost function that a network is optimizing. The
particular implementation of this constraint followsthe approach of Zemel (1993) by introducing a
term in the cost function which penalizes unitswhose probahility of being active differsfrom afixed
base-rate value, o. The derivative of thisfunction is then taken, and incorporated into the learning
rule.

The first version uses a cost term which computes the asymmetric divergence (cross entropy)
between the unit’s current activation and the desired activation o
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where the activations are interpreted as reflecting the probability of an underlying binary variable
described by the Bernoulli distribution. The weights are adjusted by taking the derivative of this
cost function with respect to the weight:
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This can be used for both standard error-driven feedforward and the biologically feasible recurrent
GeneRec networks derived in Chapter 2. For thislatter case, the derivative (5.2) is evaluated using
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the same approximate midpoint method as for the regular error termin order to be consistent. Thus,
the sending unit activation y; isreplaced with the average of itsvaluesin the plusand minus phases.

If the GeneRec networksare viewed as deterministic or mean field approximationsof Boltzmann
machines(Hinton, 1989b), whichthey are formally equival ent to, thentheabove cost function should
affect the activation updating procedure as well (suggested by R. S. Zemel, personal communica-
tion). Thus, the combined cost function for a mean field network with the activity constraint, where
the first two terms are the standard energy and entropy of the activity states, is:

C=>yi> wijyi—) yjlogyj+(1—y;)log1-y;—> y;log %Jr(l y])log y] (53)
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The activation dynamics for this system can be computed by taking the derivative of this cost func-
tion with respect to the activation of unit y;, and then setting the result equal to zero in order to de-
termine the equation resulting in a stable equilibrium value of the activation state under this cost
function. By iteratively updating y; according to this equation, the network will settle into a stable
state which isaminimum of the cost function.

3y =Y wijyi — 2(logy; —log(1 —y;)) — (log & —log(1 — a)) (54)
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Setting this equal to zero and solving for y; yields:
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where ¢ isthe standard sigmoidal logistic function. Thus, including this constraint in the activation
dynamicsamountsto using again val ue of onehalf, and subtracting aconstant biasterm from the net
input. Given that both of these factors can be compensated for by adapting the weights, it islikely
that the weight adjustment term will be more important than this activation function. Thiswill be
tested by comparing networkswith just the weight derivative term (5.2) against networkswith both
the weight derivative and the modified activation dynamics given by (5.5).

Finally, | also exploreavariant of the above approach which might avoid the pressureto keep all
activations around o activation level with little variance across patterns. This variant simply sub-
stitutes a running-average estimate of the unit’smean activity level for the instantaneous activity of
the unit. This alows the unit to have variation around the mean on particular cases without being
penalized. The activity cost term isthus:

Y N e
=S grlog 2 4 (1 - 7)1 5.6
Ca = Tjlog (1-95)log 5 (5.6)
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wherey; isarunning average which is updated by:
7 = ey; + (1.0 — €)7; (5.7)

While these forms of adapting activity constraints do not place exactly the same kinds of con-
straints on the units as the ReBel function used in LEABRA, they have been used by other re-
searchers, and exemplify thesimple approachestypical of such mechanisms. A constraint that would
be closer to ReBel would involve the use of an instantaneous average value computed across the
layer at a given point in time. However, such avaueis no longer loca to the individual unit, and
thuscould not simply be substitutedinto equation (5.6). A more complicated mechanismwould need
to beintroduced in order to express the proper relationship between an individual unit and its con-
tribution to this instantaneous average. While thisis certainly possibleto do, it raises a number of
additional implementational issues, and would only bejustified if the adapting constraints described
above showed some promise. However, they do not appear towork well at al in practice, aswill be
discussed below.

Failure to Successfully Implement a Fully Adaptive form of LEABRA

It is possible that an alternative version of central ideas behind LEABRA could be formulated
by combining the adapting activity constraints described above with a standard associative learning
rule like the soft competitive learning (SCL) rule (Nowlan, 1990). This aternative version would
correspond to amore “standard” way of implementing LEABRA,, and would provide a useful com-
parison for evaluating the relative advantages and disadvantages of the particular implementationa
choices made in the version of LEABRA described in thisthesis. However, | found that it was not
possibleto successfully implement such a system, for the following reasons.

Theprimary reason for failureisthat the SCL associativelearning functionreliesontheactivation
constraint to determine which unitsbecome associated with the current input. When they do become
associated, their weights move towards the values of theinput patterns. Thus, with an adapting con-
straint, too many unitsare alowed to become active, and they end up adapting their weightstowards
amush of many different input patterns, resulting in usel ess, non-selective representations. Further,
the activation dynamics of such asystem do not work well when theweightsare encouraged to al be
positive, since thisrequires a delicate balancing of this excitation with a negative bias. Buildingin
these parameters from the start helps, but the system is still not stable over time and, with extensive
parameter searching, | was not ableto get it to learn even simple problems.
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Figure 5.1: Weights for two different hidden unitsin the digit task for a LEABRA network (both input-to-
hidden and output-to-hidden weights are indicated in the corresponding input or output unit, with the area
indi cating magnitude and color indicating sign (white = positive, black = negative)). a) Showsaunit that par-
ticipated in the representation of the digits0, 1 and 3. b) Shows aunit which participatesin the representation
of digits1 and 4. The weightsclearly reflect important properties of the visua appearance of these digits.

A Test Case: The Digit Recognition Task

The handwritten digit recognition task has been studied widely in the neural network field, and it
represents a good example of a difficult categorization task. The different digits are represented by
overlapping patternsover the same set of input units, so they arerelational inputsas described above.
A givendigit can bedrawnin many different ways, and can appear in different positionson theinpuit.
Theparticular digit set usedinthiswork isthe same asthe oneusedin Nowlan (1990), which contains
48 versions of each of theten digits (0-9) in a 16x16 pixel format. 64 hidden unitswere used for the
results reported below, and the LEABRA networks had a & activity parameter of 16 units active,
resulting in 25% activity levels. Instead of using just 1 unit per output class (digit), 3 redundant
units were used in the LEABRA network for reasons that are described below (this manipulation
did not affect results for the other networks, which thus used only 1 for computational efficacy).
Unless otherwise noted, the associative learning strength for LEABRA was .5. Other parameters
were standard as described above and in the appendix.

As with most classification tasks, this one has a high dimensional input space and a relatively
low dimensional output. Thus, there are probably a large number of different ways to successfully
carve up theinput space so as to get good performance on the training set. Asaresult, this problem
does not strongly constrain the unitsto a particular solution, asistypical of most problems, and must
be the case with neuronsin the neocortex, which have tremendous excess degrees of freedom given
the number of neurons and synapses. It istherefore expected that the purely error-driven algorithms
(BR, AP, CHL) will develop under-constrained, noisy representations, and that the interactivity in
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Generalization Perfor mance
Digit Recognition Task, 320 Training/160 Testing, Best Set
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Figure 5.2: Average best generalization performance (proportion of error on the testing items, N=5) in the
digit recognitiontask for BR, CHL, and LEABRA. LEABRA showsthe best overall performance of thethree.
CHL is significantly worse than both BP and LEABRA, which is consistent with the idea that the under-
constrained, error-driven weights cause the interactive CHL network to treat similar inputs differently.

CHL will result in poor generalization. In contrast, the entropy reduction biases builtinto LEABRA
should result in representationswhich extract the correlational structure of the inputs, and thus have
a smoother activation space and better generalization.

Thus, thistask represents a basic test case for the central ideas behind the LEABRA agorithm.
Fortunately, the results are consistent with the theory. This can be seen by examining the types of
representationsformed by LEABRA, and by its generalization performance compared to other algo-
rithms. Figure 5.1 shows two representative cases of hidden unit weightsfor LEABRA in thistask.
Thereare severa important propertiesof theseweight patterns. Oneisthat they clearly reflect impor-
tant properties of the visual appearance of the digitsthey represent, which means that the units have
captured the structure of this environment. This can be compared to the results for the feedforward
backpropagation network, which was shown in Figure 1.2 to have weight patterns after training that
are difficult to distinguish from the random initia weights.

Another important property of the LEABRA weightsisthat the hidden unitsclearly haveasparse
distributed code for the digits (each unit participates in the representation of from 1 to 3 digits), and
that this code appears (based simply on visual inspection of many hidden units) to reflect the similar-
ity (pattern overlap) structure of the digits. In comparison, the distributed representationsfor digits
in the purely error-driven networks are considerably more diffuse, with many units participatingin
the representation of al the digits, and they are much more random with respect to the perceived
visual similarity of the digits (again, based on visual inspection).

While the above properties of the hidden unit weight patterns developed by LEABRA are im-
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portant in their own right, it is aso important to demonstrate that they have beneficial functiona
consequences. Thus, the generalization performance of these different algorithmswas examined by
training on a subset of the data (32 samples of each digit) and testing on the remainder (16 sam-
ples per digit). Five different random sets of the training and testing items were generated, and the
BP agorithm was run on al of them with standard parameters (see above). The set that resulted in
the best generalization performance was then used for evaluating the other algorithms, which al re-
quire significantly more computation (and thustraining time) than BP. Generalization performance
was measured over 5 training runs of 200 epochs each, with testing occurring after every 10 epochs.
All generalization performance scores are reported as proportion error (not correct) out of the total
number of testing items, and testing performance was measured only after the network achieved the
standard training criterion of 95% correct (no more than 16 errors out of 320 patterns). The average
of the peak performances for each of the 5 runsis reported except where noted otherwise. Note that
unlike a feedforward error-driven algorithm, LEABRA exhibits a certain amount of fluctuation in
performance after reaching the training criterion, probably due to the constant balancing of error-
driven and associative learning and thefact that it is arelatively sensitive, interactive network. De-
terministic CHL networks exhibit this fluctuation as well, probably due to their sensitivity to small
weight changes over learning. Thus, the average generalization scores over training are generally a
bit worse than the peak scores for these algorithms.

Figure 5.2 showsthe generalization performancefor the BP, CHL, and LEABRA algorithms. The
interactive CHL network generalizes significantly worse than the feedforward BP network, whichis
consistent with the hypothesisthat interactivity and under-constrai ned representations do not lead to
good generalization. In contrast, the constrai ned, structured representationsdevel oped by LEABRA
result in the best generalization performance, despite the fact that LEABRA is an interactive net-
work. However, the fact that LEABRA appearsto perform slightly better than BP in thiscase, while
interesting, isnot of central importance. Thecritical resultisthat LEABRA generalizes substantially
better than CHL.

Figure 5.3 showsresultsthat reveal the importance of the different components of the LEABRA
algorithm. First, the ReBel + CHL condition (No As) can be compared with the standard CHL net-
work to see the effects of the ReBel activity constraints, which is the difference between these two
cases. Clearly, ReBel provides a significant improvement in generalization performance. This can
be attributedin part to the activity constrai nt making each unit more responsiblefor representing par-
ticular input patterns. In addition, the ReBel constraints provide a damping effect on the activation
dynamics, so that the network isless sensitiveto differencesin input patterns. Thiswill be explored
further in Chapter 6.

The contribution of the MaxIn associative learning can be seen by manipulating the strength of
this component (relative to the error-driven CHL term), indicated by as = .1,as = .5,as = 1.0
in the figure. AsMaxIn plays agreater rolein learning, generalization improves, with an apparent
ceiling effect above the .5 value. The importance of Maxlnis also supported by a visual inspection
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Effects of Associative and Err-Driven Learning
Digit Recognition Task, 320 Training/160 Testing, Best Set
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Figure 5.3: Effect of MaxIn associative learning on generalization performance (BP and CHL included for
reference). No As (ReBel + CHL, no MaxIn) shows purely error-driven version of LEABRA, and, compared
to CHL, showssignificant advantages of theReBéd activation constraints. as=.1 - 1.0 showsthat asthestrength
of the associative learning component isincreased, generalization performance improves, with maximal per-
formance occurring with a strength of .5, and staying roughly constant up to alevel of 1. No Err (ReBel +
MaxIn, no CHL) shows purely associative version of LEABRA, which performed dightly worse than purely
error-driven, but was not capable of learning the task to criterion in the first place (not shown). Thus, both
associative and error-driven learning work together to give the best generalization performance.

of the weights, which looked more noisy and like those of the purely error-driven BP and CHL net-
worksfor the No As case (not shown), compared to the smooth representations shownin Figure 5.1.
However, thefinal datapoint (No Err) in Figure 5.3 showsthat associative learning aloneis not suf-
ficient. Thisshowsthe purely associative ReBel + MaxIn case, with no error-driven learning, which
generalizesworsethan even the purely error-driven version of LEABRA. Thisistrue despitethefact
that increasing the strength of associative learning (in the context of error-driven learning) results
in significantly better generalization. Further, the MaxIn-only networks never learned the problem
very well in thefirst place, failing to reach the 95% training criterion (a criterion of 80% was used
instead, and even then one network failed to achievethat level of performance). Thus, it is apparent
that the good generalization performance of LEABRA depends critically on the interaction of both
error driven and associative |earning together.

Almeida-Pineda vs CHL Networks

The principal theory as to why the CHL networks generalize worse than their feedforward BP
counterpartsis that their interactive activation dynamics make them highly sensitive to differences
in input patterns. While a more explicit test of thisidea will be performed in the next chapter, it is
possibleto use the comparison between Almeida-Pineda (AP) and CHL to establish some evidence
in support of thistheory. Thisis because the AP networks do not end up using the reciprocal (top-
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| Algorithm | Initial Weights Trained Weights Cycles GenErr  SEM |

BP — — — 142 .00274
AP 253 .285 48 202 .0126
CHL 244 512 70 279 .0323

Table 5.2: Comparison between measures of interactivity and generalization in AP and CHL. Weights are
average absolute va ue of reciprocal (top-down) weightsfrom output to hidden unitsin Almeida-Pineda (AP)
and CHL networks. The CHL network clearly increases the strength of these weights over training, while
the AP network does not. CHL networkstake significantly longer to settle during processing, asis shown in
the Cycles column (initia settling time before training was 40 cycles). Thelevel of interactivity between BP
(none), AP, and CHL is consistent with their respective generalization error scores.

down) weightsfrom the output to the hidden unitsto solve problems (indeed, Chapter 7 shows that
these networks are actually incapable of learning a particular task that specifically requires interac-
tive processing). Since the reciproca weights are not strongly developed in AP networks, they be-
have more like feedforward networksthan the CHL networks, which develop substantial reciprocal
weights due to the symmetry constraint as discussed in Chapter 2.

The results shown in Table 5.2 are consistent with these predictions. The average magnitude of
the reciprocal weights after training is nearly twice as large for the CHL networks as the AP net-
works. The magnitude of these weightsin the AP network is essentialy unchanged from the initial
state, indicating that the AP network does not use them during training. Further, the CHL networks
took significantly longer to settle during processing of items after training than the AP networks, in-
dicating agreater amount of interactivity. Initial settlingtimefor both networkswas40 cycles, sothe
AP networksdid not substantially increase their settling time over training, whilethe CHL networks
did. Finally, these measures of interactivity are consistent with the observed level sof generalization,
with AP performing intermediate between CHL and BP (which isnot interactive at all).

Auto-encoder (AE) LEABRA

The MaxIn associative learning in LEABRA causes hidden units to represent the correlational
structure of the input and output patterns. The representation of this self-structure is important for
generalization, since it causes the weights to have a smooth, center-of-mass or prototype represen-
tation of the digitsthey encode. The use of the auto-encoder (AE) form of LEABRA resultsin the
introduction of error signals into the learning of representations of this self-structure in the input
and output patterns. This should improve the quality of these representations over those devel oped
purely by associativelearning in the standard version of LEABRA, sincethey will more closely re-
flect the important distinctions between different digits, as a result of having to reproduce the input
and output patterns. Animportant comparison simulationisonewhere, instead of reconstructing the
input pattern over theinput layer, asisdonein AE LEABRA, the input is reconstructed over an ad-
ditional output layer, asis donein a standard auto-encoder. It is hypothesized that AE LEABRA is
beneficial because it provides error signalsfor training the same weights which are used to perform
the input-output mapping task, which is only true if the input is reconstructed over the same input
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Effects of Auto-Associator (AE) Learning
Digit Recognition Task, 320 Training/160 Testing, Best Set
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Figure 5.4: Comparative generalization performance for auto-associator (AE) versions of CHL and
LEABRA, with comparison to output-layer reconstruction (Recn) versions. AE .5is AE LEABRA with .5
decay of plus-phaseactivity state prior to the reconstruction phase. While the auto-associator learning clearly
improves LEABRA's performance significantly, and thisimprovement is dightly better with the activity de-
cay, it appearstoimpair performancein CHL. The Recn task, which uses adifferent set of weightsto aseparate
reconstruction output layer for solving the auto-encoder problem, impaired performance significantly in BR,
and somewhat in LEABRA.

layer. Thus, this output-layer reconstruction task provides an important control for any benefits that
might bederived simply from the effects of the reconstruction task on the hidden unit representations
themselves, apart from the effects on the input-to-hidden weights.

Figure 5.4 showsthat AE LEABRA exhibits substantially improved generalization performance
over standard LEABRA in this task, which is consistent with the idea that the representations of
self-structure are cleaner and more closely aligned with the actual structure of environment. Inter-
estingly, the use of pure error signalsin the auto-encoder version of CHL did not improve general-
ization performance (actualy, it appeared to dlightly impair performance). Thus, thereis some in-
dication that the auto-associator error signals are only helpful in the context of associativelearning
on thistask. Theresults on the output-layer reconstruction task (Recn in thefigure) for both BP and
LEABRA show an impairment (a significant one in the case of BP), indicating that the advantages
of AE LEABRA arein itsability to provide error signalsto the input-to-hidden weights, and not in
the effects of reconstruction task itself on the hidden representations.

To evaluate the additional contribution of associativelearningin AELEABRA, theReBel + CHL
conditionwasruninthe auto-encoder version, so that only error signalsweredriving learning of both
the mapping and self-structure. While average peak generalization scoresin this case were reason-
ably good (.09, SEM .00719, compared to .0688, SEM .00312 for the case with associativelearning
strength of .5 reported in the figure), this peak generalization was very early in training, and gener-
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alization declined asit proceeded. If only thefinal (after 200 epochs) generalization scores are mea-
sured, performance deteriorates considerably (.224, SEM .0387). In contrast, no such trends over
training were apparent in standard (non auto-encoder) networks, or in AE LEABRA with associa-
tive learning (which had, for comparison, .0862, SEM .00559 generalization error at 200 epochs).

Thus, there appears to be a significant overfitting problem associated with the auto-associative
pressureto represent theinput data, which, in thiscase, can be considered to be quitenoisy, giventhat
thereisagood deal of individual variationin the way the digitswere drawn. The MaxIn associative
learning is presumably capable of preventing this overfitting by aligning the representations with
the central tendency over all instances of the subset of digitsrepresented by agiven unit. Additional
data in support of this argument comes from the error levels associated with the reconstruction of
the input and output patterns. For the case with .5 MaxIn associative learning, the reconstruction
mean-squared-error (MSE) per unit was approx .085, whileit was approx .061 for the case without
MaxIn. Thus, the associative learning resultsin poorer reconstruction of theinputs, indicating that
the representations have captured less of the details, but the correlational structure captured by the
associative learning is evidently important for generalizing to novel inputs.

These results provide additional evidence that error-driven and associativelearningin LEABRA
work better together than alone. Further, the substantia improvement in generalization performance
associated withtheuse of auto-encoder learning in LEABRA indicatesthat thiscould be of important
practical interest. It should be noted that even small improvements over aready low generalization
error scores are highly significant due to the increased difficulty of extracting such improvements.
Finally, itisinterestingto notethat, because AE LEABRA requiresinteractive processingin order to
reconstruct theinput pattern over theinput layer itself (which was shown aboveto be essential for its
success), thisturns interactivity into an important contributor to impressively good generalization,
as opposed to the obstacleit isin a standard CHL network.

LEABRA vs Weight Decay

Since weight decay is perhaps the most commonly-used means of imposing constraints on error
backpropagation learning, its effect on generalization performance was assessed on this task. Fig-
ure 5.5 shows the results compared to LEABRA and standard backpropagation and CHL with and
without weight decay. As shown, asmall amount of weight-elimination (WED) weight decay (.001)
does not make much of a difference, while an intermediate amount (.002) resultsin slightly better
generalization, but alarger amount (.005) resultsin worsegeneralization than without any weight de-
cay. Thus, the effects of weight decay are parameter sensitive, and too much weight decay is a bad
thing. Compare this to the results for increased associative learning strength in LEABRA, which
was considerably more robust (a strength of 1 has comparable performance to that of .5). Findly,
the LEABRA network outperformed the BP network with .002 WED, indicating that weight decay
isnot as effective asthe associativelearning and activity constraintsbuiltinto LEABRA on thistask.

While weight-elimination weight decay in the BP and CHL networks with 64 hidden units did
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Figure 5.5 Comparative generdization performance for the weight-elimination version of weight decay
(WD) for both BP and CHL. The benefits of weight decay are parameter sensitive (.001 barely makes a differ-
ence, .002 gives dlightly better performance, but .005 results in worse performance) and do not match those
of LEABRA.

a) Simple Weight Decay and Hidden UnitsinBP b))  Weight Elimination and Hidden Unitsin BP
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Figure 5.6: Resultsof search of hidden unit and weight decay parameter space. a) Resultsfor simpleweight
decay at five different levels (including 0) and four different numbers of hidden units. b) Results for weight
elimination decay at the same levels and hidden units numbers.
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not reach the generalization performance of LEABRA, it ispossiblethat simpleweight decay (SWD)
and/or fewer hidden units might result in better generalization. Thus, the space of hidden unit size,
weight decay type, and weight decay level was searched for BP networks using a simple grid of
parameters. 10, 15, 30, and 64 hidden units were used, with both WED and SWD at levels of 0,
.0005, .001, .002, and .005. The results are shown in Figure 5.6. The use of SWD did not result
in better generalization for any of the cases relative to no decay at all, but WED did show a slight
improvement, which was most substantial at the .002 level in the network with 64 hidden units. A
slight generalization advantage was observed for smaller numbersof hidden unitsdownto 15, but not
with only 10. Thisis consistent with the idea that there are fewer free parameters in networkswith
smaller numbers of hidden units, and thus the networks are more constrained by the training data.
However, the magnitude of thiseffect appearsto be small. Further, thereliance on tightly controlled
numbers of hidden unitsis not biologically plausible, since the cortex has such a huge number of
neurons.

While some combinationsof weight decay and number of hiddenunitsmight result in statistically
comparable generalization performance in BP and LEABRA, the optimal version of BP probably
does not generalize better than LEABRA, and almost certainly does not approach the performance
of AE LEABRA. However, the critical point isthe comparison between CHL and LEABRA, not BP
and LEABRA. Whileit was too computationally expensiveto search the parameter space of hidden
units and weight decay in CHL, it islikely that small effects observed in BP apply to CHL aswell.
Asasimpletest of this, CHL networkswith 15 and 30 hidden units were run. Generalization was
only dlightly improved over the 64 hidden unit case: 15 hu, .236, SEM .00809; 30 hu, .231, SEM
.0106 compared to.279, SEM .0323 for 64 unitsreported above, but not enoughto bring performance
even close to the range of the other algorithms. When WED .002 weight decay was added, the 15
and 30 hidden unit resultswere actually worse than CHL without decay: 15 hu, .262, SEM .011; 30
hu, .234, SEM .0132.

LEABRA vs Noise

Trainingwith noi seiscommonly thought to serve asameans of regularizing or constraininganet-
work inamanner similar to that of weight decay, but more closely resembling theuse of asmoothness
constraint (Poggio et a., 1985). An (1996) recently showed anaytically that some ways of apply-
ing noise provide a useful regularizing function, and others do not. In particular, noise added to the
input vectors was shown to impose a smoothness constraint on the function learned by the network.
However, this appears to be applicable largely in cases where the inputs have continuous values, so
that the noise effectively samples over alarger continuous space. In cases where the inputs are bi-
nary, asin thistask, noiseislikely to be substantially less useful, since theimportant dimensions of
sampling are over different binary patterns across units, and not over continuous values of a given
unit's activity. It islikely that in the brain, neura firing is not precise enough to be encoding con-
tinuous values, so that this binary case is more relevant. As can be seenin Figure 5.7, noise added
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a) Effects of Training Noisein BP b) Effects of Training Noisein CHL
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Figure 5.7: Comparative generdization performance for the use of noise during learning for both BP and
CHL (IN isinput noise, PN is processing noise (added to all units), .05, .1 and .2 are the variances of the
Gaussian, 0 mean noise). The benefits of noise are dight, parameter sensitive, and depend on the algoirthm.
In no case does it match the performance of LEABRA. Notethat PN as low as .1 prevented the BP nets from
learning the problem to criterion.

either to the inputs (input noise, IN) or to all units (processing noise, PN) did not improve general-
ization reliably or substantially at any of the tested levels. Furthermore, even .1 variance processing
noise added to the backprop networks prevented these from learning the task to criterion. The CHL
networks appeared to be more robust to the effects of noise during learning, since they were ableto
learn with even .2 variance processing noise. Larger amounts of noise (.5) prevented all networks
from learning.

Fixed vs Adapting Activity Regulation

Asdiscussed above, the purely error-driven ReBel + CHL (No As) caseshownin Figure5.3 shows
that the ReBel activity constraintsresult in a significant improvement in generalization performance
over a standard CHL network. It is of interest to determine if similar such improvements can be
obtained by using the adapting activity constraints described earlier in this chapter. The prediction
isthat they will not resultin as substantial of improvementssincethey do not constituteatrueapriori
constraint, and must trade-off against error reduction.

Figure 5.8 shows a comparison between all of the activity regulation algorithms on generaliza-
tion performance. The final generalization performance over al epochsis shown in addition to the
average peak (“best”) generalization to illustrate the problems with the version of the adapting ac-
tivity constraints based on the instantaneous activity value. In thiscase, generalization performance
deteriorates significantly after the maximum generalization performance is reached, resulting in the
bad final score shown in the figure. For most of the adapting cases, a cost weighting factor of .05
was used, which resulted in average activity levels over the hidden layer within .02 of the target .25
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a) Effect of Activity Constraintsin BP b) Effect of Activity Constraintsin CHL
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Figure 5.8: Generdization performance (Best is average pesk performance, Final is average fina perfor-
mance) for adapting activity regulationin thea) BP and b) CHL agorithms. All act cost factors were .05 un-
less otherwisenoted. Avg usestime-averaged activationsin thelearning cost function. Avg .2 isAvgwith cost
factor of .2. A+Act is Avg with activation updates using the cost. Inst usesinstantaneous activation. |+Act
is Inst with activation updates using the cost. ReBel is the fixed KWTA activity constraint used LEABRA
(using only CHL error driven learning, No As). None isastandard CHL network. Thereisaclear advantage
for thefixed ReBel constraintsin CHL . Among adapting constraints, the +Act condition makes essentially no
difference, and the Inst case deteriorates over epochs of training, resulting bad final performance. Increasing
the cost factor resultsin worse performance.

activity level (the same activity level used in the ReBel case). Smaller values did not enforce the
activity constraint very well and had littleimpact (not shown). Larger values led to a deterioration
of performance, asis shown by the Avg .2 casein the figure.

There are two important pointsthat can be drawn from these results. First, aswas already noted,
it isclear that at least the ReBel form of activity constraints can result in improved generalization
performance (relative to no activity constraints) on thistask. Thisis likely due to the entropy re-
duction and damping effects, which should facilitate performance on categorization tasks such as
this one. Second, it is clear that the adapting activity constraints are substantially less effective
than the fixed constraints provided by ReBel in thistask. There was only a marginal benefit of the
average-activation based constraints, and a clear disadvantage of theinstantaneous-activation based
constraints. One important difference between the fixed and adapting constraintsis that the adapt-
ing constraintsdo not directly affect the activation dynamics of the network, whereas the fixed con-
straints have a damping effect as described previously.

Other Parameters Affecting Generalization Performance

There are several parameters of LEABRA and the other algorithms that have an effect on the
generalization performance. For BP, using a fast learning rate (.1) resulted in worse generalization
(-189, SEM .00809) compared to the slower one (.01) reported above.
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Pct Activity | GenErr ~ SEM

125 138 .00494
18.75 129 .00815
25 109 .00356
31.25 116 .00844
375 122 .00609

Table 5.3: Effect of activity level on generdization performance in LEABRA. The 25% case is what was
reported above.

For LEABRA, the25% activity (16 units) and 64 hidden unit case worked the best, resultinginthe
.109, SEM .00356 generalization error reported abovefor associ ativelearning strength of .5. Smaller
numbers of hidden units (49 units, generalization error .123, SEM .0028) had a measurabl e effect,
as did variationsin the activity level, as shown in table 5.3. Sparser activity levels result in worse
generalization than higher activity levels, which is consistent with the ideathat sparse activity leads
to highly specific, conjunctive representationsthat do not generalize well (O’ Reilly & McClelland,
1994).

Theuseof GausSig vssigmoidal unitsin LEABRA (seeend of Chapter 4 for adiscussion) was not
critical for thistask (sigmoidal unitshad a.111, SEM .00559 generalization error), though akq.ss
parameter of 1 for GausSig worked better (the results reported above use this) than the maximal
value of 2 (generalization error .124, SEM .00746). Thisis probably dueto the high dimensionality
of the input space, which makes patterns generally further away from each other, requiring less of
the Gaussian distance penalty. The standard practice (see appendix) of having a ks, parameter
of O for the connections from the output layer to the hidden layer (since the output layer has local
representations) was used (otherwise the generalization error is.147, SEM .00356).

It is possible to manipulate the relative contribution of the two terms that make up the MaxIn
associativelearning rule, in order to determinetheir relative importance. These terms correspond to
a zero-sum Hebbian (ZSH) learning rule, which performs entropy reduction, and a soft competitive
learning (SCL), which performs performsinformation preservation (see Chapter 4 for a discussion).
The standard weighting of these two terms is that SCL is .25 of the ZSH magnitude, which itself
isweighted dynamically in proportion to the complement of the signal-to-noiseratio of the unit (as
measured by alikelihoodratio). Giventhat thisdynamicweighting averages around .5, the SCL term
isreally only half asinfluential as ZSH on average. If asmaller (.1) or larger value (.5) of the SCL
weighting factor is used, generalization performance decreases: k,.; = .1 has ageneralization error
of .126, SEM .00677; k,.; = .5is.11, SEM .00523. Thus, whilelarger SCL value does not result in
significantly worse performance than the standard .25 (.109, SEM .00356) in this task, the same is
not true of later tasks. Thisindicates that both terms of MaxIn are important for good performance.

Thereisan interesting architectural manipulation that makes a measurabl e difference on general -
ization, which isthe use of three redundant output unitsfor each digitin the output layer, instead of a
singleunit (generalization error is.126, SEM .00407 for the single unit case compared to .109, SEM
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.00356 for the three unit case). This redundancy is important because of the positive-feedback na-
tureof associativelearning, whichwill tend to capitalize ontheinitia random patternsof weightsfor
forming associations. By increasing the sample size of these random weights, the dominance of this
initial random biasisminimized. Further, each of thethree weightscould be used to nurture an asso-
ciation, improving the chances that useful (e.g., in terms of reducing error) associationsare formed.
This manipul ation made no difference when tested in BP networks (.14, SEM .00356 generalization
error), as would be expected since the advantages are related to the use of associative learning. As
mentioned earlier, all LEABRA results reported above are for the case with three output units per
digit.

Discussion

To summarize, the results on this task support all of the mgjor hypotheses regarding the perfor-
mance of the LEABRA agorithm on a categorization task with relational inputs. Criticaly, it was
shown that both error-driven and associative learning together performed better than either aone,
and that activity constraints were important even in a purely error-driven context. Further, the im-
plementational principlewhich favorsthe use of fixed instead of adapting constraintswas supported
by thefailure of the adapting constraintsto perform as well as the fixed activity constraintsimposed
by ReBel. The auto-associator version of LEABRA performed substantially better than any other
algorithmtested here, and shows potential for practical use. None of the standard regularizerstested
(weight decay and training with noise) were capable of performing as well as LEABRA with asso-
ciativelearning. The next chapter investigates the underlying causes of generalization performance
in greater depth.
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Chapter 6

Generalization: Within and Across
Tasks

This chapter explores the issue of generalization, or systematic responses to novel stimuli, in some
detail. For generalization to occur, it must be the case that there is an underlying regularity in the
environment, so that novel stimuli can be related to those the network has seen before, and treated
appropriately. It is clear that the ability to generalize is an important property of neocortical pro-
cessing, as there are many examples of it in the behavior of humans and animals. For example, it
is possible for people to pronounce strings of letters that they have never seen before, as long as
these strings follow some basic regularities. Further, people can make spatial and other judgments
on novel visual displays depicting “possible’ objectsin the world, but they do not perform as well
for objectsthat do not adhere to the regularitiesthat define possible objects. These behaviors can be
explained by assuming that the neocortical learning system can devel op representations which cap-
ture the regularities of these domains, and thustreat novel stimuli systematically according to these
regularities.

Despite theintuitive appea of the above description of generalization in the neocortex, it can be
quite difficult to actually specify what counts as a “regularity” in the environment, and how neural
representationscould be structured so asto capitalize on theseregul arities. In the previous chapter, a
categorization task was explored, where the definition of regul arity was adherence to avisual form of
adigit, and it was easy to literally see that the representationsin LEABRA reflected that regularity.
Indeed, many categorization tasks have a natura definition of generalization, which is simply the
ability to collapse an appropriate range of variability around a prototype or central tendency into
an existing, known representation. The results from the previous chapter on the digit recognition
problem support the idea that the entropy reduction constraints built into LEABRA facilitate this
form of generalization.

However, there are many other types of regularities other than those of the form present in cat-
egorization tasks. Using the taxonomic distinctions made in the previous chapter, it should be the
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case that both transformational and rel ational tasks can exhibit regul arities sufficient to allow gener-
alization. A particularly clear and simple case isthat of a transformational task with combinatorial
inputs, wherethe regularity isin learning that each of theindependent features of the input i s associ-
ated systematically with acorresponding featurein the output, but not with any of the other indepen-
dent features. However, thisis not a particularly interesting form of regularity, since the meaning of
astimulusistypically defined by the relationship among its features, or in relation to other things.
In adomain wherethereis no relationship between features of theinput, thereis no real meaning to
the stimulus as awhole. Nevertheless, it seems plausibleto assume that some aspects of the world
arelikethis, at least at somelevel. Indeed, as mentioned previously, the spelling-to-sound mapping
isat least somewhat combinatorial.

Theissue of generalization in atransformational task using combinatorial inputswas studied by
Brousse (1993) for feedforward backpropagation networks, with and without weight decay. It was
found that backpropagation networks did not devel op separate representations for each of theinde-
pendent “ slots” intheinput, except inthe case withweight decay. Neverthel ess, BP networkswithout
weight decay generalized surprisingly well, despite there being no clear relationship between their
weightsand theindependence of the different input features. While Brousse (1993) did not study an
interactive error-driven network, it is hypothesi zed that such a network would perform considerably
worse than the feedforward BP networks on thistask. Further, it is hypothesized that a LEABRA
network would devel op representations that reflect the independent input features, and generalize
well asaresult. These hypothesesare tested in thefirst section of this chapter using two versions of
the transformational task with combinatorial inputs.

Thenext section in thischapter exploresthe case of atransformational task which uses stimuli that
are both combinatorial and relationa. Thisisthe “lines’ task, which has been studied by a number
of researchers (Foldiak, 1990; Saund, 1995; Zemel, 1993; Dayan & Zemel, 1995). The stimuli are
relational because agivenlineisdefined by therel ationship between anumber of active“pixels’ inan
simulated visual input, but they are al so combinatoria becauseanumber of different linesare present
at the same time, and each istreated independently of the other. Thus, thistask isused to explorethe
basic phenomenon of generalization under different and somewhat more interesting circumstances
than the purely combinatorial domain.

Finally, theissue of generalization acrosstasksis studied using both the digit classification task
from the previous chapter, and thelinestask just described. Thisform of generalization, also known
astransfer, isimportant because it demonstratesthe flexibility of the knowledgelearned in solving a
giventask. If alimited amount of learning experiencein anetwork model can be effectively applied
to performing novel tasks, this might help to explain the basis of similar abilities demonstrated by
humans. It is hypothesized that the ability of LEABRA to represent the structure of a given domain
will beimportant for exhibiting good across-task generalization.
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L
100

Figure6.1: Patternsfor theindividual features in the combinatorial domain. a) Showsthe random, relatively
non-overlapping patternsused for thefirst version. b) Showsthe 50% overlapping patterns used for the second
version.

Generalization in a Combinatorial Domain

Two versions of atransformational task with combinatoria inputswere used. Both versions had
four different independent input features or “slots’, each of which could take on 10 different values.
Thus, there were 10,000 different possibleinput patterns (104). For the first version, each of theten
feature values were represented as random bit patterns over 16 units, with four bits active out of the
16. The maximum overlap between any two patternswas 1 active bit, resulting in a simple mapping
problem that should be easy for networks to learn. The transformational mapping was a random
pairing of the 10 bit patterns with each other. Thus, bit pattern 1 aways predicted a corresponding
bit pattern of 6 on the output slot, for example. Figure 6.1a shows the patterns for this version of
the task. The second version was similar, except that the bit patterns were systematically designed
to have 50% overlap with each other, making the feature mapping problem more difficult to solve.
Thiswas accomplished by turning on two bitsout of 5 in all the unique combinations (of which there
are 10). To equate the total number of input unitswith the first version, 3 redundant bits were used
for each of the 5 bits, for atotal of 15 (see Figure 6.1b).

Figure 6.2 showsadepiction of the architecture, which simply hasthe four input and output slots,
with ahidden layer of 49 units, and the LEABRA networkshad the standard 25% activity constraint.
Standard parameters as in Chapter 5 were used for training the networks. As explained in the tax-
onomy of tasks, it is expected that associative learning will not be particularly beneficial for gener-
alization on this task, as it will tend to bias the representations to pick up on spurious correlations
across slots. The basic LEABRA results are for an associative learning strength of .1, and results
without associative learning at al (No Asor ReBel + CHL) are also shown.
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Figure 6.2: Hidden unit weight patterns in version 1 of the combinatorial domain task (relatively non-
overlapping units), with both i nput-to-hidden and output-to-hiddenweights are indicated in the corresponding
input or output unit, with the area indicating magnitude and color indicating sign (white = positive, black =
negative). a) Showstheweightsfor atypical CHL hidden unit (BP unitslooked similar, not shown). Notethat
there are significant weightsin each of the four different input feature dots. b) Shows weights for atypica
LEABRA hidden unit, showing clear slot-based specialization for the output-to-hidden weights, but only a
weak indication of thisfor theinput-to-hiddenweights. c) Showsweightsfor AE LEABRA, which, by virtue
of having error-driven learning in representing the input, has clearer dot-based input-to-hidden weights than
the standard LEABRA network, but similar output-to-hidden weights.

\ersion 1: Relatively Non-overlapping Patterns

To assess generalization performance in these networks, either 100 (small set) or 500 (large set)
randomly generated combinations of values over the four slots were generated for the training set,
and 500 different such combinations were generated for the testing set. Networks were run for 400
epochs, and generalization measured every 25. The types of hidden unit weight patterns that devel-
oped in thistask (small training set) are shownin Figure 6.2. The CHL network exhibitsessentially
the same kind of noisy, under-constrained representations as in the digits task, while the LEABRA
networks have more clearly represented both the independence of the different input slots, and the
mapping function between input and output patterns. Notethat both thevisual clarity and generaliza-
tion efficacy of theinput-to-hiddenweightsin LEABRA appearstoimproveinthe AE (auto-encoder)
version, due to the error-driven learning pressure on those weightsin this condition.

Figure 6.3 shows the generalization performance for the basic algorithms on the large training
set (500 patterns), which replicates, rather dramatically, the basic pattern seen in the digit recogni-
tiontask. Thus, asbefore, the BP network is capable of quite good generalization despite not having
unitsthat appear to represent the basic independence of the different slots, whilethe LEABRA net-
work also achieves good generalization by virtue of having unitsthat clearly represent theimportant
structure of the task. In contrast, the CHL networks, which have similar weight patterns to the BP
networks, have dramatically worse generalization performance, presumably due to the negative in-
teraction of interactive processing and underconstrained weights.

The figure shows results for a number of different parameterizations of CHL to attempt to pro-
duce better generaization. A faster learning rate (.1) did improve generalization over the slower
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Figure 6.3: Generalization performance of the different algorithms on the large training set (500). BP and
LEABRA (LBA) generalization are essentialy perfect, while CHL generalizationisquitepoor, bothrelatively
and absolutely. The use of the faster learning rate (Lr .1) appeared to yield some improvement relativeto the
standard slower learning rate. All subsequent CHL results are with Lr .1. The use of weight decay (WD) at
the 2 (.002) and 5 (.005) levels only impaired performance. Some improvement was observed with .1 input
noise (IN 1). Substantial, but still not to the level of BP or LEABRA, improvements were obtained with .2
variance processing noise (PN 2) the AE auto-encoder version of CHL.

one, this effect was not substantial. Weight elimination actually impaired performance on thistask,
which isdiscussed further below. The use of noisein theinputs (IN) resulted in some improvement
a the .1 level, but .2 variance noise prevented any network from learning to criterion. The use of
processing noise, in contrast, produced significantly better generalization at the .2 level, despite the
fact that this prevented three out of five networks from learning to criterion (though they came very
close). Finally, the auto-encoder (AE) method of training CHL led to even greater improvementsin
generalization, but even it was still significantly worse than BP and LEABRA. This improvement
for AE CHL in thistask contrastswith the results on the digit task, where AE performed worse than
standard CHL. In that task, AE training was thought to result in overfitting the noisy details of the
digitimages, which detracted from any benefitsit might have otherwise provided. Thereisno sense
inwhich the present task has noisy input patterns, and thusthis problem of overfitting does not arise,
allowing the benefits of the AE procedure to be seen.

The reasons for the generally poor generalization performance of CHL will be investigated in
detail below. Before doing so, amore detailed comparison between BP and LEABRA can be made.
The results of BP and LEABRA on the large training set version of thistask were sufficiently good
that itisnecessary to usethe smaller training set (100 patterns) in order to measure meaningful differ-
ences in generalization performance. Resultsfor thistraining set are shownin Figure 6.4. Therela
tionship between the three standard al gorithms(BP, CHL, and LEABRA) isbasically as before, with
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a) Generalization Performance, 100 Training D)  LEABRA Generalization, 100 Training
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Figure 6.4: Generaization performance of the different algorithms on the small training set (100). BP is
standard backpropagation. IN isinput noise, and PN is processing noise, with variances as indicated. WD
2 isBP with .002 weight-elimination, and WD 5 iswith .005. AP is Almeida-Pineda, which was intermedi-
ate between BP and CHL , which essentialy did not generadiize a al. LEABRA is standard LEABRA, and
No Asis LEABRA without associative learning (ReBel + CHL), which performs better as expected. AE is
auto-encoder LEABRA, and AE No AsisAE LEABRA with no associative learning. Two activity levelsare
shown, the standard 25%, and a higher activity level of 33%, which performed better. Note that associative
learning was not aliability for AE LEABRA.

CHL exhibiting afloor effect (essentially no generaization at all). However, it isclear that feedfor-
ward BP generalizes better than standard LEABRA inthistask. A number of interesting conclusions
can be drawn from this and the other data presented in the figure.

MaxlIn associative learning is not useful in this task: As was expected, the use of associative
learning actually impaired generalization performance in some cases in thistask. The negative im-
pact of associativelearningin thistask probably arises because of itstendency to encode correl ations,
which are spuriousin this case, between different input slots. Thus, given the small training sample
used, it isthe case that certain patterns co-occur in the same slotsrelatively frequently. Associative
learning will tend to form representations that link these patterns, which, given that the correlation
does not hold in the underlying domain, will result in poorer generalization performance. However,
it isinteresting to notethat in the AE condition, associ ativelearning appeared to reduce the variance
and improved generalization slightly in the 25% activity case. Further, when 500 training patterns
were used, associativelearning appearsto provideasmall generalization advantage (with associative
learning is .0136, SEM .00455 compared to .0272, SEM .0116 without).

Sandard LEABRA suffers from having spar ser, conjunctive representations: The reason for the
disparity between BP and LEABRA on thistask is due in part to the ReBel activity constraintsin
LEABRA, which lead to sparser and potentially more conjunctive representations. To the extent
that individual unitstend to represent the conjunction of patterns across multiple slots, thiswill im-
pair generalization performance since the slots are actually independent and should be represented
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| Algorithm | Initial Weights Trained Weights Cycles GenErr  SEM |

BP — — — 572 .0155
AP 252 274 58 822 .0061
CHL 252 704 140 999 .0011

Table 6.1: Comparison between measures of interactivity and generalization in AP and CHL. Weights are
average absolute va ue of reciprocal (top-down) weightsfrom output to hidden unitsin Almeida-Pineda (AP)
and CHL networks. The CHL network clearly increases the strength of these weights over training, whilethe
AP network does not. CHL networks take significantly longer to settle during processing, asis shownin the
Cycles (max) column (initial settling time before training was 48 cycles). The level of interactivity between
BP (none), AP, and CHL is consistent with their respective generalization error scores.

independently. Thus, increasing the activity constraint from the standard 25% to 33% resulted in
significantly better performancein thistask (note that 25% was optimal for the digitstask). Thus, it
isclear that the activity level parameter is somewhat task-dependent.

Weight decay is not effectivein thistask: The effects of weight decay in both the feedforward BP
and CHL networks were consistently negative for al values of decay strength tested. Further, the
size of the negativeimpact appeared to be correl ated with the magnitude of the decay strength. This
result isinconsistent with those of Brousse (1993), and may indicate a dependence on the nature of
the input-output patterns for the advantages of weight decay. While Brousse (1993) used a simple
auto-encoder, where the input and output patterns were the same for each dot, in this task a map-
ping function between input and output patterns had to be learned. 1t seemslikely that weight decay
interferes with the learning of this mapping task, but not the simpler auto-encoder task.

Noise is not effective for BP in this task: Noise either in the inputs or in processing (added to
all units) did not improve generalization performance at all for BP in thistask. In fact, as before,
adding noise in the processing significantly impaired generalization, and a variance of .1 prevented
BP from learning the task to criterion. Aswas the case in the digitstask, the lack of effectiveness
of noiseis probably due to the binary nature of the input and output patternsin thistask. However,
this conflicts with the results from the CHL network with processing noise. Perhaps the difference
lies in the number of training patterns used (100 vs 500), but this is difficult to test given that BP
generalizes near-perfectly with 500 patterns without any additional manipulations.

Almeida-Pinedaisintermediate between BP and CHL: Aswasthe caseinthedigitstask, thegen-
erdization performance of the AP agorithmis consistent with theideathat it islessinteractive than
CHL, but (obviously) moreinteractive than BP, and that interactivity isthe source of the generaliza-
tion problems with CHL. Table 6.1 shows data for this task that, as before, supportsthisinterpreta-
tion. The magnitude of the reciproca (output-to-hidden) weights after training in the AP network
isonly slightly different than before training, while those in the CHL network have increased con-
siderably. The number of cyclestaken to settleisalso indicative of the increased interactivity of the
CHL network.

Auto-associator LEABRA performed significantly better than other algorithms: Aswas the case
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on the digitstask, the use of error signalsto shape the development of representations of the self-
structure of theinput and output patterns resulted in substantial gainsin generalization performance.
Asisevident in Figure 6.2c, the weights for AE LEABRA provide cleaner representations of the
independence among the slotsin the input layer, whichis clearly reflected in its generalization per-
formance relative to standard LEABRA. Thisfigure emphasizes the point that the advantages of AE
come in applying error-driven learning pressure to the same weights which are used in the input-
output mapping task.

Salf-organizing learning only (No Err) cannot solve this task: An attempt to train a LEABRA
network without the CHL error-driven learning component failed. There was clearly evidence of
learning in terms of the sum-squared-error (SSE), since theinitial SSE was around 1800, and the fi-
nal was around 700. However, in terms of the number of patternswith all output unitson the correct
side of .5, the network showed little improvement over learning, remaining at around 100 for the
100 pattern version of the problem. This confirms that error-driven learning is essential for solving
even fairly simpletasks such asthisone, and emphasi zes the importance of error-driven learning for
understanding how the neocortex can learn complex tasks. Finally, it is not surprising that general -
ization was nonexistent in this network, given that it had not learned the task in the first place.

Why CHL Generalizes So Poorly

In order to test the theory that heightened sensitivity to differences in input patterns (due to in-
teractive processing) is behind the poor generalization performance of CHL, an attempt was made
to directly measure this sensitivity. This test involved presenting pairs of input patterns from the
combinatorial domain which differed in only one of the four input feature slots, and recording the
correl ations between the two hidden unit activity states corresponding to these pairs of inputs. If the
network is exhibiting a graded, proportional response to the 75% similarity of the input patterns, it
should haveacorrelation of approximately .75 acrossthe two hidden unit patternsfor thesetwo input
patterns. A lower correlation would indicate a heightened sensitivity to the differences in the input
patterns (i.e., the butterfly effect), while a higher correlation would indicate a decreased sensitivity
(i.e., atractor dynamics where both patterns fall into the same attractor).

Theresultsof thistest are shown in Figure 6.5, which confirms the hypothesisthat the CHL net-
works suffer from heightened sensitivity to input differences. The first column in the figure shows
the hidden unit correlations across pairs drawn from the training set (i.e., the networks had already
been trained on these patterns). In thiscase, al three algorithmshave hidden unit correl ationswhich
are essentialy proportional to the difference in theinput, aswould be expected since they have been
trained to produce the correct outputs for these patterns, which also differ by 75%.! However, the
second column, which shows pairs of patternsin the testing set (i.e., novel patterns), indicates that
while BP and LEABRA remain in the proportional response range (near .75), the CHL network hid-

!tisinteresting that the LEABRA caseshows someindication of acommon attractor for the two patterns, which might
indicate the existence of higher-order representationsthat respond to combinations across different input patterns.
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Attractor Sensitivity in Systematic Domain
Hidden State Correlation Between Inputs Differing by 1/4
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Figure 6.5: Response of the different networksto two different input patterns differing in one out of the four
feature s ots, measured as the correl ation across the corresponding hidden unit patternsfor thetwo patterns. 1f
the hidden unitsare representing the inputs proportionally to their differences, they should have a correlation
of .75 as shown by thelinein thefigure. Resultsare averages over 9, 12, 24, and 45 different patterns, for the
conditionsin the order shown.

den unit correlations drop dramatically to around .42. Thus, the network is responding quite dif-
ferently to each member of these similar, but novel, input pattern pairs. Given that the trained items
did not display thissensitivity, it seemslikely that the cul prit i sthe under-constrained nature of error-
driven learning, which did what was necessary to get thetrained items be processed correctly, but the
residual noisein the weights, combined with the interactive activation updating, |eaves the network
highly sensitiveto differencesin novel items.

Thethird columnin thefigure teststhe ideathat when presented with onefamiliar and one novel
pattern which differ by only one feature slot, the CHL network will settleinto a common attractor
state for both patterns (presumably corresponding to that of the trained pattern). However, the re-
sultsindicate that, while the states are not as different as between two completely novel inputs, they
nevertheless reflect settling into distinct attractor states. BP and LEABRA remain essentially pro-
portional in this case. Finally, the fourth column shows the pairwise differences over all patterns
for an untrained (random) weight configuration. In this case, the CHL network does settle into a
common attractor for the two patterns, whilethe BP network has some tendency to exhibit the same
hidden unit state, and LEABRA has the most differentiated hidden unit patterns of the three. This
increased initial differentiationin LEABRA probably resultsfrom the activity competition imposed
by the ReBel KWTA activation function.

In summary, thereis clear evidence for greater sensitivity in CHL to differencesin input patterns
that prevent it from exhibiting a graded, proportiona response to novel inputs. Thisisin contrast
to the LEABRA network, which isequally interactive. It appears that the soft KWTA constraint im-
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Algorithm | < .05 > .95 <.1 >.9
BP 76 802 1058 1145
CHL 1525 1454 16.63 15.66

Table 6.2: Average number of hidden units (N=40) above or below given activation value on the training
itemsin afully trained network. The hidden unitsin the CHL networks clearly have more extremal values,
which could have contributed to poor generalization.

posed by the ReBel activation function dampstheinteractive activation dynamics, resultinginakind
of proportionality in the activation patternsthat ismore similar to that of thefeedforward BP network
than the CHL network. Thisisundoubtedly an important contributingfactor for why LEABRA gen-
erdizes aswell asit does. The greater sensitivity of the response of the CHL network is consistent
with the hypothesized explanation for its poor generalization performance. However, it is possible
that other factors such asthe tendency for the unitsin the CHL network to bein the non-linear range
of their activation function also play arole.

To test this latter hypothesis, the average number of hidden units with activation statesin their
non-linear range was computed over al the training patterns on fully trained networks. The results
are shown in table 6.2. Thus, the CHL networks have more units with extremal activation values,
which could be contributingtothelack of agraded, proportional responseto novel stimuli. However,
itislikely that both of these phenomena, greater sensitivity induced by non-linear attractor dynamics
and extremal activation states, are two sides of the same coin.

Failure of Adapting Activity Regulation

Sincetheassociativelearningin LEABRA wasnot particularly useful, itisthe activity constraints
provided by the ReBel KWTA function that was largely responsiblefor good generalization perfor-
mance on thistask. Thus, itisof interest to determineif the adapting activity regulation mechanisms
described in Chapter 5 for CHL will lead to an improvement in its otherwise terrible generalization
performance. However, it turnsout that the adapting mechanisms did not work at all on thistask —
when the activity constrai nt was made strong enough to potentially affect the activity levels, the net-
works became unstable. Further, the constraint was ineffective even at the strong level. Thus, there
isapparently no value of the activity constraint wei ghting parameter for which the activity constraint
was effective and the network stable.

The problemswith the adapting activity constraint are illustrated in Figure 6.6, which showsthe
activity level and training error for two values of the activity constraint weighting factor &, ctim (1
and 1.5). For both cases, there is an initial period of training where the network solves the prob-
lem, but the activity levels are not close to the .25 target value, and generaization is no better than
in a standard CHL network (not shown). Then, as training proceeds, both activity levelsand error
scores become wildly unstable. This happens earlier for alarger value of the activity constraint. It
islikely that the accumulated pressure of the activity constraint, whichis apparently not compatible
with the error-driven pressure to solve the problem, leads to the instability. Comparing the weights
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Figure 6.6: Training error and activity levelsfor activity regulationin CHL networks, with atarget activity
level of .25. &) shows the case with an average activity constraint with strength 1, which initially learns the
problem successfully, but has too high an activity level, does not show improved generalization, and eventu-
ally suffers from instability. b) shows the case with strength of 1.5, which issimilar to a) but the instability
occurs earlier intraining. Larger values result in even earlier instability onset, while smaller valuesresult in
no appreciable impact on activity level.

in an activity regul ated network to thosein a standard CHL network, the main difference appearsto
be alarger magnitude of bias weights, but the other weights appear roughly similar. Thus, it is not
the case that the instability results from the weights being either extremely large or near zero.

This failure of the adapting activity regulation method lends further support to the implemen-
tational principle favoring fixed constraints, such as the ReBel KWTA activation function used in
LEABRA. Giventheoverall lack of promising resultsfrom the adapting method in thisand the digit
recognition tasks, no further exploration of this method will be performed on subsequent tasks.

Other Parameters Affecting Generalization Performance

There are several parameters of LEABRA and the other algorithmsthat have an effect onthegen-
erdization performance. For BP, the number of hidden unitshad a significant impact (40 units: .744
generaization error, SEM .0117, 49 units (reported above): .572, SEM .0155, 64 units. .462, SEM
.0112). Thiseffect was not replicated in the CHL networks, which had uniformly negligible gener-
alization performance on the small training set used. As reported above, weight elimination weight
decay did not have a favorable impact on the generalization performance of BF, and no significant
impact on CHL. Finaly, using a learning rate of .1 instead of the standard .01 resulted in slightly
worse generalization in BP (.627, SEM .00932).

This task did show a sensitivity to the use of the GausSig vs sigmoidal likelihood function in
LEABRA. The sigmoidal networks did not generalize nearly aswell, with a generalization error of
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Generalization Performance

Combinatorial Transformation Task, Overlapping 15 Bit Inputs
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Figure 6.7: Generdization performance of the different algorithms for overlapping patterns. WD 5 is pre-
ceding column pluswei ght-elimination weight decay at .005. Lr .1islearningrate of .1. AE isauto-encoder
LEABRA, and AE No Asis AE LEABRA without associative learning (ReBel + CHL).

741, SEM .0123, in the auto-encoder (AE), 33% activity, no associative learning case, compared
to .253, SEM .0467 for GausSig, which is what is reported above. Thisis probably because of the
greater specificity of the response for GausSig units, which means that they are more likely to be
affected by weights which mismatch the inputs they respond to, and thus more likely to develop
weights specific to a given independent feature.

\ersion 2: Overlapping Patterns

This second version of the combinatorial task was used in order to test the performance of the
algorithmswith a more difficult mapping task between input and output patterns within a given slot
— one that unambiguously requires non-linear transformations. This might cause the BP networks
to devel op more non-linear representations which would then not show the graded, proportional re-
sponse characteristic of the previous tasks, resulting in worse generalization performance. In con-
trast, the LEABRA networks might be more immune to the increased difficulty given that they al-
ready tend to represent the inputsin terms of the mapping between entire input/output feature pat-
terns.

Figure 6.7, which shows generalization performance for BP, LEABRA, and LEABRA AE algo-
rithms on this version of the task, indicates that this hypotheses might be at least partially correct.
For the BP networksthat use the same learning rate parameter asin the previousversion (.01), gen-
eralization isindeed quite poor, both with and without weight elimination. However, when a faster
learning rate is used (.1), generalization improves significantly. The LEABRA network performed
at the same level as BP, which was not the case on the easier version of thistask. The auto-encoder
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form of LEABRA performed better, as before, but still not to thelevel of the .1 learning rate BP net-
work. The use of associativelearningin AE LEABRA appeared to be somewhat detrimental given
the No Asresults. However, in the feedforward case, it actually improved performance, sincethe No
As version was not even capable of learning the task to criterion (not shown). Unlike the previous
task, the use of a higher activity level (33% instead of the standard 25%) did not improve general-
ization performance. Finally, the use of a faster learning rate in LEABRA (.02 instead of .01) did
appear to improve generalization (.953, SEM .00551 compared to .975, SEM .00297) but 2 out of 5
networks did not learn to criterion.

One hypothesis regarding the effect of learning rate in BP is that the larger learning rate allows
hidden unitsto develop more differentiated representations, that are more likely to represent the in-
dividual slots, whereas the slower [earning rate resultsin more overlapping representationsthat rep-
resent multipleslots. However, avisual inspection of the weight patterns did not reveal any obvious
difference along these lines. Thus, the reason for the apparent advantage of the faster learning rate,
which was not found on any of the other tasks studied thusfar, remains somewhat unclear.

Note that weight decay for BP networks was not advantageous on this version of the task either,
probably for a similar reason as before: it interfereswith the learning of the individual slot mapping
task. Finaly, it should be noted that none of these networks is performing anywhere near the level
that they did in the easier version of the task, indicating that the difficulty of the mapping task isan
important variable in determining overall generalization performance. Another variable which has
been observed in work not reported in thisthesis to affect performance in LEABRA isthe overall
activity level in the input and output layers. If this significantly exceeds the nominal 25% level,
LEABRA’s learning and generalization performance is generally impaired. The 40% activity level
of the patternsin thistask isthus a potential problem for LEABRA.

Discussion

The results on the above versions of the combinatorial transformation task are generally consis-
tent with the previous results on the digit recognition task, and with the overall set of hypotheses
regarding the nature of learning and generalization in the LEABRA algorithm as compared to stan-
dard error-driven algorithms. With respect to the central functional criteriafor aneocortical learning
algorithmidentified in the introduction, these results support the contention that standard algorithms
fail to exhibit both interactive activation dynamics and effective use of distributed representationsfor
systematic behavior on novel stimuli. That LEABRA is capable of exhibiting both of these proper-
ties supportsthe idea that it should be considered a more plausible candidate for describing neura
learning and processing in the neocortex. The next section provides additiona evidence that is con-
sistent with the previous findings. The discussion isthen extended to consider the generalization of
knowledge acrosstasks, not just within agiven task.
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Combinatorial and Relational: The Lines Task

The horizontal and vertica line task, studied in various forms by a number of researchers
(Foldiak, 1990; Saund, 1995; Zemel, 1993; Dayan & Zemel, 1995), involvesa simple “retinal” in-
put representation which can contain some number of horizontal and vertical lines. Oneform of this
problem uses an auto-encoder task, where the objective is to reproduce the input pattern over the
output layer, while another simply requires the activation of output unitswhich identify the orienta-
tion and position of the lines. Both are transformational tasks according to the taxonomy presented
in the previous chapter. The latter form of the task is used here, to enable the additional use of the
auto-encoder form of the LEABRA network to be evaluated without redundancy in the task. Since
each line is made up of input unit activities that are also used in other lines, the identification of a
given line requires relationa information. However, the identification of a given lineis relatively
independent of the identification of other lines, making it also acombinatorial input. Thismix of the
two input typesis part of what makes this an interesting problem.

It is expected that, unlike in the combinatorial domain studied above, the associative learning
in LEABRA will beimportant for obtaining good generalization on thistask, sinceit will facilitate
the development of representationswhich capture the correl ational structurethat defines an individ-
ud line. Finally, it should be noted that several other agorithms have been tried on this problem,
either with activity constraints (Saund, 1995; Dayan & Zemel, 1995) or a self-organizing learning
algorithm (Foldiak, 1990), so that LEABRA's performance can be compared to that of these other
algorithms.

While anumber of different versions of this task have been studied, in the version we consider
here the environment consists of all possible combinations of two horizontal and/or vertical lines,
each of which is 5 pixels long and placed within a 5x5 grid. Thus, for this size grid, there are

10

2
bleline positionand orientation. Networksare trained to activatethe unitscorresponding to thelines

present intheinput. For thefollowing generalization results, 10 out of the 45 total possiblelinecom-
bination patternswere sel ected at random for the testing set, leaving theremaining 35 for thetraining
set. 5 different such training/testing sets were created, and the one with the best generalization per-
formance in a standard BP network used for evaluating the other algorithms (as it happens, there
were largely insignificant differences between the generalization and other performance measures
over al 5 sets).

Figure 6.8 showsthat, asin the previoustasks, the representations formed by LEABRA capture
the underlying regularity of the lines domain, namely, lines. In contrast, the CHL network again

= 45 unique combinations of two lines. There are 10 output units, one for each possi-

shows the same kinds of underconstrained, noisy representations as were seen on previous tasks
(BP had similar representations). It is interesting to note that even though the activity constraint
in LEABRA was set to 6 unitsin this case (25% activity), only 4 were typicaly active. There were
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Figure 6.8: Comparison between the weights and activation patterns for CHL and LEABRA networks. a)
showstheweightsfor atypical CHL hidden unit, which appear quite noisy, but the output weightsindicatethat
itencodesthe V2 (vertical, position2) line. b) showstheactivationswhen apattern containing V2 ispresented,
confirming that thisunit participatesin therepresentation. c) showstheweightsfor atypical LEABRA hidden
unit, which clearly encodes the V2 line. d) shows the activations for the same input pattern as in the CHL
network. Despite thefact that the activity level is set to 6 active units, the LEABRA network usually has only
4 active, with atwo-hidden unit redundancy for each of theten lines (and thus 5 units which do not actively
participate in any representations).
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Figure 6.9: a) shows number of individuated lines (method described in text) for the different algorithms.
The associative learning in LEABRA is obvioudly critical for developing individuated line representations.
b) shows the generalization performance of the different agorithms, which islargely consistent with results
on other tasks. Again, weight elimination (WD 2 for .002 and WD 5 for .005) was not effective. Associative
and error-driven learning together result in better generalization than either alone (No As, No Err). Also, note
that theNo Err networks(ReBed +MaxIn) took substantially longer tolearnthetask to criterionthan LEABRA
with error driven learning (145 epochs vs 8).

2 units coding for each of the 10 different lines, so each pattern of 2 linesresulted in 4 active units.
Thus, thisis an example of the individual likelihood term in the ReBel activation function causing
the activity level to be below the specified upper limit, and illustrates the advantages of thisfeature
(see Chapter 4 for discussion).

In order to quantify the extent to which the hidden layer units represent individual lines, the cor-
relation between each hidden unit’sweight vector and each of theindividual horizontal and vertical
lines was measured. After computing these correlations, the highest correlation value over al units
for agivenlinewas computed, and athreshol dingwas applied to these values. A maximal correlation
that was greater than .8 was counted, indicating that thelinein question was represented individual ly
by one of the hidden units. Thus, the maximum count is 10, one for each line. The resultsfor both
thisline count measure and the generalization error are presented in Figure 6.9.

Thisfigure shows that the associativelearningin LEABRA iscritical for the development of in-
dividuated line representations in the hidden units, since only in the LEABRA (with .2 associative
learning) and LEABRA No Err cases are there significant numbers of such representations. Note
that the error-driven component is important too, since the LEABRA networks had more individu-
ated line representations than the case without error-driven learning (No Err). The number of indi-
viduated linesis not, however, a completely reliable predictor of generalization performance, since
the LEABRA No Err case had the worst generalization of any algorithm, while standard LEABRA
had the best. These resultsagain show that it isthe interaction between error-driven and associative
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N UnitsActive | GenErr  SEM \ N Indiv Lines SEM \

2 0 0 10 0
4 .04 .0274 10 0
6 02 .0224 98 224

Table6.3: Effect of activity level on generalization performance and number of individuatedlinesrepresented
by the hidden unitsin LEABRA. The 6 active units (25%) case is what was reported above.

learning in LEABRA that givesit its good generalization performance, and helps to produce better
hidden unit representations. Thisis consistent with the results on the digit recognition task, which
shareswiththistask therelational quality of theinput patterns, whichiswhere LEABRA isexpected
to givethe greatest benefits.

Aswas the case in previous tasks, the generalization performance of BP does not depend on the
presence of representations that capture the basic structure of the task (linesin this case). Again,
weight elimination did not have a significant impact on performance, either in generalization or on
the number of individuated linesrepresented. As has been the case with the previoustasks, the CHL
network generalizes worse than the BP network, despite having comparabl e representations. Thisis
probably dueto its butterfly-effect sensitivity, as discussed in the previous section. Also consistent
with previousresults, the Almeida-Pineda networks (AP) performed at alevel intermediate between
that of BP and CHL.

For the BP networks, using a faster learning rate led to better generalization performance (.02,
SEM .0224) for learning rate of .1, compared to .06, SEM .0274 for alearning rate of .01. However,
the effect was the opposite for the CHL networks (.01 Irate: .14, SEM .0671, .1 Irate: .22, SEM
.0418). Also, using only 10 hidden unitsin BP, which might in theory force more individuated rep-
resentations, did not have this effect. Generalization error was worse at .3, SEM .0791 in this case,
with .8, SEM .418 individuated lines represented, compared to the .06, SEM .0274 generalization
and .8, SEM .418 individuated linesin the case with 25 hidden units (shown in figure).

Intheory, only two active hidden unitsare necessary for solvingthistask. Aswasobserved above,
LEABRA will reduce the number of active unitsit usesfrom 6 (25%) to 4 as the hidden unit repre-
sentations develop over learning. If the activity level is set from the start to a reduced level, perfor-
mance is roughly comparable, but there is an apparent improvement in the number of individuated
linesrepresented (see Table 6.3 for results). Since the standard LEABRA network performs so well
on thistask, thereislittle room for improvement for the AE version, which nonethel ess performed
perfectly on thistask (O generalization errors, al 10 individuated lines).

Finally, these results can be compared with those obtained by other researchers on versions of
the lines task. In the algorithm explored by Dayan and Zemel (1995), which enforced a form of
activation competition, they found a failure rate of 39 out of 100 networks for the development of
individual line representations, and arelated algorithm studied by Saund (1995) had afailure rate of
75 out of 100. Thisfurther confirms theideathat the associativelearning in LEABRA, which isnot
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present in either of these activation-competition based networks, is important for thistask.

Cross-Task Generalization

Theresults presented so far support the hypothesisthat the ability to treat novel items systemati-
caly (i.e., generalization) can be improved by devel oping representations that capture the structure
of the environment. In the standard LEABRA algorithm, the associative learning causes the hid-
den unitsto represent the correlational self-structure of the input and output patterns, aswell asthe
input-output correlations. These representationslead to better generalization performance by virtue
of being aligned with the structure of itemsin the environment, as compared to the under-constrained
representationsthat develop in purely error-driven algorithms. Further, theintroduction of error sig-
nals into the learning of the self-structure of the environment through the AE LEABRA agorithm
resulted in even better generalization performance.

This same argument can be extended, perhaps even more significantly, to the case of generaiza
tion across tasks. To the extent that the representations developed in learning one task capture the
genera structureof theenvironment, anovel task operating in thissame environment should be more
easily learned, compared to the case where the representationsare merely sufficiently discriminative
for solvingthe original task, but do not otherwise capture the structure of that environment morethan
is necessary to solve that task. To make this more concrete, take the case of the BP network on the
linestask described above. Whileit isclear that the BP network, as an aggregate system, exhibited
behavior consistent with the regularities of the lines environment, the individual representational el-
ements within the system did not reflect these regularities. Thus, if the system were to learn anovel
task which recombined the basi c features of the environment, thelines, in novel ways, the confound-
ing of multiplelinerepresentationsin the BP network will lead to interference and inability to learn.
On the other hand, given that LEABRA has extracted the line elements successfully, it should be
able to useitsrepresentations to learn any given arbitrary recombination of the lines.

To test thisidea, the hidden unit activities for the LEABRA, BP, and CHL networks were used
as inputs to a second network which was trained to turn on one output unit if any of the linesin
the input was in an odd position (1,3,5), and to turn on the other output unit otherwise. Thisisa
simple classification task, and it can be learned easily in a singlelayer network, which is what was
used. Becausethe BP (and CHL) representati ons confounded several linesin a given representation,
this made the classification task more difficult, and these networks took nearly three times as long
to train (see Figure 6.10). The CHL representations tended to be even less systematic than the BP
ones, resulting in slower and also highly variable training times.

Thistest was replicated in the digit recognition task, by training LEABRA and BP networks on
the original categorization task, and simultaneously training on an additional even-odd categoriza-
tion task, where one unit was activeif the digit was an even number, and another was activeif it was
an odd number. Thisis perhaps a more “naturalistic”’ test of cross-task generalization, asit occurs
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Lines: Cross-Task Generalization
Learning a New Task with Old Hidden Unit Representations
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Figure 6.10: Cross-task generalization of the hidden unit representationsto the odd-even line categorization
task. Hidden unit activitiesfrom the standard 5x5 linetask were used asinput to atwo-layer BP network which
had to categorize the lines as odd or even. The mean training time required (in epochs) is shown (computed
over 10 runs each of 10 different hidden unit patterns). The systematicity of the LEABRA patterns enables
this second task to be learned nearly three times as fast as BP. The CHL patterns resulted in highly variable
training times.

on-line and in the same network, learning arelevant property of digits. In order to test the ability of
representationslearned in the original digit categorization task to transfer to the even-odd task, with-
out these representations themsel ves being influenced by the learning of that task, no error signals
were propagated from the even-odd categorization output layer back to the hidden layer. This can
bedonein LEABRA simply by not including areturn projection from that output layer to the hidden
layer (using only the feed-forward one). In BPR, the connections were explicitly made to not con-
tribute to the derivative of the error with respect to the hidden unit activity state. Thus, the even-odd
task had to be learned using only the weightsfrom the hidden layer to the even-odd output layer.

Figure 6.11 showstheresults of thistest, indicating both learning time on the original digit classi-
fication task, and on the even-odd task, to acriterion of al unitson theright sideof .5 for al training
patterns. LEABRA learned the easier even-odd task before the digit categorization task (though the
error isvery low at the point when it gets the even-odd task right, it can take a while to get to per-
fect performance). BP failed to learn the even-odd task to criterion in 3 out of 5 networks. Given
that it had thoroughly learned the digit classification task by the 200 epoch training cutoff point, it
isunlikely that these 3 networks would have ever learned the even-odd task. However, for graph-
ing purposes, they were scored as 200 epochs (the two that did learn were at 188 and 109 epochs).
Thus, it appears that the representation of the self-structure of an environment in LEABRA can sig-
nificantly facilitate the ability to learn novel tasksin that environment.
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Digits: Cross-Task Generalization
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Figure 6.11: Cross-task generalization of the hidden unit representations to the odd-even digit categoriza-
tiontask. Both tasks were learned simultaneoudly, but only the standard digit categorization task affected the
hidden unit representations. Thus, one layer of adapting weights was available to learn the even-odd task.
LEABRA learnsthiseasily (it isan easier task than the digit categorization), but BP does not. Indeed, 3 out
of 5 BP networkshad failed to learn the even-odd task after training was stopped after 200 epochs (these were
scored as 200, though they probably would never have learned).

Discussion

In combinationwiththeresultson thedigit recognitiontask studiedinthe previouschapter, there-
sults presented above providealargely consistent body of evidencein support of the major hypothe-
ses regarding the characteristics of the LEABRA a gorithmin comparison to standard algorithms. In
addition to the results on generalization performance, which is facilitated by the associative learn-
ing and activity constraintsin LEABRA, thefinding that the representationsdevel oped by LEABRA
provideabetter basisfor [earning novel tasksispotentially important for modelsof human cognition.
Theability to use knowledgeflexibly has obviousadaptivity for animals, and is clearly an important
characteristic of human cognition.



Chapter 7

L earning in Deep Networks

One of the most important devel opmentsin neural networks was the ability to solve problems using
hidden unitswith theerror backpropagation algorithm (Rumelhart et al., 1986a). Thiswasimportant
because, in many cases, difficult problems become easier to solve when multiple stages of represen-
tations are used. Also, it is clear that the brain uses multiple stages of representations in solving
difficult problems like visual object recognition — the neurons in the inferior tempora cortex that
appear to code for objects are many synapses (i.e., “layers’) removed from the direct visua input
(Desimone & Ungerleider, 1989; Van Essen & Maunsell, 1983; Maunsell & Newsome, 1987). Fur-
thermore, these neurons are al so many synapses removed from motor output centers which can use
visua object information to guide action. Thus, a good model of learning in the neocortex should
be capable of solving difficult problems using multiple layers of processing units (ak.a., deep net-
works).

Whilethe error backpropagation algorithm does enabl e the use of multiplelayers of hidden units,
it turns out in practice that these additional hidden layers do not usually improve performance, and
typically lead to longer training times. Asdiscussed in theintroductory chapter, there are reasons to
believethat LEABRA might perform better than standard backpropagationinlearning over multiple
hidden layers. Thisisbecausetheself-organizinglearningin LEABRA will lead to the devel opment
of useful representations even in the absence of useful error signals (e.g., as has been seen on pre-
vioustasks where the error-driven learning component has been removed, and the network showed
substantial, though not entirely successful, learning). This relative independence from error infor-
mation isimportant becauseit is often the case that error signalsare not very informative after they
have been passed back over several hidden layersin adeep network. Thus, aL EABRA network can
develop useful representations even with unreliable error signals, while a purely error-driven algo-
rithm must devel op the representations themselves on the basis of these error signals alone.

The issue of learning in deep networks is explored in this chapter in the context of the “family
trees” problem of Hinton (1986). Thisisamultiple-relation task, as described in the taxonomy of
tasksin Chapter 5, where the objectiveisto answer questions about the rel ationshi psbetween differ-
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a) Two I somor phic Family Trees b) Network with Coding Hidden Layers
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Figure 7.1: Thefamily trees problemand network. In thisnetwork, theindividual family members are repre-
sented both inthe Agent and Patient layers asindividua units. A version with distributed representationswas
also used. The code layers are supposed to develop activity patterns which capture the functiona similarity
of related people, so that the mapping performed by the central association hidden unitsis easier.

ent peoplein two isomorphic families. The reason it requires a deep network is that the people are
represented by orthogonal input patterns, and the network has to discover an internal representation
for them over a set of “encoding” hidden units, which then form the basis for solving the multiple-
relationtask inacentral “ association” hidden layer. Thus, thistask displaysthedesired characteristic
of benefitting from multiplelayers of hidden unit representations.

The Family Trees Problem

Figure 7.1 shows the family tree diagram and the architecture of the network used. There are 12
peopleintwoisomorphicfamilies. Therelationshipsof husband, wife, father, mother, son, daughter,
brother, sister, uncle, aunt, nephew, and niece are represented. Individua training and testing pat-
terns are produced by thetriple of the agent, relationship, and patient based on the family tree (e.g.,
“Charles - Wife - Penny”), resulting in atotal of 104 such patterns. Following Hinton (1986), 100 of
these patterns were used for training, and 4 for testing. The four testing patterns were chosen to be
well spaced and involve central peoplein the trees, since they have the highest density of informa-
tion in the training set. They were: “James - Wife - Vicky”, “Lucia- Father - Roberto”, “Angela -
Brother - Marco”, and “ Christi - Daughter - Jenn.” For most cases, both training and testing involved
the presentation of the agent and relation pattern, as a prompt for the network to produce the corre-
sponding patient pattern. The final section explores the task where any two patterns are presented,
and the network is trained to produce the correct third one.

There were three different types of input patterns used: orthogonal localist (as in Hinton, 1986),
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random distributed, and feature-based. In the orthogonal localist case, there were 24 agent and pa
tient units, one for each person, and 12 relationship units, one for each relationship. In the random
distributed case, there were 25 unitsin the agent, patient, and rel ation layers, with 6 active unitscho-
sen at random to represent each person/relationship, with a maximum overlap of 2 active unitswith
any other pattern. Note that it is not easy to represent multiple people over the same set of units
using a distributed representation, so in this case, the few patterns which require multiple patient
people to be activated (i.e., the multiple aunts and uncles) are encoding using only one of them. In
the feature-based case, there were 5 feature groups, including the age of the person (old, medium,
young), their nationality (English, Italian), their sex (M/F), and which branch of the family tree a
person belonged in (Ieft, middle, or right). These features are like those which the hidden layers are
supposed to discover, and are used toillustrate how easy the mapping task iswhen thesefeatures are
explicitly present in the training environment.

The networks had 60 hidden unitsin the coding and association hidden layers, whereas Hinton
(1986) used only 6 unitsin the coding layers and 12 in the association hidden layer. Whilethe num-
ber of hidden unitsisconsiderably larger thanisnecessary for BP, AP, and CHL tolearn thisproblem,
LEABRA appearsto requireat least 45 unitsto learn the problem duetoits activity constraints. The
larger number of unitswas used to ensure that LEABRA & so had more unitsthan was necessary to
solve the problem. The number of hidden unitsin BP was varied to explore the importance of this
variable on learning time and generalization performance in these other algorithms, as described be-
low. In general, learning speed increased with the number of hidden units, and the relationship with
generalization was unclear. In addition, simpler networks with only the central association hidden
layer were run, in order to determine the effect of the intermediate encoding layers on performance
inthistask. In BR, CHL, and AP networks, a base learning rate of .1 was used (.01 resulted in very
slow learning in thistask). In BP, afaster learning rate of .39, which was found in Chapter 2 to be
optimal for the standard version of this task, was also tested. For CHL, the optimal learning rate
was the .1 value used here. However, a slower .05 learning rate was necessary to learn the random
distributed inputs case for CHL. LEABRA networks always used the standard .01 learning rate. In
LEABRA networks with the orthogonal localist inputs, the learning threshold for the input/output
layers was set to .02 instead of the standard .1, asis discussed in the Appendix for layers with very
sparseactivity levels. Intherandom distributedinputscase, theweighting factor for theinformation-
preservation component of the MaxIn associative learning rule was set to .1 instead of the standard
.25, for reasons that are discussed below. All other parameters were standard.

Feature-Based Inputs and Task Difficulty

Thefeature-based input patternsprovideaway of determining how difficult theinput/output map-
ping task is even when the representations are systematic. Since this establishes an important base-
line level of performance for thistask, it will be described first. Because the input/output patterns
in this case reflect the kinds of systematic representations over the encoding hidden layers that are
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Figure 7.2: a) Learning speed and b) Generalization using feature-based inputs and a single hidden layer.
Lr .39isBPwith the “optima” learning rate of .39. 33% is LEABRA with 33% hidden layer activity level
instead of the standard 25%, which improves generalization significantly.

supposed to develop with trainingin the standard model, the encoding hidden layerswere not used in
thiscase. Thus, the mapping was performed by a single hidden layer. Based on the resultsfor train-
ing time and generalization performance in this version of the task (shown in Figure 7.2), it does
not appear that learning the input/output mapping component of thistask is very difficult, and once
learned, generalization can be perfect (at least in the BP networks). This makes sense, since there
are not that many people or relationshipsto encode, and it is a very systematic mapping using these
features. Further, note that CHL learns faster than BP for the same learning rate in this version of
the task, but thiswill not remain true for the deep networks.

Perhaps the most i nteresting aspect of theresultsfor thissimplified version of thetask istherela-
tively poor generalization performance of LEABRA. Thiswill be discussed further in the context of
the generalization results on the other versions of the task below. However, it should be noted that
thereis a possible explanation for this result in terms of the specific properties of the feature-based
inputs. This explanation has to do with the generally poor performance of LEABRA when the in-
put/output patterns have a higher activity level (i.e., above 30%). In thistask, 40% of the agent and
patient units are active on each pattern. A similar problem was apparent in a version of the com-
binatorial environment task studied in the previous chapter which had 40% activity levels, and has
also been observed on other tasks not reported in this thesis. For more details see the Appendix.
One hypothesis about how to solve this problem is to try to more closely match the activity levels
of the input/output and hidden layers. Thus, the 33% hidden layer activity condition shown in the
figure was run, which did improve generalization, but only to the level of CHL. In previous tasks,
LEABRA hasperformed aswell if not better than BP. Thus, it is possiblethat thereisamore general
problem with LEABRA in generalization on thistype of multiple-relation task, aswill be discussed
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Speed of Learning in Family Trees
Orthogonal, L ocalist Inputs, 2 Families, 60 Hidden Units
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Figure 7.3: Learning speed for family trees task with orthogonal localist inputs. For BP, AP, and CHL, the
fast learning rate of .1 was used, while LEABRA used the standard .01 learning rate. The BP Lr .39 case was
BP with 60 hidden units at the optimal learning rate (.39) for thistask as foundin Chapter 2. Notethat .1 was
the optimal learning rate for CHL. as=.2 is LEABRA with associative learning strength of .2, and No Asis
LEABRA without associative learning (ReBel + CHL).

bel ow.

Orthogonal, Localist Inputs and Symmetry

Theimportant challenge in the deep network version of thistask isthe development of encoding
representationsof orthogonal, localist inputsthat capture the sameinformation used inthesimplified
feature-based version of the task. The particular choice of the orthogonal localist input representa-
tionstransforms this otherwise simple task into a very difficult one. The original resultsreported by
Hinton (1986) required around 1,500 epochs of training in a feedforward backpropagation network
with optimized |earning rate and momentum parameters. | was ableto replicatethedifficulty of train-
ing these networksusing the same numbers of hidden unitsused by Hinton (1986), asisshowninthe
results presented |ater. However, when using alarger number of units with the on-line (per pattern)
form of weight update, which has been used in all of the previous simulations reported in this the-
sis, learning time decreased by more than an order of magnitude. The reason for this improvement
with more units and on-line learning is probably due to the breaking of the symmetry of the error
signalsin thistask as a result of the random variation in the order of pattern presentation, and the
larger random sample of unit weights. Phenomenologically, in batch mode learning, thereisalong,
flat plateau in the error surface, thetraversal of which consumes most of thetrainingtime. Inon-line
learning, this plateau is diminished.

However, even in the on-line mode, the symmetry of the error signals contributes to the diffi-
culty of learning this problem. This symmetry is due to the completely orthogonal, localist output
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units, which are sparsely and relatively uniformly activated over the training set. Because the pre-
dictability of the output units depends on an interaction between the relationship and agent inputs,
theinput-output mapping isnot predicted by either of themindividually, resultingin aninitialy very
ambiguous and symmetric pattern of up/down error signalsfor each output over thetraining set. Un-
til the interaction between the agent and relationship inputs begins to be encoded, the error signals
lead to this up/down “thrashing” behavior. Thiswould predict that the use of random distributed
patterns would hel p to break the symmetry through the random overlaps between different patterns,
and should lead to even faster training times, asis explored bel ow.

Thus, rather than the mapping task itself, it is the ambiguity and symmetry of the error signals
in the orthogonal localist version that givesthistask its difficulty. This source of difficulty interacts
with the depth of the network, which compounds the problems with the error signals. Thus, both
network depth and the ambiguity and symmetry of the error signals serve as a proxiesfor the prob-
lems with purely error driven learning in more difficult tasks, in even deeper networks. LEABRA
should avoid these problems to some extent by devel oping representationsindependent of the error
signals by virtue of its self-organizing learning component. Figure 7.3 showsthat, as hypothesi zed,
LEABRA learns thistask significantly faster than any of the purely error-driven algorithms. Note
that thisis the case despite the fact that LEABRA is using a learning rate an order of magnitude
smaller than the other algorithms. If BPisrunwitha.01 learning rate, it takes 548, SEM 20.6 epochs
to learn. Thus, whereas the purely error-driven agorithms have to be pushed to somewhat extreme
learning rates, which will have negative consequences (e.g., for interference with existing knowl-
edge in the network, McClelland et a., 1995), LEABRA naturally learns this task rapidly. Several
other important results are evident in thisfigure:

MaxIn associative learning improves learning speed: As was the case with the generalization
results from the other tasks, the relatively fast learning of LEABRA is at least partially dependent
on the MaxIn associative learning, since LEABRA without this (No Asin the figure) learns more
slowly, and increasing the strength of the associative component to .2 (over the default of .1) results
in slightly faster learning. Thisis consistent with the ideathat the self-organizing learning of useful
representations contributes to LEABRA'’s better performance in deep networks. Note that the in-
crease in learning speed associated with MaxIn is not simply due to alarger effective learning rate,
since increasing the learning rate (over the standard .01 for the above results) actually led to slower
learning (Irate of .015: 55.8, SEM 4.99 epochs, Irate of .02: 76.2, SEM 9.07 epochs, compared to
35.6, SEM 2.51 for Irate .01).

ReBel activation constraintsimprove learning speed: If the No As case (ReBel + CHL) is com-
pared to the CHL condition, it isclear that the ReBel activation constraints are making a large con-
tribution to the learning speed in LEABRA. Thiswas a so the case for generalization performance
in the other tasks studied, and is probably due to the specialization of representations (entropy re-
duction) as aresult of the competition. The resulting differentiation of hidden unit representations
breaks the symmetry of the error signals. Further, it is possible that the damping effect of ReBel
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makes a deep network somehow more “stable” than an unconstrained network would be, and that
this stability contributes to better learning (e.g., by analogy to the balancing of poles presented in
the introduction).

Interactivity impairs learning speed: The relationship between BP, AP, and CHL in this task,
whichissimilar to that found in the other tasksin generalization performance, indicatesthat the gra-
dient of increasing levels of interactivity over these algorithms has a concomitant effect on learning
speed. Thus, BP is the fastest, with AP performing intermediate between it and CHL, which isthe
slowest. This pattern is the opposite of what was observed in terms of learning speed in the pre-
viously studied tasks (though learning speed was not the focus in these cases, and was not thus re-
ported), and importantly on thefeature-based version of thetask asreported above. See Chapter 2 for
adiscussion of thisissueand some detailed learning rate resultsfor shallow networks. The detrimen-
tal effect of interactivity can potentialy be explained in terms of therelative instability of these net-
works— an interactive network with multiple hidden layersis even more sensitive (i.e., susceptible
to butterfly-effect kinds of nonlinearities) than a shallow interactive network, since the opportunity
for non-linear interactionsis greater as the number of layersincrease. Thus, extratraining timeis
necessary to form the stable attractors necessary for learning the training patterns. This explanation
makes an interesting prediction — if the CHL network is spending extra training time stamping out
spurious attractors that interfere with the reliable learning of the training items, this might actually
result in relatively better generalization performance. This prediction istested below.

Salf-organizing learning only (No Err) cannot solvethistask: Aswasthe case on previoustasks,
LEABRA without the error-driven CHL learning component cannot solvethefamily treestask. The
initial sum-squared-error (SSE) was 181, and the network got as low as 63, but, as was the case pre-
viously, the number of patternslearned to criterion revealed |ess complete learning, with 70 patterns
incorrect out of 100 being the best performance. As before, this confirms the importance of error-
driven learning for being able to actually learn tasks.

GausSgimproveslearning speed: (not showninfigure) The use of the GausSig likelihood func-
tion (see Chapter 4) was important for the fast learning observed in LEABRA. The aboveresultsare
al with GausSig and the standard k,,.,;s parameter of 2. When the sigmoidal likelihood function
was used instead, learning speed decreased to 354, SEM 248 epochs (compared to 35.6, SEM 2.51
reported above). On the other hand, when &,,,,ss was increased to its maximal value of 4, learn-
ing speed increased to only 26.4, SEM 2.22 epochs. Thus, while other tasks showed only moderate
improvements associated with using the GausSig function, this task showed a significant one. This
may indicate that GausSig is more important for deep networks, where there are multiple hidden
layers with more graded activity values than the simple binary input states. The effects of GausSig
compared to the sigmoid are most apparent with intermediate sending activation val ues.
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L ear ning Curve Comparison
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Figure 7.4: Learning curvefrom asingletraining run of BPwith learning rate of .39, and standard LEABRA,
using orthogonal localist inputsand 60 hidden units. BPhasan initial plateau dueto symmetry of error signals,
while LEABRA learns rapidly from the start.

Factors Contributing to Fast Learning in LEABRA

The learning speed advantage of LEABRA is hypothesized to derive from its ability to develop
useful representations early on in learning as a result of its self-organizing learning component.
Aside from the fast overal learning speed and other results presented above, two additional forms
of evidence are consistent with this hypothesis. One is the shape of the learning curves over time,
and the other isa cluster analysis of the hidden unit representations over time.

Figure 7.4 shows learning curves for BP and LEABRA, indicating that, as described above, BP
has an initia plateau where it is getting essentially nothing correct, and the error signals are not re-
sulting in the development of useful representations. In contrast, LEABRA shows rapid learning
from the very start. Thiscan be attributed to the self-organizing devel opment of useful representa-
tions independent of the otherwise not very effective error signals. In addition, it should be noted
that there is a bootstrapping effect here, since once somewhat useful representations have been de-
veloped (i.e., representationsthat enable partially correct performance), this causesthe error signals
to be much more informative, since they lose their symmetry and begin to provide a discriminative
signal for learning.

A more detailed view of the differences between learning in BP and LEABRA can be obtained
by performing acluster analysisof the hidden unit similarity structure (over thecentral hidden layer)
asthe network learns. Thisanalysisisbased on the OR (max) of the hidden unit activity values over
all training patterns in which the given agent (as indicated in the plot) appeared. Note that one of
the testing patterns has Christi as an agent, and is thus missing from the training set over which the
cluster plotswere generated, resulting in the odd resultsfor this case. Figure 7.5 shows cluster plots
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for 4 different pointsin training for the BP network whose learning curve was plotted in Figure 7.4,
and Figure 7.6 shows cluster plots for the LEABRA network (note the epoch when each plot was
taken differs between the two figures due to differences in rate of representation devel opment).

Perhaps the most obvious difference between the two algorithmsis that the BP network shows
agradual development of differentiation, starting from almost no structure at 5 epochs, while the
LEABRA network has developed clearly differentiated hidden unit representations as early as 5
epochs. Thisearly differentiationis exactly what would be expected from the self-organizing learn-
ing (activity competition and Hebbian associative learning) in LEABRA, and is consistent with the
ideathat this plays an important rolein rapid learning in deep networks.

A more detailed analysis of the development of structure in these cluster plotsis possible. One
interesting result isthat the final clustersfor both BP and LEABRA are remarkably similar — both
contain a cluster for 2nd and 3rd generation people (with the exception of the“outsiders’ in the 2nd
generation), within which the English and Italians are divided, and the terminal clusters represent
sibling pairs. The 1st generation arein marriage pairs(except for Christi and Andy), and theoutsiders
are either grouped by nationality or homologous position. Elements of this final organization are
evident early oninboth BP and LEABRA clusters— but LEABRA exhibitsthisearly structurewith
much greater differentiation between the different clusters than the BP network. The final level of
differentiationissimilar for both BP and LEABRA.

Generalization and Parameters Affecting It

One of the manipulations that was necessary to make any of the learning algorithms learn this
task in arelatively small number of epochs (order 100’ sinstead of order 1000’s) was to increase the
number of hidden units in the coding and association hidden layers beyond the 6 (coding) and 12
(association) units used by Hinton (1986). However, this increased number of units might impair
the generalization performance in thistask, since the original motivation for using so few unitswas
to introduce a bottleneck in the coding layers that forced the network to encode the items efficiently
and systematically, leading (in theory) to better generalization. Thereliance on such abottleneck for
good generalization performance is not particularly biologically plausible, given the vast numbers
of neuronsin the neocortex. Thus, it is of interest to determine the effects of hidden layer size on
generaization (and learning speed) performance.

Figure 7.7 showsthat, contrary to the expectation, there were no apparent effects of creating abot-
tleneck in the coding layers on generalization performance. However, there were dramatic effects of
the bottleneck on learning speed, with the 6 coding, 12 association case used by Hinton (1986) (6/12
in thefigure) learning an order of magnitude slower than the case with 60 hidden units. Thus, there
is no apparent tradeoff between learning speed and generalization. Nevertheless, the generalization
performanceisnot very impressive. WhileHinton (1986) reported successful generalization on 3 out
of the 4 testing items (generalization error of .25) in the one network hetested, | know of no existing
systematic study of generalization ratesin thistask. Also, | have found that by including in the test-
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a) Speed of Learningin BP by Layer Size b) Generalization in BP by Layer Size
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Figure 7.7: Effect of number of hidden unitson a) Learning speed and b) Generalization performancein BP,
The 6/12 case is 6 coding and 12 association hidden units, as used in the origina Hinton, 1986 model. The
remainder are the numbers of both coding and association hidden units. Learning rate was .1 in all cases, as
6/12 case was not able to learn to criterion at the .39 “optimal” learning rate.

ing set different numbersof triplesinvolving the rel ations aunt, uncle, niece and nephew, which have
only one corresponding patient per family, the generdization score can be improved considerably.
However, thisis not avery good test of abstract generalization, since it can be solved by the simple
memorization of therelation withits corresponding patient, and requires only the disambiguating bit
of whichfamily itis. Thus, thetesting set used for these resultshas only central peoplewhich partic-
ipate in many different rel ationshipswith different people, for which atruly systematic and abstract
encoding must be developed in order to generalize properly. The resultsfrom the feature-based in-
puts show that if the network was actually producing systematic representations over the encoding
units, generalization should be perfect with the same training and testing items used here.

One other potentially important difference between the networksused by Hinton (1986) and those
used here is form of weight updating— Hinton (1986) used batch mode, while al the networksre-
ported here use on-line learning. It is possible that networks trained with batch mode will exhibit
better generalization by virtue of each weight update reflecting the entire error gradient over all pat-
terns, instead of just thelocal gradient for one pattern. Asdiscussed above, the use of on-linelearning
resultsin faster learning than batch mode, as aresult of the symmetry-breaking influence of the ran-
dom order of pattern-wise weight updates. Thus, there may be a cost in generalization associated
with thisfaster learning. To test this possiblity, and to replicate most closely the conditionsused by
Hinton (1986), networkswith 6 encoding and 12 central hidden units were trained with batch mode
learning. A schedulefor learning rate and momentum parameters (suggested by G. E. Hinton, per-
sonal communication) had to be used in order to obtain reliable convergence in batch mode. This
was .0025 learning rate, .5 momentum for thefirst 20 epochs, followed by .01 learning rate, .95 mo-
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a)  Generalizationin BPusingBatchMode ~ b) Generalization in BP using Delta-Bar-Delta

Family Trees, 6 Code and 12 Hidden units, lear ning schedule Family Trees, 6 Code and 12 Hidden units

3 0.8 3 0.8
e 07 e 07
c

S 06 O 0.6
¢

= 05 05
w

g 0.4 0.4
"g 03 f 03 f
o

© 02 0.2
o

o
[
o
[

0.0
none sO005 s001 s002 005 0005 €001 €002 005 none sO005 s001 s002 005 €0005 €001 €002 005
Weight Decay Typeand Level Weight Decay Typeand Level

Figure 7.8: Generalization performance for batch mode learning, using a) a learning rate schedule and b)
delta-bar-deltalearning rate adaptation. sweight decay issimpleweight decay (SWD), and e weight decay is
weight elimination (WED). Results do not represent an improvement over the on-line case.

mentum for the remainder of learning. Asan additional test, delta-bar-deltalearning rate adaptation,
which involvesthe use of separate learning rate parameters for each connection (Jacobs, 1987), was
also used to train batch-mode networks, with a learning rate of .01 and no momentum. For both
types of batch-mode learning, a range of weight decay strenghts were used for both simple weight
decay (SWD) and weight-eliminationweight decay (WED). Theresultsare shownin Figure 7.8, and
indicate that the relatively poor generalization observed previously in the on-line case is aso char-
acteristic of batch mode learning on thistask. Further, no amount or type of weight decay appeared
to result in ageneralization improvement.

Thegeneralization performance of thevariousother agorithms, al with 60 hidden units, isshown
in Figure 7.9. As was the case with the BP networks, there is no clearly interpretable pattern of
resultsthat emerges from thisfigure. Note that the .5 generalization of the BP network is probably a
fluke, since the version with the faster learning rate, which did not have asystematic effect on other
networkswith different numbers of hidden units, generalized worse. Perhapsthe most notabl e result
isthat, in contrast to all the other tasks studied, the CHL networks performed at roughly the same
level as the other algorithms. This relative improvement may be due to the CHL network having
eliminated many of the potential spuriousattractorsover learning, dueto theincreased sensitivity of
a deep interactive network, as suggested above. Also, as was the case in the feature-based version,
LEABRA appeared to generalize worse than the other a gorithms, aswill be discussed further bel ow.
Finally, thereisaweak indication that associative learning improves generalization performancein
LEABRA, sincethe case with more associativelearning (.2) generalized dlightly better, and the case
without any associativelearning at all (No As) generalized slightly worse. However, this difference
is clearly not very substantial.
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Figure 7.9: Generdization performance for various agorithms tested. The agorithms are as described in
Figure7.3.

One possible explanation for the relatively poor generalization performance in the family trees
task isthat there are not enough training itemsto establish abasisfor generalization. Thisideacan be
tested by increasing the number of familiesin thetraining set. Thus, up to two additional isomorphic
family trees (aGerman and a Japanese family) were created, and represented by simply introducing
morelocalist unitsin theinput/output layers, resulting in patternsfor 3 and 4 total families. For both
the 3 and 4 family sets, eight (instead of the 4 used in the 2 family version) patterns were drawn
at random for the testing set, until the entire group of 8 patterns did not contain a single niece or
nephew pattern, for thereasons described above. BP networkswerethentrained onthe3 and 4 family
versions, and generalization measured on the corresponding testing set. The generalization results,
shown in Figure 7.10, indicate that while there is some improvement with increasing numbers of
families, thisimprovement is not dramatic — the absolutelevel of generalization performance even
with 4 families is still considerably worse than the perfect performance obtained with the feature-
based version of thistask. Thus, the considerable additional computational expense of running the
interactive algorithms on these larger family sizes did not seem justified, and was not performed.

Finally, the effect of weight decay on generalization in BP with different numbers of hidden units
was assessed. Figure 7.11 showsthat, whileit did have a positive effect in the large (60 hidden unit)
network, it did not improve performanceinthe small 6/12 hidden unit network used by Hinton (1986)
(as was observed in the batch mode results presented earlier). Also, using alarger decay parameter
(.005 instead of .002) prevented the networksfrom learning at al. The use of weight decay, whichis
an adapting constraint, reliably slowed the learning speed of the networks (68.2, SEM 3.23 without
weight decay, 86.4, SEM 9.91 with .002 weight decay).

It seems safe to conclude, based on these results, that none of the networks does a very good job
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Figure 7.10: Effects of the number of families (training set size) on generalization performance in BP. While
there appears to be some improvement in generalization for the 3 and 4 family sets, it isnot clearly monoton-
ically increasing with the number of families, and does not represent a substantial absolute improvement.
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Figure7.11: Theeffects of weight decay on generalization performancein BP. +W D .002 isthe previouscon-
dition plus .002 weight elimination. Note that .005 weight elimination prevented the networks from reaching
criterionontrainingin all cases. BP 60 isthe standard network with 60 hidden units. 6/12isthe origina small
6 coding, 12 association hidden units.
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at amore thoroughtest of systematic generalization than the one performed by Hinton (1986). Inthe
case of LEABRA, it is possiblethat the multiple-rel ation aspect of thistask contributed to impaired
generalization, consideringitsrelatively poor performance even inthe simplified feature-based input
task as reported above (compared to its relative generalization advantage on other tasks studied in
previous chapters). It is possiblethat the modulation of the agent/patient mapping that is supposed
to take place viathe relationship inputsrequires that they have amore multiplicative, rather than ad-
ditive, effect. Since the same input pattern must enter into several different relationships depending
on the state of the relationship input, the mere addition of thisinput into the overall net input seems
ill suited for its modulatory role. Instead, a more multiplicative effect, like that performed by the
gating unit in the mixtures of experts framework (e.g. Jacobs et al., 1991) might work better.

Rather than simply viewing the relatively poor generalization of LEABRA and the other algo-
rithms on thistask as afailure, it can instead provide computational insightswhich might be useful
in understanding why the brain is structured in the way it is (c.f. McClelland et al., 1995 for how
the “ catastrophicinterference” failure of neural networksled to an understanding about the possible
division of labor between the hippocampus and neocortex in learning and memory). Thus, itisin-
teresting to speculate that the neocortex might have developed a speciaization for contextualizing
information in a manner similar to that required by multiple-relation tasks like family trees. There
is evidence that the prefrontal cortex (PFC) is responsiblefor representing the context necessary to
disambiguate the meanings of ambiguouswords, for example, and its hypothesized role in control-
ling the activities of neurons in posterior cortical areas is similar to that of the relationship inputs
inthistask (Cohen & O’ Reilly, 1996; Cohen & Servan-Schreiber, 1992; Cohen, Dunbar, & McCle-
land, 1990). It is possiblethat this specialization existsin part to provide amore suitable mechanism
for selecting among different possible input/output mappings in a way that generalizes better than
simple homogeneous networks like those tested here. At this point, this remains a topic for future
inquiry.

Random Distributed Input Representations

As mentioned above, one important consequence of using random distributed input patternsin-
stead of the orthogonal, localist onesis that their random overlap breaks the symmetry of error sig-
nals during training, and thus should accel erate the rate of learning for purely error-driven learning
algorithms. However, thisrandom overlap could conceivably makethetask moredifficult, asthenet-
work aso hasto learn to ignore thisrandom overlap and encodeinputs according to their systematic
relationships. The results for this case are shown in Figure 7.12, which confirms that the net effect
isan increase in learning speed for the purely error-driven agorithms. However, these algorithms
consistently generalized worsein thiscase than in the orthogonal localist one. In contrast to this pat-
tern of results, LEABRA learned more slowly, but retained roughly the same level of generalization
performance compared to the orthogonal localist case.

One interpretation of this pattern of resultsis that the purely error-driven agorithms (BF, AR,
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a)  Speed of Learning with Distributed Inputs  b)  Generalization with Distributed Inputs

Family Trees, 2 Families, 60 Hidden Units Family Trees, 2 Families, 60 Hidden Units

250

200

150 -

100

Epochsto Criterion

50 -

BP AP CHL LEABRA NoAs AE ' BP AP CHL LEABRA NoAs AE
Algorithm Algorithm

Figure 7.12: a) Learning speed and b) Generalization performance using random, distributed input patterns
instead of thelocal, orthogonal ones. Algorithmsare asin previousfigures, with the addition of AE whichis
the LEABRA auto-associator modd .

CHL) are representing items at least somewhat according to their random similarity, but that this
provides a sufficient basis to learn the mapping task. However, since these representations are not
terribly systematic, generalization suffers. In contrast, it appearsthat LEABRA did not represent the
patterns as much according to their random similarity (given itsgeneralization performance), but the
process of developing more systematic representations in the face of the random overlap required
more training time. The role of associative learning appears to be quite important in this process,
since without it (No Asin thefigure), the network took significantly longer to learn, and generalized
worse. Associativelearning islikely forming associations based on the similarity structure over the
entire input/output pattern ensemble, as described previously. By comparing the No As (ReBdl +
CHL) case with the CHL network in this random distributed version vs the orthogonal localist one,
it appears that the ReBel activation constraints are less advantageous in this case. This could be
due to the reduced representational capacity of a KWTA system compared to one without activity
constraints.

Thistask providesan interestinginsightintothe tradeoff between theinformation preserving soft-
competitive learning (SCL) and the entropy reducing zero-sum Hebbian (ZSH) components of the
MaxIn learning rule. Because the input and output patterns are random, it seems reasonable that
it might be better to reduce the drive to preserve information about them, and emphasize entropy
reduction more. Indeed, this appearsto be the case, since LEABRA learned this task better with a
weighting term of .1 on the SCL MaxIn component than with the standard .25 value (which had an
average learning speed of 146 epochs compared to 96 for the .1 value shown in the figure).

Finally, the figure shows results from the auto-encoder version of LEABRA, which was not run
in the orthogonal localist case because thereisno real structureto be represented in individual input
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a)  Speed of Learning with OneHidden Layer D)  Generalization with One Hidden Layer
Family Trees, Orthogonal Localist, 2 Families, 60 Hidden Units

Family Trees, Orthogonal Localist, 2 Families, 60 Hidden Units

100

0 il 09
80 |

@
T

70

3
T

60 -

o
T

50 -
40 -

~
T

30 -

Epochsto Criterion
)

20 -

Proportion Error on Test Set
o o o o o o o
N (5]

10

o
=

0

o
o

BP Lr.39 12Hu CHL  LEABRA BP Lr .39 12Hu CHL  LEABRA
Algorithm Algorithm

Figure 7.13: a) Learning speed and b) Generalization using orthogonal, localist inputs and a single hidden
layer with 60 units (unless otherwise noted). Lr .39 isBPwith theoptimal .39 learningrate. 12 Hu isBPwith
12 hidden unitsand the .39 learning rate.

patterns. However, in this case, there is no systematic rel ationship between the input pattern struc-
ture and the mapping task, which is probably why AE LEABRA did not generalize better thanit did.
Nevertheless, itisinterestingthat it did have the fastest |earning time of any of the algorithmstested.
Thus, the additional error-driven pressure to represent the input/output patterns probably caused the
representations to develop more rapidly, but at the cost of their systematicity with respect to thein-
put/output mapping task.

Family Trees in Shallow Networks

The results from the feature-based inputs version of this task showed that all algorithms could
learn the basic mapping task in around 20 epochs in a network with one hidden layer (no encoding
layers). In this section, the extent to which a single hidden layer is sufficient to learn the task even
with the orthogonal input representation is explored. If it is the case that the extra encoding layers
are truly facilitating the learning of thistask, one might expect that a network with a single hidden
layer would learn more slowly than one with the encoding layers. On the other hand, since purely
error-driven algorithms typically learn more slowly in deep networks, one might expect that these
algorithmswill learn faster with asingle hidden layer. In any case, it seems clear that generalization
should be better with the use of the encoding hidden layers.

Theresults, shownin Figure 7.13, indicate that the additiona encoding layersare largely respon-
sible for the slow learning of thistask, even with the orthogonal input representation. Every algo-
rithm, with the exception of BPwith theslower learning rate, learned at | east twice asfast asthe deep
network version. This can be attributed to the problems associated with passing error signals back
through multiplehidden layers, as described earlier. Thisfigure aso showsthat, as expected, gener-
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a)  Speed of Learning with OneHidden Layer D)  Generalization with One Hidden Layer
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Figure 7.14: a) Learning speed and b) Generaization using random, distributed inputs and a single hidden
layer. Lr .39 is BP with the optimal .39 learning rate. 18 Hu is BP with 18 hidden units and the .1 learning
rate (could not learn with .39 learning rate).

alization suffers dramatically with only one hidden layer. However, it is interesting to note that the
12 hidden unit BP network and the LEABRA network were both capabl e of getting one of the four
testing questionsright in one out of the five networks (note that this testing pattern was produced
correctly over multiple testing trials, so it was not just a random occurrence). Thus, at least some
rudimentary level of generalization is possible even with only one hidden layer. It islikely that the
bottleneck of 12 unitswasimportant for the BP network to devel op a somewhat systematic encoding
of the patterns over the one hidden layer, sincethislevel of generalization was also observed for the
18 hidden unit case, but not for 24, 36, 50 or 60 hidden units.

Given the rapid learning speeds for the orthogonal localist inputs with one hidden layer, it is of
interest to see if the random distributed inputs present a greater or lesser challenge in this context.
Certainly, one would expect that generalization would be more difficult given that the random over-
lap will be hard to overcome with only one hiddenlayer. Theresults, shown in Figure 7.14, indicate
that learning speedswere even faster in thiscase for the purely error-driven algorithms, except when
therewas abottleneck (the 18 hidden unit case). Thisparallelstheincreased |earning speed observed
with random distributed inputs in the deep network, and is likely occurring for the same reason —
the breaking of error symmetry dueto therandom pattern overlaps. In contrast with the purely error-
driven algorithms, LEABRA learned almost an order of magnitude slower than with the orthogonal
localist inputs. Indeed, in this case, LEABRA actually learned more slowly in the shallow network
than in the deep one.

The generalization picture, also shownin Figure 7.14, is pretty much as expected, except for the
remarkable results for LEABRA. Thus, both BP and CHL do not generalize at al, even with the
bottleneck in BP. LEABRA, however, reliably generalized to one out of the 4 test cases in 4 out of
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the 5 networks tested. Given that it was the same test case that was correct in all four networks, it
appears that there is some aspect of the random correl ations among the distributed patterns that led
to correct performance on thistest case. Nevertheless, LEABRA did generalize in the orthogonal,
localist case, where there were no such random correlations, soit is possiblethat the contribution of
thisfortuitous correlationis fairly minor, but sufficient.

Flexible Access to Knowledge in I nteractive Networks

If thefamily treestask isto betakenliterally asan example of how humans can encode knowledge
about the semantic propertiesof other people (in thiscase, their relationship semantics), it should be
the case that this knowledge can be learned and accessed in a more flexible manner than that used
in the original version of thistask. In generd, it should be possible to produce the third component
of the agent-rel ationship-patient triple given any two. Thus, in addition to the standard form of this
task, it should be possibleto present two people to the network and have it produce the relationship
that exists between these people, and similarly for it to fill in the agent slot in response to a patient
and a relationship input. Of course, in order to do this, an interactive network with bidirectional
connectivity is required, so that information presented on any of the input/output layers can flow in
the appropriate direction to inform the answer produced at the other layer.

To test how well the networks perform on atask of this nature, the interactive algorithms (CHL,
AP and LEABRA) weretrained on aversion of thefamily trees task with orthogonal, localist inputs
that were presented to any two out of the three input layers, and the target was the appropriate re-
sponse on the third layer. While the mapping task is unambiguous for both the agent+relationship
= patient and agent+patient = relationship cases, it is not for the patient+rel ationship = agent case,
since, for example, the answer to the question “Jenn is the daughter of whom?’ has two answers
(her father and her mother). Thus, in order to maintain the one-to-one nature of thetask (i.e., so that
distributed representations could be used), and still disambiguate which answer was the correct one,
a‘“sex” input/output unit was introduced for both the agent and patient layers. Thus, when probing
for an agent, the sex of the desired agent was activated (e.g., femae for mother, male for father in
the above example). To simplify thetraining, the agent-sex and patient-sex unitswere treated as ad-
ditional layers connected in the same manner as the agent and patient layers, and the network was
simply asked to produce the correct answer on one out of the 5 possibleinput/output layers (chosen
at random on each training trial) given inputs on the remaining four. Thus, thisis a“rotating ques-
tion” version of the task. An epoch was counted as one pass through the 100 training items, with the
guestion asked of each item selected at random for that item. This means that only one out of the
5 possible permutations of questions for each item were trained in each epoch. The training crite-
rion was still the standard 95% correct for al itemsin a given epoch. Testing was with the same 4
test cases used previously, but in all three magjor directions of interest (agent+relationship = patient,
agent+patient = relationship, and patient+rel ationship = agent), for atotal of 12 test cases.

Theresultsfor learning speed and generalization in thisinteractive, rotating question version of
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a) Speed of Learning in Interactive Task b) Generalization in I nteractive Task
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Figure 7.15: a) Learning speed and b) Generalization in an interactive version of the family trees task where
the inputsand questions are rotated on each trial. No AsisLEABRA without associative learning, and as=.2
iswith .2 associative learning.

the task are shown in Figure 7.15. Notably absent from this figure are results from the AP ago-
rithm, for reasonsthat are described below. The pattern of resultsfor CHL and LEABRA arelargely
as before, with some level of slowing due to the fact that only 1/5 of the total item by question per-
mutations were presented in a given epoch. Giventhisrelatively sparselevel of sampling, itisclear
that there was some transfer of the learning that took place on a given item to other instances of that
item where different questions were asked. The generalization performance was essentially identi-
cal acrossthe different algorithms, and not substantially different from generalization levelson other
versions of thetask. In sum, theseresultsindicate that interactive networks can be trained to provide
flexible access to encoded knowledge, and thus provide at |east a starting point for thinking about
how the same feat might be accomplished in humans. Further, they provide a concrete justification
for the use of interactive networks, which have been shown to otherwiseincur generalization penal-
ties on other tasks.

Perhaps the most surprising result from this task was the complete failure to successfully train
the interactive Almeida-Pineda (AP) backpropagation algorithm on this task. For none of a wide
range of learning rates was any sign of learning progress evident over 1000 epochs of training (see
Figure 7.16 for sample learning curves). These networks were identical to the AP networks that
learned the standard uni-directional version of thistask as described above, with the simple addition
of full bidirectional connectivity with the input/output layers, and the disambiguating “sex” layers.
Themost likely reason for thisfailureisthat thelearningin onedirection interfered withthe learning
in other directions, whichisin contrast to the transfer evident with CHL and LEABRA.. A significant
difference between AP and both CHL and LEABRA isthat theselatter algorithmsexplicitly preserve
thesymmetry of thereciprocal weights, while AP doesnot. Thislack of symmetry preservationin AP
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AP Failureto Learn Interactive Task
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Figure 7.16: Learning curves for AP agorithmin an interactive version of the family trees task where the
inputs and questions are rotated on each trial. Networks were unable to learn the task using a wide range of
learning rates (.1, .001 shown, .02 also tried with similar results).

was seen to be an important correlate of its relatively better generalization performance compared
to CHL, sinceit results in a less interactive network. The results on this task show that thereis a
cost associated with thislack of symmetry, which comes in the inability to learn to flexibly access
knowledgein atask such as thisone.

Comparison with Other Techniques

Finally, it should be noted that at least one other approach has been taken to speeding up learn-
ing in deep networks. Schraudolph and Sejnowski (1996) have developed a technique for setting
the learning rates for standard feedforward backpropagation networks that results in faster learning
on the family treestask. This technique, called tempering, sets the learning rate for each layer in
the network so as to make the change in activation state that resultsfrom changing the weights pro-
portional to the same constant throughout the network. Further, a*“shunting” technique was used to
allow learning of the biasweightsto rapidly get rid of any constant biasin the error term. Inthe appli-
cation of thisideato the family trees network, the scaling factorsfor thelocal learning rateswere 1.5,
.25, .1, and .05 respectively for layersincreasingly far away from the output layer. The result was a
substantial increase in the learning speed in this problem, from 2,438 epochs for batch mode learn-
ing with momentum to 142 epochs. Further, when the delta-bar-del taadaptivelearning rate function
was used in addition, networkslearned in asfast as61.7 epochs. Thisisstill nearly twice as slow as
the fastest LEABRA results (33 epochs), but they used the origina 6/12 hidden unit configuration,
so one might imagine that they could speed up learning further by using more hidden units. When
60 hidden unitswere used with simple on-linelearning in BP, learning time was roughly equivalent
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to their results (68 epochs). They did not present any generalization results. One general problem
with thistechniqueisthat it would not work well in an interactive context likethe onejust described,
sinceit requiresthat the learning rates be scaled as afunction of the distance from the output. In the
interactive problem, and presumably in the brain, the source of error signals can vary considerably,
and the need to readjust the learning rates based on this variation might be problematic.
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Chapter 8

Conclusions and Future Directions

The primary focus of thework presented in thisthesishas been on two very basic and central aspects
of neural network learning — generalization (both within and across tasks), and learning speed in
deep networks. Theseissues have been investigated through a number of tasks and by comparisons
among arange of different learning agorithms. The overall conclusionsfrom thisinvestigation are:

Interactivity canimpair generalization, and learningin deep networks: Theinteractive CHL net-
worksalmost always generalized worse, and learned more slowly in deep networksthan feedforward
BP networks. The semi-interactive AP networks performed intermediate between BP and CHL. Di-
rect examination of the sensitivity of the CHL networks to changes in input stimuli confirmed that
thiswas a likely explanation for their poor generalization. Nevertheless, interactivity was essential
for providing flexible access to knowledge in the family trees task, and is supported by a range of
both psychol ogical and biological data. Finally, AP networkswere unableto usetheir interactivity to
solvetheinteractivefamily treestask with rotating questions, indicating theimportance of symmetry
in the learning rule and weights for interactive networks.

Activity regulation and competition via the ReBel soft-KWTA function improves generaliza-
tion, and learning in deep networks: Even without the Hebbian associative learning component,
LEABRA networkswith the ReBel activation function generalized better than their CHL counter-
parts. This can be attributed to the devel opment of categorical representations (entropy reduction)
and by damping the sensitivity of theinteractive network. Thisprovidesanimportant functional role
for the extensive inhibitory interneuron circuitry of the neocortex.

Hebbian associative learning via the MaxIn function improves generalization, and learning in
deep networks: In most cases (with the exception of the purely combinatorial task studied in Chap-
ter 6), the use of MaxIn in LEABRA resulted in better generalization, and faster learning in deep
networks. Thiscan be attributed to the devel opment of useful representations according to the prin-
ciplesof entropy reduction and information preservation. Thisprovidesan important functional role
for the associative LTP observed in the neocortex.

187
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Error driven learning is essential for actually learning tasks: In no case was purely associative
learning capable of learning a task to criterion, and in many cases performance remained quite bad
throughout training. This reinforces the notion that the neocortex must be capable of performing
error-driven learning. A biologically feasible mechanism for error-driven learning was presented in
Chapter 2.

Auto-encoder (AE) LEABRA performed substantially better than all other algorithms: For both
thedigit recognition and the combinatorial domain tasks, the level of generalization exhibited by AE
LEABRA could be of important practical interest, in addition to its potential application in under-
standing learning in the neocortex.

Adapting activity constraintsdid not performnearly aswell asReBel: Thefixed, a priori model
provided by ReBel was found to be an important implementational advantage over purely adapting
formsof activity constraints, which end up competing with and detracting from learning performance
on the task.

LEABRA performed better than standard regularizers like weight decay and noise: Especially
when the joint function of learning speed in deep networks and generalization capability is consid-
ered, the self-organizing learning in LEABRA represents a better way of constraining error-driven
learning than these other methods.

Future Directions

Whilethe relatively simple tasks used in this thesis enabl e the thorough comparative investiga-
tion of an algorithm’s behavior, they provide only limited models of interesting psychologica and
neurobiological phenomena. Thus, future work with the LEABRA agorithm will befocused on the
exploration of psychological and neurobiol ogical phenomenafor which LEABRA appearsto be par-
ticularly relevant. A brief descriptionand, in some cases, preliminary results, of theseinvestigations
are provided below.

It should also be noted that there might be practical applicationsof the LEABRA algorithm. As
was mentioned above, the generalization performance of AE LEABRA is significantly better than
other algorithms, and thus might find practica application. Further, there has been someinterest in
trying to extract rules from trained networks— this should be much easier to do in LEABRA than
in astandard error-driven algorithm.

Psychological Phenomena

Multiple Constraint Satisfaction

An important use of recurrent or interactive networksis to solve multiple constraint satisfaction
problems. In such problems, the consistency relationships among a set of properties or features are
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expressed viathe weights connecting units representing these features. A highly consistent configu-
ration of such features can be extracted from arecurrent network by clamping somefeature units, and
letting the network settle according to the weight values. The stable network state reflects the satis-
faction of multiple (possibly conflicting) constraintsreflected in the clamped units and the weights.
Multiple constraint satisfaction providesapotentially useful account of many aspects of human cog-
nition, including theintegration of multiplevisual cuesto determine propertiesof objectslike depth,
orientation, motion, etc. However, as the number of featuresisincreased in such systems, it can be-
gin to take an excessively long time for these networksto settle into meaningful states. Thisis due
to increased difficulty in finding alocal minimum in the high dimensionality of an activation space
with many features. Thus, it is not clear if a generic recurrent network could settle fast enough to
provide a useful model of multiple constraint satisfactionin visual processing.

The activity constraints of the ReBel activation function used in LEABRA provide a potentia
solutionto this problem. Aswas argued in Chapter 4 and shown, if somewhat indirectly, in the sim-
ulations presented in this thesis, ReBel restricts the activation space searched through settling, and
thus settlesrelatively rapidly and isless sensitive than a generic interactive network like CHL. For
example, in many of thetasks (e.g., family trees, the combinatorial domain), CHL required as many
as 160 cyclesto settle, while LEABRA never required more than 50, and typically settlesin around
20 cycles. Nevertheless, these tasks are not specifically multiple constraint satisfaction tasks.

Aninterestingtest of theideathat LEABRA can providebetter performancein multipleconstraint
satisfaction tasksis reported in amodel of figure-ground organization (Vecera & O’ Reilly, submit-
ted). This model produces a representation of figural elements of simple line drawings by finding
the most consistent interpretation of a configuration of otherwise ambiguous line elements. It uses
factors such as concave regions defined by multiple line e ements, and feedback from an emerging
interpretation of thefigural region, to settle on afigure representation. We used thismodel to account
for familiarity effectsin figure-ground organi zation by including object-level representationsabove
the leve of figural processing, with interactive connectivity so that emerging object-level represen-
tationswill feed back and influencethefigural representation. Thus, theentirenetwork isquitelarge,
having a 16x16 figural region, with four potential line segment/orientations per pixel, and performs
multiple constraint satisfaction over several different levels of representations.

As aresult of its size and complexity, a version of the model using standard CHL-like activa
tion dynamics required 400 cycles of settling (including an elaborate annealing schedul€), and even
then produced an unacceptably large number of uninterpretable figural representations (as high as
44.5%). In contrast, the same model using the ReBel activation function used in LEABRA (note
that therewas no learning in thismodel) settled in 100 cycles, and had only 6% uninterpretabl efigu-
ral representations. Thus, the soft k-WTA activity constraintsprovided by ReBel caused the network
to more rapidly and reliably find good solutionsto this constraint satisfaction problem. Thisresult
should hold quite generally, and should beinvestigated further, in order to more fully understand the
rel ationship between settling time, activity constraints, and performance.
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Learning Spatially invariant Object Representations

In O'Reilly and Johnson (1994) and O’ Reilly and McClelland (1992), we presented a model of
how a neural network could learn to develop invariant object representations by capitalizing on a
special training signal present naturally in the environment. Thistraining signal arises because of
the tendency for objects to persist in the environment, but yet to move around relative to our reti-
nal reference frame (i.e., dueto saccades or relative movement). Thus, we experience a sequence of
imagesthat al correspond to the same object(s) in different spatial locations, and this sequence pro-
videsauseful signal for the unsupervised learning of object representations, sincewe can effectively
assume that over some time period, the retinal images should al correspond to the same high-level
object representation. | showed that by building ahysteresisbiasinto the network, which maintained
unit activity over time (e.g., through the effects of recurrent excitatory connectivity and lateral in-
hibition), units would devel op invariant representations when presented sequences of images of an
objectin different locations. Thismodel was based on the use of Hebbian associativelearning, which
would cause unitsto become associated with the different views of a given object, thus making them
invariant.

All three of the important aspects of this model are present in LEABRA — interactive (recur-
rent) connectivity, lateral inhibition (as implemented by the ReBel function), and Hebbian associa-
tivelearning. However, LEABRA addsafurther component, error-driven learning, which could po-
tentially play an important, but as yet unexplored, rolein such amodel. The problem with the exist-
ing model isthat it often gets stuck in sub-optimal representations, where a single unit ends up with
a representation of multiple objects in severa locations, not a single object in multiple locations.
Thisis due to the positive-feedback nature of associative learning, which leads to a rich-get-richer
phenomenon, and the overextention of such representations.

This is exactly the kind of problem that error-driven learning can solve. For example, if a
LEABRA network were presented transl ating sequences of abjects, and error signalswere available
to shapethe representationsin addition to associativelearning, the error signal scould prevent thede-
velopment of ineffective representations. These error signals could arise from anumber of plausible
sources: 1) reconstructing the current input, asin the auto-encoder version of LEABRA; 2) predict-
ing the next input, which amounts to a modified version of AE LEABRA (more on this below); 3)
using the invariant representations to label (identify) objects, and getting feedback about the accu-
racy of theselabelsfrom the environment. Preliminary research with 1) and 3) has shown that these
error signalshave the expected effect inthe simplemodel usedin O’ Reilly and Johnson (1994). This
model has “objects’ which overlap by 1 out of 3 features, and this leads the purely associative net-
work to develop multi-object representationsin 3 out of 10 networks. In contrast, using LEABRA
with error-driven and associative learning, no such representations devel oped. Future work on this
topicwill involvethe use of more complex stimuli and will investigatethe devel opment of invariant,
hierarchically organized feature, as well as object, representations.
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Functional Models of Biological Systems: Hippocampal-Neocortical Interactions

The LEABRA framework has aready proven itself useful in devel oping models of the interac-
tions between the hippocampus, pre-frontal cortex (PFC), and posterior associational neocortex. A
LEABRA mode of these different brain regions has been developed, and datafrom normal humans
and PFC-lesioned patients on an episodic memory task (Gershberg & Shimamura, 1995) success-
fully simulated. Critical to the success of this model was the ability to express the different char-
acteristics of these brain regions by parameterizing the LEABRA model. For example, our model
of the hippocampus (O’ Reilly & McClelland, 1994; McClelland et d., 1995) relies critically on the
sparse level of activity in areas DG, CA3, and CAL1 of the hippocampus. This was easily and ro-
bustly implemented using the kK-WTA activity constraintsin LEABRA. The other areas had higher
activity levels, but the k-WTA aspect was still important (especially in the case mentioned below).
In addition, interactive processing was critical for thismodel, asall three brain areas had to mutually
constrain each other’sactivity states. In thissimplemodel, purely associative (MaxIn) learning was
used, since the majority of learning that took place occurred in the hippocampus. It is interesting
to note that the relevant areas of the hippocampuslack bidirectional connectivity, and thus are only
capabl e of associativelearning in the LEABRA model (since bidirectional connectivity isnecessary
for communicating error signals).

In arelated moddl of these brain areas, which accounts for the role of the hippocampus (and to
a lesser extent the PFC) in the conditioning phenomena of blocking and latent inhibition, activity
constraintsplayed a critical role in the functioning of the posterior cortical component of the model.
Thisisbecause, in the bl ocking task, top-down activation from the hippocampusled to the activation
of one set of representationsin the posterior cortex, but, critically, thisled to asuppression of another
set of representations due to the activity competition. This suppression of activity iswhat led to the
blocking effect in the model, as was predicted in averba account in Cohen and O’ Reilly (1996).

These examples provide an indication of the promise that LEABRA holds for developing
biologically- based models of cognition. LEABRA has a set of parameters and learning rules that,
while potentially avail able piecemeal in other models, arewel | integrated and robustly implemented.
In short, the LEABRA model providesauniqueand useful level of modeling that captures more bio-
logical detail than existing abstract neural network models, but is still sufficiently abstract and com-
putationally efficient to enable models of complex behavioral phenomena to be implemented and,
importantly, understood.

Learning Inflectional Morphol ogy

The investigation of neural network models of past-tense inflectional morphology, begun by
Rumel hart and McClelland (1986), has played an important rolein the debate over the sufficiency of
neural network models for capturing systematic or rule-like behavior. However, despite 10 years of
work, a satisfying model of the central phenomenon in this domain, the U-shaped curve of correct
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Figure 8.1: Overregularization rate (1 - overregularization errors) for Adam. Data reproduced from Marcus,
Pinker, Ullman, Hollander, Rosen, and Xu (1992). Note that the data ends before the child attains perfect
performance, so a projected line was drawn from the end of the data to the 8 year point, where it is assumed
overregularization will have stopped. This makes clear the U-shaped nature of the curve.

marking of irregular words (see Figure 8.1 for an example), remains elusive. In simpleform, the U-
shaped curve consists of an early period where children correctly inflect irregular past-tense words,
saying “went” for the past tenseof “go”. Thisisfollowed by a period wherethesewordsare overreg-
ularized, so that children say thingslike “goed” for the past tense of “go”. Thus, they overzealously
apply the “rule” which appliesto the regular wordsto theirregulars. This phenomenon has been in-
terpreted by some as an indication that people use symbolic-likerulesin language production (Mar-
cus, Pinker, Ullman, Hollander, Rosen, & Xu, 1992; Pinker & Prince, 1988). Finally, after some
years of what amountsto only sporadic (and highly variable between subjects) overregul arization of
theirregulars, children learn to treat the regulars and irregulars correctly.

Whilethere have been anumber of models since the origina work of Rumelhart and McClelland
(Plunkett & Marchman, 1991, 1993; Daugherty, 1993; Hoeffner, 1996), and a considerable refine-
ment of the characterization of the empirical phenomenon and the successes and failures of neural
network models, the fact remains that no model has captured the U-shaped curve without reverting
to implausible manipul ations of the training environment or network training signal. Such manipu-
lationsamount to changing the frequency balance of regularsand irregulars, with ahigher proportion
of irregularsearly in training (leading to correct irregular inflection), followed by theintroduction of
alarge number of regulars. Thisleadsto overregularization due to thelarge error signal introduced
by the large number regulars. Similar manipulations have been performed by modifying the error
signals themselves (Hoeffner, 1996). However, it is not likely that the child is actually exposed to
such a changing linguistic environment (though such changes may be evident in their own produc-
tion), making such manipulationsimplausible as model s of the externa environment.
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Figure 8.2: Schematic of the semantics to phonology mapping present in the past-tense inflection modedls
used by Hoeffner (1996), and in the current simulations. The crucia point isthat thereisastrong correlation
between the past-tense semantic (p.t.) and phonological features (-ed), and that associative learning will be
sensitive to this correlation.

The problem with existing model s can be traced to their reliance on purely error-driven learning.
This is because the regular mapping, which is highly consistent and present in a large number of
training items, will belearned relatively early. Thus, it will then cease to be a significant pressure on
the error-driven learning process, as it will not generate substantial error signals. Accordingly, the
irregular wordsare most likely to be overregul arized early in training, and thistendency will decrease
over training as the error pressure from the regular mapping decreases. Thisis consistent with the
resultsfrom alarge number of different error-driven neural network models (Hoeffner, 1996).

| propose that LEABRA will produce a U-shaped learning curve without any additional manip-
ulations, as a direct result of the balance of error-driven and associative learning pressures in the
model itself. The key ideais that associative learning will remain sensitive throughout learning to
the strong correlations that exist between the semantic features for the past tense, and the regular
phonological inflection (“-ed”) that marks the past tense (see Figure 8.2). In particular, it isthe case
in LEABRA that early learning is dominated by error-driven learning (since the error signals are
larger then), and after the error signalshave been reduced, associativelearning playsitsbiggest role.
Thus, the shifting of the balance from error-driven to associativelearning providesamechanism for
thetransition from early correct performance to the period of overregularization. In theend, the net-
work should be able to sort out the irregular and regular mappings, and achieve the final stage of
correct performance.

This hypothesis was tested in a preliminary study using a LEABRA mode of the semantics to
phonology mapping task. There were 381 monosylabic English words with both a stem and a past-
tense inflected version, each presented with the square-root of their actual frequency as given in
Kuceraand Francis (1967). The stem of theword was represented by arandomly sel ected pattern of
24 active units out of afield of 120 units. The inflectional semantics were represented by an addi-
tional 6 units, three of which were active for the stem form of the word, and three for the past-tense.
The phonlogy of the word was represented with a vowel-centered, slot-based scheme, with three
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Figure 8.3: Overregularization curves from two versions of LEABRA that differ only in the strength of as-
sociative learning. a) shows a model with weak (.1) associative learning, and b) shows a model with strong
(.5) associative learning. The stronger associativelearning resultsin a U-shaped curve, whiletheweaker does
not (note that thefirst point for the weak model is at .833, off the low end of the graph).

onset consonant slots, the vowe slot, followed by three additional consonant slots, the last two of
which could contain the past tense inflection. For example, the word “talk” was represented as “tt-
tOkkk” and its past tense, “talked” as*“tttOktt”. Each consonant was represented by aset of 18 units,
3 of which were activefor any given consonant, representing commonly used phonological distinc-
tions such as place and manner of articulation. Similarly, the vowels were represented by 17 units,
5 of which were active for any given vowel. These stimuli were adapted from models described in
Hoeffner (1996). The network had 480 hidden units, with a16.67% activity level inthe hidden layer.

The critical test of the above hypothesisiswhether associativelearning isimportant for produc-
ing a U-shaped overregularization curve. Thus, two otherwiseidentical LEABRA models were run,
one with weak and one with strong associative learning. Their overregularization curves are shown
in Figure 8.3. The critical finding is that the model with strong associative learning exhibits a U-
shaped overregularization curve, while the one with weak associative learning does not (note that
the first point for theweak model isat .833, off the low end of the graph). Thus, given that the only
difference between these models was the level of associative learning, and that purely error-driven
models have not produced a U-shaped function with a static environment, this provides important
evidencein support of the hypothesisthat associativelearningin LEABRA will lead to the U-shaped
curve. However, there are many other aspects of the empirical data on the learning of inflectional
morphology, anditisnot clear if thispreliminary model will provideasatisfactory account of all of it.
Nevertheless, these results provide sufficient encouragement to pursue thisimportant issue further.

There are anumber of important consequences of the above preliminary result, which could be-
come more solid when amorethorough modeling effort isundertaken. First, whileit may be possible
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to modify the environment or the error signalsin apurely error-driven algorithmto obtain afit to the
empirical data, the LEABRA model hasthe potential to show this behavior as a direct consequence
of propertiesthat have been shownin thisthesisto have anumber of other important functional con-
sequences. Thus, thiswould provide both aless ad hoc account of this data, and, at some level, the
datacould provide evidencethat supportsthe LEABRA mode of learning inthe neocortex. Further,
thisresult pointsto theimportance of correlational structurefor defining what iscommonly described
as“rule-like” behavior. It is quite possible that by building a sensitivity to this correlational struc-
tureinto the learning algorithm (asis the casein LEABRA), many other aspects of human rule-like
behavior can be modeled and understood.

Generalization in the Pronunciation of Written \Words

Another language domain which has been the focus of considerable modeling effortsisthe pro-
nunciation of (monosylabic) writtenwords (Seidenberg & McClelland, 1989; Plaut et al., 1996). The
primary issues here are the extent to which a single system can pronounce both regular and excep-
tion words, the sensitivity of the system to the frequencies of items, and the ability of the system
to generalize its knowledge to the pronunciation of nonwords. Aswas clear from the discussion of
related issuesin inflectional morphology above, and from the work on generalization presented in
thisthesis, it islikely that LEABRA’s behavior on this task will differ in important ways from that
of the standard error-driven algorithmsthat have been used to date.

In particular, therecent work of Plaut et al. (1996), hereafter referred to asPM SP, rai sesanumber
of important issues. First, aswas noted in the introductory chapter, they used a backpropagation al-
gorithm without a symmetry constraint to train an “attractor” version of their network, which, ashas
been shown in thisthesis, does not devel op significant reciprocal (bidirectional) weights. Thislack
of significant reciprocal weightsin their model was confirmed by D. C. Plaut (personal communica-
tion). In addition, they encouraged the network to settle rapidly, which further decreased the extent
to which their model could be described as a true attractor network. In the simulations reported in
thisthesis, the Almeida-Pineda (AP) agorithm performed intermediate between a feedforward and
afully interactive CHL attractor network on tests of generalization. It islikely that their model will
perform even more like a feedforward network than the AP networks, due to the additional settling
time pressure. Thus, their demonstration that an “attractor” network was capable of pronouncing
nonwords (i.e., generaizing) to roughly the same level as afeedforward network (notethat it per-
formed slightly worse), is not surprising, and does not constitutea test of atrue attractor network’s
ability to generalizein thistask.

Given theresults presented in thisthesis, it islikely that the use of atrue attractor network (e.g.,
CHL) will result in significantly worse generalization on thistask. However, LEABRA should gen-
eraize at about the same level as a feedforward backpropagation network. This constitutesa set of
predictions that should be tested. Unfortunately, the computational expense of running truly inter-
active networks on alarge task such as thisone (which hasroughly 3,000 stimulusitems, presented
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according to awidefrequency range, in anetwork with hundredsunits) has prevented any significant
progress on thisissue as of yet.

Another issue, which unfortunately requires even more computational power to address com-
pletely, has to do with the nature of the input/output patterns used in the PMSP model. These pat-
terns were designed in such away as to compress the regularities of the orthography-to-phonol ogy
mapping, using a number of convenient accidents of the structure of English spelling and pronun-
ciation. These patterns should make it much easier for anetwork to pronounce nonwords, which is
what they found compared to the much less systematic representation used in Seidenberg and Mc-
Clelland (1989). However, it begsthe question asto how such representations, which are presumably
themselves devel oped in the neocortex somewhere, can arise. Further, it is apparent that these sys-
temati c input/output representations are quite different than the types of representationsthat develop
in the hidden layer of the PMSP network, asthe latter are highly distributed and share therelatively
underconstrained appearance of the purely error-driven networks analyzed in thisthesis.

The LEABRA agorithm could potentially addresstheseissuesin acoupleof ways. First, theself-
organizing learningin LEABRA hasbeen shown to devel op representationsthat more closely reflect
the structureof thedomain. Thus, it should bethe casethat aL EABRA model of the PM SP task will
devel op hidden unit representationsthat more clearly reflect the systematicities of the orthography-
to-phonol ogy mapping. Taking this one step further, it should be possible to implement a deep net-
work version of thistask, where the input and output patterns more closely resembl e the surface fea-
tures of the written and spoken words. Then, asin the family trees networks, internal coding layers
could devel op more systemati c encodings of these surface features. Onewould expect theLEABRA
version of such adeep network to learn more rapidly than the BP version, and, to the extent to which
it developed more systematic hidden unit representations, generalize better. This would provide a
much more satisfying model of human nonword pronunci ation than the PM SP model, which accom-
plishesthistask largely through the use of systematic input and output patterns.

Learning Temporally-Extended Behaviors

One important way in which a network becomes very deep involveslearning over time. Thisis
most clearly evident in the backpropagation-through-time a gorithm, where a new layer of unitsis
introduced for each time step over which the network must learn. Consistent with their substantial
depth, it istypically the case that networkstrained to recognize or perform temporally-extended be-
haviorsrequire extremely long training times. For example, avery simplerecurrent network trained
in an environment generated by a simple finite-state-grammar required 60,000 sequence presenta
tionsto learn this grammar (Cleeremans, Servan-Schreiber, & McCldland, 1989). Given the rapid
learning speed in deep networksevidenced by LEABRA inthefamily treestask, itislikely that it will
be capable of learning temporally extended tasks more rapidly aswell. In a preliminary test of this
idea, the simple finite-state-grammar task used by Cleeremans et al. (1989) was runin aLEABRA
network. Instead of using a copy of the hidden unit activities as the temporal context for predicting
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Figure 8.4: Network configuration used to learn a simple finite-state grammar in LEABRA. The two recip-
rocally connected context layers devel op context representationsthat disambiguate the otherwi se ambiguous
input tokens according to the prior history of experience by the network.

the next symbol in the grammar, the LEABRA model used an additional set of context layerswhich
were bidirectionally connected to the hidden layer, and to nothing else (see Figure 8.4). The net-
work activities were decayed .9 of the way towards the average activation state after each training
item, so that the prior activity of the network was partially preserved, serving as context for the pro-
cessing of subsequent stimuli (just asin the auto-encoder version of LEABRA). The context layers
werereciprocally interconnected to provide some stability of their representation over thisdecay. Fi-
nally, the connectionsin the network used amodified version of the LEABRA a gorithm which was
performed based on the receiving activationsfor time ¢, and the sending activationsfor timez — 1,
in addition to the standard learning on patterns at time ¢. This enabled the network to learn about
temporal contingenciesfrom one pattern to the next.

When trained in this manner on randomly generated samples from the finite state grammar, the
network required only 3,690, SEM 1,260 segquence presentations to learn the problem. This repre-
sents a massive improvement over the results with the simple recurrent backpropagation network
used by Cleeremans et al. (1989), and can be attributed to the self-organizing development of use-
ful representationsin LEABRA, compared to the slow accumulation of error-driven representations
in the BP network. While thisis promising, appropriate control experiments must be done to de-
termine the effect of variableslike hidden layer size, and the architectural differences between these
networks. Inany case, the successful use of themore* naturalistic” context layer for solving thistype
of task isof considerableinterest, asit does not require unrealistic copying of unit activities, and in-
stead depends on the devel opment of useful representationsin an otherwiseunconstrained layer. Itis
likely that the success of this architecture relies on the use of the activity constraints and associative
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learning in LEABRA, but this has not yet be systematically tested. Finaly, it should be noted that
the role of the context unitsin thistask is similar to that proposed for the pre-frontal cortex (PFC)
(Cohen & O'Reilly, 1996; Cohen & Servan-Schreiber, 1992; Cohen et ., 1990), and that the ability
of LEABRA to devel op useful representationsin thistype of layer could be useful for modeling this
area

Learning Multiple Output Patterns

It is often the case in psychological modeling that one needs to train a network to respond to a
giveninput in different ways, often without any particular distinguishing feature to determine which
way to respond on a given trial. In other words, it can be useful to learn one-to-many mappings.
For example, there are many different words that express the same underlying concept, and it would
be useful to have a network pick, essentially at random, one of a set of possible wordsin order to
express this concept. The family trees problem, for another example, had some cases where there
were multiple equally valid answers to a given question. If oneis using orthogonal, localist repre-
sentations, it is aways possibleto simply activate al of the possible outputs. However, thisis not
generaly possible when using more plausible and powerful distributed representations. If the out-
puts areinstead paired randomly with theinput patterns on different training trials, backpropagation
networkstend to produceasingle“blended” output pattern that represents an average of the desired
outputs.

One approach to this problem was suggested by Movellan and McClelland (1993), who derived
alearning algorithmthat specifically triesto match the probability distributionsassoci ated with mul -
tiple possible output patterns. However, this a gorithm requires prohibitive amounts of computation
in order to obtain adequate samples of therelevant statistics. | proposeinstead that LEABRA can be
used to solve this problem in a much simpler way. Theideais that the activity constraints present
in LEABRA, together with its interactive attractor dynamics, will cause the network to settle into
specific trained attractor states corresponding to the different possible outputs, instead of producing
a blended combination of these outputsasistypical of afeedforward backpropagation network.

Thisideawastested using asimplethree-layer network, with 25 unitsin each of thethree layers.
13training itemswere created with oneinput pattern and two possible output patterns per item. The
patterns were random with 6 out of the 25 units active, and a maximum overlap of 2 bitswith any
other pattern. Both input/output pairings of each item were presented in each epoch, resultingin 26
training itemsper epoch. For each item during training, the output pattern was compared to all of the
26 different possibleoutput patterns, and the one that was closest to this pattern (using asum-sgquared
distance measure, with atolerance of .5, so that if al unitswere on the right side of .5 the distance
would be 0) recorded. Two statistics were computed (the average of the best of each of which are
reported below): 1) the percentage of training items for which the closest pattern was one of the two
correct output patterns; 2) the percentage of training items for which the output activity was al'so on
the right side of .5 for al unitsin this closest pattern. The first measure could be satisfied with an
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appropriately blended representation of the two items, while the second requires that the network
produce distinct outputsthat match either one of the two trained outputs.

Three types of networks were compared: BP, CHL, and LEABRA. The BP network achieved
100% on the first measure, but 0% on the second one. Thus, as would be expected, it produced a
blended output pattern that was close to the targets, but never actually matched either one of them.
CHL achieved 96% on the first measure, and 7% on the second one. Thus, it was dlightly worse at
producing an output that was close to the targets, but very occasionally managed to settle into an
output state that matched one of the targets. Thisis probably dueto the attractor dynamicsin this
network. The resultsfrom LEABRA were dramatically better, achieving 100% on thefirst measure
and 94% on the second one. Thus, it always settled into a close output pattern, and most of thetime
thispattern actually matched one of thetargets. Thiscan be attributed to the combination of attractor
dynamicsand activity constraintsin LEABRA, sothat it woul d settleinto atrained configuration with
the appropriate number of active units, and not ablend or other spurious attractor state. Finaly, ina
version of LEABRA without associativelearning, the score on the second measure dropped to 91%,
indicating that associativelearning is playing some role in this phenomenon — it probably helpsto
solidify each of the output states as a coherent (self-correlated) attractor state.

Priming Effects

It iswell known in the psychological literature that the mere exposure to a stimulus will lead to
subsequently faster processing of that stimulus, and that this effect, known as repetition priming,
is relatively long lasting (hours, days, even months). Attempts to use error-driven learning algo-
rithms to model this effect have been problematic, sinceit is not obvious where an error signal of
any magnitude would come from based on the mere exposure to a given item. However, it is clear
that associativelearning would produce the desired | earning signal based on the simpl e activation of
representations triggered by the presentation of an item. Thus, LEABRA provides a useful frame-
work with which to model such effects. Indeed, Stark (1993) found that the associative learning in
LEABRA was able to model priming data from human subjects, but error-driven learning was not.

A simple experiment with trained versions of the multiple-output networks described above
serves to demonstrate the difference in LEABRA’s priming behavior compared to CHL and BP.
There is an obvious measure of priming in these networks — the extent to which the network pro-
duces the same output pattern it was last exposed to in conjunction with a given input pattern. As
it happens, the items in the training set were arranged so that al items with the first output pattern
appeared sequentially in the training set, followed by all items with the second output pattern. Dur-
ing training, the items were presented in permuted order. However, for this experiment, they were
presented sequentially. Thus, if priming were taking place, one would expect that, after having been
exposed to thefirst set of output patterns, the network would produce the first output pattern during
training on the second set of output patterns. Similarly, training on the first set of output patterns at
the start of the next pass through the stimuli should produce outputsin the second set of output pat-



200 LEABRA

Priming in Multi-Output Network
Responses coded by closest pattern, not exact match

100 [ ‘ ‘ — 1
90 i 1st Set Baseline |
t 1st Set Priming
g} 80 2nd Set Priming b
b L
% 70 + il
o 60 r |
% 50 - R
o L
— 40+ 4
= L
§ 30 - 1
aj L
o 20 1
10 1
0 |
BP CHL LEABRA
Algorithm

Figure 8.5: Priming effects in multiple-output network. 1st Set Baselineis baseline performance for output
patterns in the first set, prior to specific training. 1st Set Priming is responses to first set after one training
exposure to output patternsin thefirst set. 2nd Set Priming isthereversal of thispriming by exposureto the
2nd set of output patterns, which should result in fewer 1st set responses (and more 2nd set responses).

terns, as a result of training taking place at the end of the prior epoch. Thistest is particularly nice
becauseit allowsfor intervening training on the other items before assessing priming effects, which
simulatesthe delay (and potential interference) present in human priming experiments.

The datafor thisexperiment, shownin Figure 8.5, support the hypothesisthat LEABRA exhibits
much greater priming effectsthan BP or CHL. The BP network showed littleevidence of any priming
at all. Whilethe CHL network did show some effect of training on thefirst set of patterns, and are-
versal of thisfrom training on the second set, it isimportant to notethat in none of these caseswasthe
network actually producing the correct output pattern (to within .5 tolerance). Instead, it was merely
shifting the response so that the output was closer to one set than another. The difference between the
BP and CHL networksis probably due to the attractor dynamicsin the CHL network, which allows
small weight changesto have some effect on output state. In contrast with CHL, the LEABRA net-
work was actually producing the correct output pattern, and, asisevident in the figure, is capabl e of
shifting which of thetwo output patternsisproduced based on onetrainingtria. Thus, theLEABRA
network clearly hastwo well-defined attractor statesfor each input pattern, and shiftseasily between
the two based on mere exposure. Both activity regulation, which encourages the network to settle
into existing attractors, and associative learning, which provides alarger learning signal from mere
exposure to the items, are important for LEABRA's performance in this example. Future work on
thistopic could make closer contact with detailed patterns of data from human priming studies.
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Figure 8.6: Possible mapping of expectation-outcome phases onto neural system where outcome must be ex-
perienced through same channdl as origina inputs. Primed notation indicatesthe production of an expectation
based on hidden unit activity, while non-primed are experienced states from the environment. Notethat there
are only 3 layers, but the different states of the input/output layers are splayed out over time. Learning may
also come from interactions between different input pathways (modalities, streams, etc), where one pathway
serves as the “output” for the other.

Neurobiological Phenomena

In addition to the above topics of future research on the functional and psychological uses of
LEABRA, there are a set of important issues regarding the neurobiological status of the algorithm
that require further investigation. These are briefly described bel ow.

The Nature of GeneRec Phasesin a Sensory System

One of the important properties of the GeneRec algorithm is that it allows for simple activity
statesto provide error signals. Thiswas explained in Chapter 2 in terms of the generation of expec-
tations, followed by the experience of theactual outcomes. Whilethismakesintuitivesense, and can
easily be mapped onto existing neural network architectures, there are some important unresolved
issuesregarding its mapping onto processing areas in the neocortex. The central problemisthat, un-
likein a standard three-layer network, the experience of an actual outcomeis presumably occurring
viathe very same sensory inputsthat gave rise to the generation of the expectation. Thus, it is not
particularly plausible to imagine that the original inputs are still present over an “input” layer, and
that the outcome gets mapped magically onto a separate “output” layer.

One possible mapping of expectation and outcome signal s that avoids some of these problems
is shown in Figure 8.6. This configuration is similar to the auto-encoder LEABRA model, except
that instead of reconstructing the input over the sensory input layer, the network predicts the next
outcome over thisinput layer. Then, when the next outcome is actually experienced, the difference
in activation states between expectation and outcome can serve as an error signal. The outcome
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a time ¢t + 1 would then serve as the “input” for the next time step, from which another expecta-
tion would be generated, and so on. Notethat if the expectation about the subsequent outcome were
that it would remain the same as the current input, thiswould be roughly equivalent to auto-encoder
LEABRA. Thereissomeindirect evidencethat something likethiscould be happeningin the neocor-
tex. Duhamel, Colby, and Goldberg (1992) found that the anticipated perceptua effects of a saccade
are seen in the parietal cortex prior to the actual experience of the results of the saccade. Thus, it
could be that this reflects the generation of an expectation prior to experience of an actual outcome,
aswould be required by the proposed mechanism.

Also shown in the figure are inputs from another processing pathway, which could be another
modality, or just another “stream” of processing of the same modality. Such inputs, converging on
the same hidden layer, could play therole of the “output” unitsin a more standard three layer error-
driven network. In thiscase, input from one pathway participatesin the generation of an expectation
for theoutcomein another pathway (e.g., you seetwo cars colliding, and expect to hear aloud sound).
Then, an outcome (the sound) is experienced in this other other pathway, and the difference in ex-
pectation and outcome states in this other pathway will train the hidden units to better predict the
rel ationship between these two pathways.

Thistypeof systemfor error-driven learning is obviously more complicated than the simpleform
used inthe simulationsin thisthesis. It may place additional constraintson the activation and learn-
ing properties of unitsin the network, and the way in which their sensitivity to constant input ac-
tivity is modulated (e.g., by habitation or by modulatory neurotransmitterslike dopamine and nore-
pinephrine). For example, the world presents continuousinput to the retina, and yet this scheme re-
quiresthat thevisual neocortex should aternately be representing an expectation of afuture outcome
instead of being driven entirely by theretina input. Finaly, it isaso likely that these modulatory
neurotransmitters, which have been shown to have phasic firing associated with salient environmen-
tal events(Schultz et a., 1993; Montague, Dayan, & Sejnowski, 1996), could providea“learn now”
signal that synchronizeslearning around a salient outcome. Chapter 2 containsarelated discussion.

Details of Activity Regulation

Aswasdiscussed in Chapter 4, the ReBel activation function isintended to capturethe effects of
inhibitory interneurons on excitatory pyramidal cellsin the neocortex. However, the ReBel function
itself israther abstract, and does not directly implement inhibition as such. Thus, an important next
step is to develop more detailed models of this inhibitory and excitatory circuitry, and attempt to
relateitspropertiesto thoseof the ReBel function. Thiswould probably involvethe creation of point-
neuron models with discrete spiking, and the modeling of a relatively large number of unitsin a
single patch of neocortex, in order to average out the noise present in such systems. Such a model
would probably be too complex to simulate behaviora data, but it could serve as a bridge, through
the more abstract LEABRA model, between behavioral models that depend on activity regulation
and the biological substratesthat actually implement it.
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Details of Synaptic Modification

A synaptic modification mechanism that would be capabl e of performing error-driven learningin
the neocortex was described in Chapter 2. This mechanism could be implemented in a biophysical
model of a neuron, and its detailed response to inputs and postsynaptic activity of different magni-
tudes and timing studied. Thiswould provide a means for generating critical predictionsthat could
then betested in LTP/LTD studiesin the neocortex. Further, such a mechanism could be combined
with the more detailed model of excitatory and inhibitory neurons in the neocortex to provide an
implementation of LEABRA at amore detailed biological level. One can imaginethat this more de-
tailed model might have important functiona differences compared to the more abstract LEABRA
model used in thisthesis. In any case, if the LEABRA model isto be taken seriously as a model of
learning and processing in the neocortex, this next step will need to be taken.
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Chapter 9

Appendix: Implementational Details of
LEABRA

Every learning algorithm has two faces: the theoretical and the implementational. The theoretical
level describeswhat computational objectivesthe agorithmistrying to achieve, and generally how
it goesabout doing so. LEABRA has been described at thislevel in the main body of thethesis. The
implementational level contains a number of details, some of which can be important for the algo-
rithm’s performance, which somehow fall below the threshold of pure a priori principles (e.g., the
use of “momentum” in backpropagation). Most of the details associated with LEABRA are devoted
to making the ReBel activation function robust across arbitrary network configurations. Because
ReBel isafixed (non-adapting) function, the normal process of learning does not necessarily result
in optimal activation parameters for a given problem. Thus, additional adaptive mechanisms have
been added. Whilethese could in principle beimplemented manualy, it ismuch simpler on the user
to incorporate them in the model. Thus, much of the implementational detail in LEABRA can be
seen as a consequence of the use of fixed constraints, and of the increased complexity associated
with making the mechanisms robust, as discussed in Chapter 3. Hopefully, the advantages of using
such fixed constraints and robust mechanisms as demonstrated in the thesis outweighs the cost of
this additional detall.

It isimportant to emphasize that the parameters associated with the following implementational
details are never changed from one simulation to the next (except in cases where their importance
is being tested), and thus do not constitute additiona free parameters for any given simulation. Fur-
ther, the default parameter valuesare al very robust and were set by a coarse parameter search along
roughly logarithmicvalues (1,2,5, etc). Thisreflects the use of theimplementational principlefavor-
ing robustness. The contribution to the performance of LEABRA of any given item does not make
or break the algorithm. Each one simply improvesthingsalittlebit, but the aggregate probably per-
forms significantly better than aversion of LEABRA without them. Finaly, it should be noted that
most of these detail sare necessary only because of the particular soft KWTA formalism (ReBel) used

205
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in LEABRA, and that a more biologically redlistic implementation would use actua inhibitory in-
terneurons and presumably haveits own ways of dealing with the issues covered by these details.

The main body of the details are divided into two sections, one covering the learning rule, and
the other the activation function. Following this, a pseudo-codeimplementation of LEABRA ispro-
vided, which groundseverything in aconcreteinstantiationthat can make the algorithm easier to un-
derstand. Next, a section on the derivation of the GeneRec learning rule for the GausSig individual
probability function is presented. Finally, thereis a discussion of some general heuristics or guide-
lines for setting parameters in LEABRA, mostly having to do with the size of the network and the
level of activation in the layers. These architectural parameters affect the variance of net input ex-
perienced by different units, which must be compensated for in different cases by changingthelevel
of competition or balancing the contributionsfrom different layers.

Learning Details

Combining Error Sgnals and Associative Learning

The MaxIn associative learning can be combined with the error-driven learning of GeneRecina
simple additive manner. However, adding an exception for the case when the error signalsindicate
the weight should be decreased, and the associative learning indicates that it should be increased,
seems to work better in general. In this case, the error signals take precedence, and no associative
learningisdone. Thisenablestheerror signalsto eliminate*bad” representations, which would oth-
erwise be reinforced by the associative learning.

Soft Weight Bounding

Theweightsin LEABRA are thought of as representing something like the conditional probabil -
ity of an input value given that the receiving unitis active: P(z;|h;). Thisissimilar to theinterpre-
tation of the weightsin competitivelearning (Rumelhart & Zipser, 1986; Nowlan, 1990). As such,
theweights should be bounded between 0 and 1. Thiscan be done simply by clipping the weight val-
ues within thisrange, or it can be done by applying a soft weight bounding function which has the
additional benefit of causing (over time averaging) the weight to equilibriate at a point around the
conditional probability. The soft weight bounding function is applied to the delta-weight function
computed by the learning rule (Aw,;):

A’wij(l — ’wi]‘) if Aw;; >0

. (9.1)
Awij(wij) if Awij <0

ApoundedWij = {
The conditional probability properties of this function can be observed by considering the case that
the weights are increased p proportion of the time and decreased the remainder, 1 — p, and that the
magnitude of the increase and decrease (denoted simply A) is the same. Thus, at equilibrium, the
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expected weight val ue where the weight change will be zero under the above functioniis:

A¥w;; = pA(l—w;;) — (1 —p)Aw;;
0 = pA- wiij + wiij — Awij
wi; = P 9.2

Thus, the weight comes to equal p, which, assuming the weights are only adjusted when the postsy-
napticunitisactive, is P(z;|h;). Totheextent that theweight changes havedifferent val ues, thiswill
bias the probability measure in a corresponding manner. In general, thisweight bounding function
causes the weightsto equilibriate at a point which reflects the balance of increasing and decreasing
pressures on theweight. Thisweight boundingisused in all simulations. Test simulationswithout it
reveal that it isnot essential for learning many problems, but does result in faster and more reliable
learning than without it. It also hasanatura biological interpretation in terms of an adaptive process
that isafunction of the current level of the weight parameter. Thus a given weight change modifies
the existing efficacy in percentages of its current value, instead of raw values.

Weighting Termsin Maxin

The MaxIn learning rule has two components, which correspond to entropy reduction and infor-
mation preservation. These also correspond to subtractive or zero-sum-Hebbian (ZSH) and muilti-
plicative or soft-competitive learning (SCL) weight normalization, respectively. The ZSH term is
gated by a measure of the extent to which the unit already has a high signal-to-noiseratio (SNR)
(i.e., has aready reduced the entropy). Thisterm is essentialy a complement of alikelihood ratio
term, soitisdenoted L..:

L=1- ! (9.3)

-
v+ (Fi)
Sincethe MaxIn learning occurs on the plus-phase activations, this gating term iscomputed on these
activationsas well. Notethat in the case that the activation of a unit has been clamped by externa
inputs, then afixed L. valueis used, typically .4, which corresponds to a relatively high value of
the likelihood function (.6 as compared to the “noise” input). Also note that the value of P(h%[x,),
instead of being computed de-novo based on the actua definition used for the MaxIn rule, can be
approximated by P(h;|x,), whichaready availablefrom theactivationfunction. Thisisdonepurely
as an implementational optimization, and it does not appear to affect the efficacy of the algorithm.

Also, thestrength of the SCL term of MaxIn can be parameterized by introducing ak ;.; parameter
which multiplies this term in the MaxIn function (4.41), and the weighting of the ZSH term by ~
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removed:

1
Plxylh) )
1+ <P(x§|h§))
Assuming a~ value of 2, which istypically used, a k,.; vaue of .5 will bring these terms into the

proper relative strengths. However, it is useful to be able to manipulate the strength of thisterm to
determine the relative contributionsof ZSH and SCL to learning in LEABRA.

1
cAwij=y; | [1- (zi — p(xp)) + ksa(zi — wiy) (9.4)

Activation Function Detias

Updating Prior Probabilities Over Settling

TheReBd activationfunction (4.21) has prior probability termswhich can beiteratively updated
to implement a settling processin an interactive (recurrent) network. Thisamountsto simply setting
the prior probability of a unit to its probability (activation) on the previoustime step. The prior is
updated after every cycle of processing until the difference between the current probability and the
prior goesbel ow somethreshold (.02 is standard). Most networkswill require atotal of no more that
60 cycles, and typically around 20 to 30, to reach this criterion.

The formal legitimacy of this settling procedure is somewhat questionable, given that the prior
probabilities are technically supposed to be updated only after receiving independently distributed
data drawn from some underlying distribution. However, in this case, the data from one cycle to
the next is not a random sample from some underlying distribution, but rather is an evolving entity
with correlations over cycles of settling. Nevertheless, the procedure converges well and produces
interpretable activations which are obviously useful in guiding learning. More study needs to be
devoted to the formal issuesin this area, however.

Preserving Dynamic Range of Activations

Thisset of implementational detailsdeal with the problem of keeping theindependent probability
values (P(h§ |x)) of the units within a useful dynamic range (i.e., preventing “floor” and “ceiling”
effects). Thisisimportant for enabling comparisons amongst the units to be made via the log odds
function used in ReBdl. It is accomplished by setting the offset and gain parameters of the sigmoid
that determines P(h;'- |x) asafunction of the average and maximum net input in alayer. Thus, asthe
average net input floats around due to changes in input patterns and overall changesin weight val-
ues dueto learning, the unit probabilities are automatically adjusted to compensate for these global
changes. Itislikely that the brain employs similar regulatory mechanisms through recurrent inhibi-
tion and neuromodulators.
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The offset is set according to the following function:
O = avg + k,sf(maz — avy) (9.5)

wherek, s ; isaparameter that determines how high to set the offset. Thisistypically setto.25. The
offset islimited by alower bound parameter, soif al unitsare receiving below thislevel of netinput,
none of them are particularly active. This enables the network to learn to inactivate an entire layer
of units, if necessary.

Thegain is set according to the following function:
7' = 2.9444/(maz — ©) (9.6)

which makes the maximum individual probability valuein the network equivalent to the sigmoid of
2.9444, which is .95. This keeps the remainder of the values in the sensitive range of the sigmoid.
However, early in settling, the unitswould end up with large gain valuesif thiswere applied at that
point, since the maximum net input is not very different from the average. Thus, thefloating gainis
computed after some small initial number of cycles have been processed (typically 10). However,
this results in settling on the initial cycles of a given pattern being dependent on the gain value of
the last cycle of the previous pattern. Thus, the actual floating gain value is computed as a running-
averageof (9.6) withasmall updaterate (typically .001). Thiscorrespondsto somethinglikeaslowly
adapting arousal modulationin biological terms.

Preserving Small Probabilities for Learning

The odds-ratio formalism at the heart of ReBel tends to make sharp distinctions between those
units which are above the KWTA threshold, and those that are below it. Thisis necessary for the
associative learning to perform correctly, as it requires distinctionsin activity to perform the asso-
ciative credit assignment problem effectively (i.e., those units which are active are associated with
the current inputs, those which are not are not). However, it is also desirable to perform some de-
gree of learning in those units which were bel ow threshold, but which still received some amount of
support from the current input (i.e., their independent probability was significantly above 0). These
“fringe” units can be shaped and drawn in or away from representing the current input pattern, thus
providing the benefits of a soft-competitive learning function as described in Nowlan (1990). This
is especialy important early onin learning when the unit’sweights bear little resemblance to “well-
formed” hypotheses about the domain. At thispoint, one does not want to over-commit to any given
hypothesis, and the activitiesshould be more graded in nature. Later oninlearning, astheunitsshape
their weights, the distinctionsbetween unitswill become larger, and the competition will be sharper
asaresult.

For the above reasons, the activation of aunitin LEABRA is set to be a weighted sum of both
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Figure 9.1: Activation scaling as afunction of the maximum activation valuein alayer. All unit activations
are multiplied by theratio of the scaled maximum value to the original maximum value.

the independent probability and the ReBel probability term:
Yi = Yraw P(hﬂxp) + (1 = Yraw)ReBel(h;,x,) (9.7)

The~,,., or “raw gain” parameter determines the proportion of the activation which is determined
by the raw independent probability. Thisparameter istypically .1, meaning that the KWTA constraint
isstill fairly strongly enforced.

Activation Scaling

As activation propagates through the network, there is some degree of oss through successive
layers since hidden units have greater uncertainty (especially early on in training) and correspond-
ingly lower activation levels than the inputs which feed into them. This cascades through the sub-
sequent layersin the network, resulting in increasingly weak and undifferentiated activation states.
Oneway of compensating for thislossis to increase the gain of both the individua probability sig-
moids and the ReBel odds ratio sigmoid, but this sacrifices the graded activation signal which is
crucial for learning as discussed above.

In order to compensate for the loss without sacrificing the graded signal, all the activationsin a
given layer can simply be scaled up by a single multiplicativefactor. Thisfactor isafunction of the
maximum activation in the layer. However, it is not desirable to have the maximum activation of
every layer beidentical, so the scaling isnot alinear function of the distance between the maximum
and some target maximum. Instead, a convex-shaped function of the current maximum isused (see
Figure 9.1), so that the activation value is increased relative to its current value, but not to a fixed
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constant value. Thisconvex functionisactually implemented by thetop half of asigmoid: acq1.q =
Oscale(@maz— .b) Withagainof 10, soitisfairly highly curved over the .5to 1 range of the maximum
activation value. Every unit in the layer is multiplied by the ratio of acqiecd/@maz-

Thresholds

There are several thresholdsthat can be used to optimize the computationa speed of processing
in LEABRA. These are functionally relevant in some cases as well.

There are a set of thresholds that determine when to stop settling. Settling stops whenever the
maximum changein activation (delta-activation) value for any unit fallsbelow athreshold (typically
.02), which typically resultsin a number of settling cycles between 15 and 40. A maximum cutoff
of 60 cyclesisused in case the delta-activation threshold was not reached.

Duetothe kWT A ReBel function, theunitsin LEABRA tend to either be active (> .5) or inac-
tive. Processing can be speeded up considerably by using athreshold bel ow which unitsdo not send
activity to other units (typically .1). To take advantage of thisthreshold, net inputs are updated by
the sending unit, not the receiver. Thus, typically only around & units are sending activity in agiven
layer.

Similar to the sending threshold, alearning threshold can be applied. Since all weight changes
are afunction of the activity of the receiving unit, unitswith lower than athreshold level of activity
(typically .1) in both phasesdo not perform any learning. Thissavesasimilar anount of computation
as the sending threshold, scaling the overall computational demands of LEABRA by k£ and not N.

Clamping Activation Values

There are some issues associated with the external “clamping” of unit activationsgiven that such
units also need to participatein learning, which in LEABRA depends on other activation-based pa
rameters such asthe L. term described above and the gradient of theactivationsinthe plusand minus
phases. One dternativeisto use “soft clamping”, where the external input is just added into the net
input for the units. A faster aternativeis to clamp the individual probabilty value P(h;'- |x,) (to ei-
ther 1 or O, typicaly), and then compute the rest of the ReBel activation function as usual, using a
P(hy|x,) KWTA threshold value equal to the parameter q (which is appropriateif there are exactly
k valuesat 1.0, and the remainder at 0).

Given that the minus phase activationsfor the output units (those that receive plus-phaseinputs
from the environment) are typically lower than the clamped plus phase values, there exists a small
positive error gradient (plus phase - minus phase) even when all the correct target values are among
the k& winners of the KWTA activation function. Thissmall gradient isuseful becauseit allows asso-
ciativelearning to occur (it does not occur if the error gradient is negative, as described previously),
and tends to communicate a positive gradient to those units which were responsible for getting the
right output unitsactiveinthefirst place. A similar kind of phasegradient can beimplementedfor the
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input units, which facilitates learning over the input patternsjust asthe natural gradient doesfor the
output units. Thisis done by moving the clamped activationsin the minus phase towards .5, while
leaving the plus phase activations alone, resulting in a positive gradient. The magnitude of thisgra-
dient is normalized across different activity levels by making it equivalent to that which would be
exhibited by a network with 25% activity, and so that the net gradient over all theinput unitsis zero:

a; — kyrad/ ifa;, > .5
j:{ 7o ! (9.8)

a,j—}—kgmd/(l—a) if a; < .5

The parameter k.., 4, which ishow much the activation for aunit in alayer with 25% activity would
differ in the two phases, istypically .005. Thus, it isavery small effect, but it resultsin reliable
improvments in performance.

Bias Weights

Bias weights, or adaptive constants added to the net input of units, are essentia for effective
learningin LEABRA.. Biologically speaking, these might correspond to variationsin the overall ex-
citability of aneuron, which could beregulated in anumber of different ways. Computationally, bias
weights enable unitsto have different thresholds of input to become active, which isequivalent to a
prior probability. Unlike other weights, bias weightsin LEABRA are not bounded. They are sim-
ply adaptive thresholds that are added into the net input of a unit. These weights do not enter into
the average net input computation for the layer which is used to set the floating offset as described
above.

Bias weights are adapted according to the error derivative with respect to the unit, or simply:

Awy, = a,j —-a; (9.9
Thus, biasweightsdo not have an associative function (since they are not associated with any useful
stimulus). One problemwith (9.9) isthat theweightstend to grow large over timedueto the accumu-
lation of small activation differences. As described above, clamped output units are typicaly more
active than in the minus phase, and this can also be true of hidden unitsin the plus and minus phase.
Thus, alearning threshold (typically .1) is applied to the bias weights, so that any change below this
threshold is not applied to the weights.

Weight Gain

Since all weightsin LEABRA have the same range (0 to 1), it is not possible for the network
to develop large weights to some inputs that are important but would otherwise contribute little to
the overall net input of a unit. For this reason, a“weight gain” parameter is applied to all weights
on alayer-by-layer basisin order to compensate for the case where a given layer has only one or a
few active units, while other layers have many active units. This parameter simply multipliesthe
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weight valuesfor the net input computation. If the difference in number of activeunitsissmall, itis
not important to change this parameter from the default of 1. However, if alayer receives from one
layer having 12 active units and another having only 1, for example, aweight gain parameter of 12
will equalize their contribution to the net input of the unit.

Pseudo-code For Implementing LEABRA

One effective way of understanding what actually happensin a given neura network algorithm
is to view the code that implements that algorithm (an even better way is to write the code your-
selfl). The following pseudo-code shows how LEABRA isimplemented. An actual implementa-
tion of LEABRA isavailable as an extension of the PDP++ simulator package, and is available by
writing to the author (ro2m@crab.psy.cmu.edu).

This code iswritten for updating the activations and weights of unitsin asinglelayer (avoiding
the looping over layers), and does not include detailsrelevant for clamping external inputs, etc. An
object-oriented coding style (like C++) isused.

/1 the following are the class objects and functions

/1 defines control of processing

class Control {
/] parameters
i nt n_cycles = 60; /'l number of cycles for settling (max)
float max_da_thresh = .02; // threshold for stopping settling

/'l vari abl es

i nt phase; [l current phase (0 = minus, 1 = plus)
i nt cycl e; /1 current cycle nunmber
fl oat max_da; /1 maxi mum del ta-activation

// functions

Run() { /1 process one stimulus using LEABRA
Do_Phases();
Do_Learni ng();

i

Do_Phases() { /1 iterate over plus-m nus phases

for(phase = 0; phase < 2; phase++)
Do_Settling();
i

Do_Settling() {
Layer.Initialize();
max_da = 1;
for(cycle = 0; (cycle < n_cycles) && (max_da > nax_da_t hresh);
cycl e++)
{
Layer. Conput e_Net _I nput () ;
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Layer. Conpute_Act _i (); /1 individual probability
Layer. Conpute_Q Val (); /1 conparison h_q val ue
Layer. Conput e_Act () ; /1 final activity using rebe

}
b

Do_Learning() {

Layer. Conput e_dW () ;

Layer. Updat e_Wei ght s();
i

i

/1 defines the variables in a |ayer
cl ass Layer {
/] parameters
i nt n_active = 25% of units; // nunber of active units (k)

float gq_point = .25 /1 where to put h_qgq between k and k+1

float rel _gain = 2.0; /1 gain of relative normalizing (nor_r) signoid
float raw gain = .1; /1 anmpbunt of ‘‘raw’ act_i in act

float net_off_point = .25; // where to set net input offset

/'l vari abl es

Unit wunits[]; /1 an array of units for this |ayer

fl oat net_avg; /1l average net i nput

fl oat net_max; /1 maxi mum net i nput

float net_off; /1 floating offset for net input

fl oat net_gain; /1 floating gain parameter based on net
float kth_act _ip; /1 kth nmost active (indiv*pri act) val ue
float klth_act _ip; /1 k+1th nost active (indiv*pri act) value
float kth_act i; /1 kth nmost active (indiv act) val ue
float klth_act _i; /1 k+1th nost active (indiv act) val ue
float q_val _ip; /1 conparison h_qg (indiv*pri act)

float q_val _i; /1 conparison h_g (indiv act)

float act_max; /1 maxi mum activation in |ayer

float act_scal e; /1 scaling of activations

float act_avg; /1 average activation over |ayer

/1 functions
/1 initialization (before settling)
Initialize() {

for Unit* u over units {

u->act = .25; /1 reset activation, prior to nean
u->p_act = .25; /1 assum ng 25% activity
u->prv_net = 0; /] reset previous net input value

}
b

/1 activation updating (conpute in this order)
Conput e_Net _I nput () {
net _avg = O;
net _max = - MAXFLOAT,;
for Unit* u over units {
u- >Comput e_Net _I nput();// sets u->net as neti nput
net _avg += u->net;
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net _max = MAX(net_nmax, u->net);

}
/1 this inplements the floating offset and gain for sigmoid
net _avg /= units.size; /1 divide by number of units

net _off = net_avg + net_off_point * (net_max - net_avg);
if(Control.cycle >= 10) {
new net_gain = 2.9444 / (net_max - net_off);

net_gain = .001 * new net_gain + .999 * net_gain;
}
i
Conpute_Act _i () { /1 individual probability
for Unit* u over units {
u->act_i =1/ (1 + exp(-net_gain * (u->net - net_off)));
u->act_ip = u->p_act * u->act_i;
}
i
Conpute_Q Val () { /1 conparison distribution
Sort(units by act_ip); /! actual sorting is optimzed

kth_act _ip = units[n_active]->act_ip;

kith_act _ip = units[n_active + 1]->act _ip;

g_val _ip = klth_act_ip + q_point * (kth_act_ip - klth_act_ip);
/1l these are required for computing nor_c for nmaxin |earning

kth_act i = units[n_active]->act_i;

kith_act i = units[n_active + 1]->act _i;

g_val i = klth act_i + g_point * (kth_act_i - klth_act _i);
1
Conpute_Act () { /] activation using rebe

act_max = 0;
for Unit* u over units {
u->nor r =1/ (1 + (u->act_ip / q_val _ip) -rel_gain);
/1 preserve small probabilities for |earning using raw gain
u->act = raw.gain * u->act_i +
((1 - raw gain) * u->act_i * u->nor_r);
act _max = MAX(act_max, u->act);

}
act _scale = 1.0;
if(act_max > .5) /] activation scaling by max
act_scale = (1 / (1 + exp(-10 * (act_max - .5)))) / act_max;
act _avg = 0;
Control . mpax_da = 0; /1 control settling based on nmax da
for Unit* u over units {
u->act *= act_scal e; /] actually scale activations

act_avg += u->act;
u->da = u->act - u->p_act; // change in activation

Control . max_da = MAX(Control.nmax_da, u->da); // for settling

u->p_act = u->act; /1 update prior fromcurrent
/1 followi ng only need be done at end of settling
i f(Control.phase == 0)

u->act _m = u->act; /| store phase-based vari abl es
el se {

u->act _p = u->act; /1 for use in |earning

215
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u->nor_ ¢ =1 - (1/ (1 + (u->act_i / g_val _i)"-rel _gain));
}
}

act_avg /= units.size; /1 also used in |earning

b

/1 | earning
Conpute_dW () {
for Unit* ru over units {
for Connection* c over u.cons
c. Conpute_dW (ru); /1 call function on conns
}
i

Updat e_Wei ghts() {
for Unit* ru over units {
for Connection* c over u.cons
c. Update_Wei ghts(); /1 call function on conns

b
b

/] defines the variables in a unit
class Unit {
/] parameters

bool GAUSSI G = true; /'l true for GausSig (el se Signoid)

float net_dt = .7; /1 dt for updating net input

/1 variabl es

float prv_net; /1 previous net input

float net; /'l net input

float act_i; /1 individual probability (P(h™i | x))
float act_ip; /1 individual times relative prior (act_i * p_act)
float nor_r; /1 normalized |log odds ratio for relative
fl oat nor_c; /1 conplenment of nor_r (for maxin |earning)
float act; /1 final activation (rebel prob.)

float p_act; [l prior probability

fl oat da; /1 change in activity fromone cycle

float act_m /1 m nus-phase activity val ue

fl oat act_p; /1 plus-phase activity val ue

Layer* ny_I ay; /1 layer this unit is in

Connecti on bi as; /1 bias weight val ues

Connection cons[]; /1 an array of receiving connections

// functions

Conput e_Net I nput () { /! sender based is used in pdp++
net = bias.w; /'l but recv based is shown here
for Connection* c over cons {

i f(GAUSSI G

net += (c->su->act * c->wm) *
(1 - c->k_gaus * (c->su->act - c->wt)"2);
}

el se
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net += c->su->act * c->w;
}
/1 time-average net input
net = prv_net + net_dt * (net - prv_net);
prv_net = net;

/] defines the variables in a connection
cl ass Connection {
/] parameters

float k_gaus = 2.0; /1 GAUSSI G wei ghti ng paranet er
float lrate = .01; /1 learning rate

float k_err = 1.0; /1 strength of error-driven
float k_assoc = .1; /'l strength of associative
float k_scl = .25; /1 strength of soft-cmp-lrn asc
/1 variabl es

Unit* su; /1 pointer to the sending unit
float w; /1 wei ght val ue

float dwt_err; /1l change fromerror (chl)
float dwt_asc; /1 change from assoc (maxin)
float dwt; /1 overall weight change

/1 functions
Conpute_dW (Unit* ru) ({ /1 ruis receiving unit

s

/1 first conpute CHL error-driven component

i f(GAUSSI G ({
float ru_act dif
float su_act dif

ru->act_p - ru->act_m
su->act_p - su->act_m

dwt _err = (ru->act_p * su->act_p) - (ru->act_m?* su->act_m +
*

k_gaus * cn->wt /1 this extra termis for gaussig
(ru_act _dif * (su->act_p * (su->act_p - w) +
su->act_m* (su->act_m- w)) +
su_act _dif * (ru->act_p * (ru->act_p - w) +
ru->act_m?* (ru->act_m- wt)));

}
el se

dwt _err = (ru->act_p * su->act_p) - (ru->act_m?* su->act_m;
dwt = dwt_err * k_err; /1 weight by err strength

/1 now conpute Maxln associ ative component

dwt _asc = /1

(ru->act_p * ru->nor_c * (su->act_p - su->ny_| ay->avg_act)) +
(k_scl * ru->act_p * (su->act_p - w));

/1 only add assoc if err is positive or assoc is negative
if((dwt >= 0) || (dwt_asc < 0))
dwt += k_assoc * dwt _asc;

Updat e_Wei ghts() {

/1 first performsoft-bounding on the weights
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if(dwt > 0) dwt *= 1 - wt;
el se dwt *= wt;

w += lrate * dwt;
s
s

Derivation of GeneRec for the GausSig Function

As described in Chapter 4, the GeneRec learning rule needs to incorporate the derivative of the
individual probability function with respect to the net input term to work with the GausSig function.
Whilethestandard GeneRec learning rule (e.g., for the CHL case) asderived in Chapter 2 doeswork,
the correct learning rulefor GausSig asderived heretypically works better. Thelearning rule endsup
being essentially CHL with an additional weight-based cost function, the biological plausibility of
whichisnot clear, but it islocally computableand might correspond to someinfluence of the current
weight value on the magnitude and direction of synaptic modificationin cortical neurons.

There are two ways of approaching the use of GausSig in learning. Oneisto consider the actual
derivative of the GausSig function with the activation and weight modulated distance term (4.29),
which israther complicated due to the multiple dependencies on the weight which isthe variabl e of
differentiation, and resultsin a complicated expression. The other isto consider the simpler Gaus-
Sig function without the activation and weight multiplying the distance penalty, which resultsin a
considerably simpler and cleaner learning rule. Thislatter approach istaken here, sinceit isthetwo
magnitude and distance terms in GausSig which should be optimized by |earning, not the activation
and weight multiplying term.

The derivative of the GausSig function (4.29) with respect to the weight, and treating the activa
tion and weight multiplier on the distance term as a constant, is (replacing &,,.,ss With k for simplic-

ity):
on

ow;;

=z; + kaiwzj(mi — wij) (9.20)

which can be compared with the much simpler aaw—”ij = z; for the standard dot product net input.
Thus, the derivation of a symmetric, approximate midpoint version of the GeneRec learning rule
(analogousto the CHL learning rule for dot-product based net inputs) is as follows:

(= 97)lef + 2kafwi(ef — wy) + 27 + 2kaywi(27 — wi))+

(ef — a7 )y + 2kyfwij(y] — wij) + y; + 2ky; wii(y; — wi]-)]] (9.11)
which can be simplified as:

1 _ _ _, _
zszj = (efyf —27y;) + kwy; [(?/;r — 97 )z (ef —wij) + 27 (27 — wij)]+
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Figure9.2: Differencesbetween GausSig and standard sigmoidal version of the CHL learning rule. The com-
puted weight change isshown asafunction of thesending (xp) and receiving (yp) activationsin theplusphase
(for fixed minus phase values of .5 for both 2m and ym), with aweight value of .5 and ak jauss parameter of
2. The differences between the shape of these learning rulesis not substantial, but does make some difference
in learning rate, probably dueto the larger value of the weight changes for GausSig.

(F — 27y (uf — wi)) + 97 (y) — wyy)] (9.12)

The differences between this GausSig version of the CHL learning rule and the standard sig-
moidal version can be seen in Figure 9.2, which shows how the computed weight change variesasa
function of the sending and receiving activationsin the plus phase. The differences are not substan-
tial, but the GausSig version tends to learn more rapidly, which is probably duetoitslarger overall
magnitude.

Guidelinesfor Setting Parametersin LEABRA

This section contains a set of guidelinesdistilled from my experience in getting LEABRA sim-
ulations to work well. The default parameters as described above work in a wide range of cases,
but things change a bit when using very large networks, and networks with very different levels of
activity in different layers.

Large Networks: For large networks, it is often necessary to sharpen the competition between
hidden units, given the |aw-of-large-numbers effect which will make the variance around the mean
for the net inputs to the units lower as the number of inputsisincreased. This can happen in anet-
work with more than around 100 or 200 hidden units. To compensate for the reduced variance, use
again parameter v for the normalization of the oddsratio in ReBel (which defines how “sharp” the
competition is between units) of 2.25 instead of the usual 2. In addition, thelevel of activity inlarge
hidden layers should typically bearound 15%, as opposed to the 25% | evel that works best in smaller
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networks. Finally, the k., parameter should be decreased in large networks (from 2 to 1, for ex-
ample), since the distanceswill be larger overal.

The bal ance between the two MaxIn learning components should also be altered for larger net-
works, which need to emphasize entropy reduction over information preservation since they have
more degrees of freedom. Thus, the weighting of the SCL (soft-competitive learning) component,
which performsinformation preservation, should be reduced from the standard value of .25 to some-
thing like .1. This should also be reduced in other cases where information preservation should be
de-emphasized, such aswith the random distributed input representationsin the family treestask, as
discussed in Chapter 7. 1t may aso be important to reduce the overall magnitude of the associative
learning component (kss0.) iN large networks.

Activity Levels: Theweight gain parameters that control the overall gain of aset of inputs com-
ingfromagivenlayer must beset to compensatefor thecase when different layershave very different
activity levels. Thiscan be tricky, because an input contributesto which unitsare activein terms of
the amount of variance it imparts across the different unitsin another layer, not in the raw net input
level, which isnormalized away in the soft KWTA ReBel function anyway (c.f., O’ Reilly & McCle-
land, 1994). The actua level of variance depends on the number of active input units aswell asthe
weight values from those units. Asageneral rule, if the numbers of active units are relatively close
(e.g., 5inonelayer and 7 in another), then theweight gain can beleft at one. However, if, for exam-
ple, there are 12 active unitsin onelayer and only 1 in another, then the weight gain from the layer
with only one active input should be greater than 1 but less than 12. If you consider the variance to
increase as the square root of the number of active units, then avalue of roughly 3.5 should be used
as aweight gain from the layer with one active unit. However, in practice it seems that 21/N gives
better results for cases with only on active input. Thus, a value of roughly 7 should be used in this
example.

The value of &y, in (4.29) istypicaly 2, except when the input is more sparse (or the input
layerislarge), inwhich caseitis 1. If thereisonly oneinput present at any giventime, then avalue
of Oisappropriate, since the advantages of the GausSig function will not apply in this case.

For alayer withavery sparseactivity level (below 10%), it can beimportant to lower thelearning
threshold for the bias and other weightsin that layer from the standard of .1. For example, in the
family trees network with orthogonal localist inputs, which have around 4% activity, a threshold of
.02 was used. Thisenablesthe smaller overall activation differencesin such layersto register weight
changes more often.

Layers with higher levels of activity (above 30%) appear to impair learning and generalization
performance in LEABRA. One reason for thisis that the associative learning will tend to saturate
with higher activity levels, sincethe baselinelevel of association will be quite high. Thus, such high
activity levels should be avoided.
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