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Unraveling the Mysteries of Motivation
Highlights
Motivation can be operationalized in
terms of goals, which are distributed
and multifactorial, including biologically
and affectively salient outcomes,
sensory-motor plans, and integrated utility
representations. Different frontostriatal
loops are specialized for each of these
factors, involving the OFC, dlPFC, and
ACC, respectively.
Randall C. O’Reilly1,*

Motivation plays a central role in human behavior and cognition but is not well
captured by widely used artificial intelligence (AI) and computational modeling
frameworks. This Opinion article addresses two central questions regarding
the nature of motivation: what are the nature and dynamics of the internal
goals that drive our motivational system and how can this system be sufficiently
flexible to support our ability to rapidly adapt to novel situations, tasks, etc.? In
reviewing existing systems and neuroscience research and theorizing on these
questions, a wealth of insights to constrain the development of computational
models of motivation can be found.
We appear to have different value func-
tions when considering potential goals
to pursue, compared with when we are
engaged in pursuing an active goal: the
goal-selection phase is relatively conser-
vative because the goal-engaged state
is so dominated by pursuit of the active
goal. This can explain procrastination
and other phenomena.

The coordination and binding across
these distributed goal representations
during planning and decision making
requires serial processing, which also
has the benefit of enabling flexible
reuse of processing systems across
time, resulting in serial Turing-machine-
like flexibility.
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Motivation lies at the heart of all cognition and behavior. We only think what we are motivated
to think and do what we are motivated to do. At some level, this is an empty tautology.
However, if we could construct an artificial cognitive system that exhibits human-like motiva-
tion, it would likely revolutionize our understanding of ourselves, by helping to unravel the
details of how our motivational system works and how we can make it work better
(e.g., most of the major mental disorders can be characterized as disorders of motivation).
However, the most widely used AI/computational modeling approaches in this area are
based on the reinforcement learning (RL) framework, which is rooted in the classic behaviorist
tradition that treats the organism as a relatively passive recipient of rewards and punishments
[1,2]. These models typically have only one overriding goal (to accrue as much reward as
possible) and although recent ‘deep’ versions of these models have demonstrated spectacular
success in game playing [3], these models remain narrowly focused on maximizing one
objective and do little to help us understand the flexibility, dynamics, and overall richness of
human motivational life.

By contrast, we are manifestly under the spell of our own internal motivations and goals, with
many dramatic examples of the sheer power of these systems. Anyone who has been a parent
can appreciate the transition that emerges around the age of 2 years, when your child suddenly
starts to strongly want things and really not want other things, to the point of throwing epic
tantrums that clearly exceed any rational metabolic cost/benefit analysis. The current tragic
epidemic of suicide is another stark indicator that our motivational systems are strong enough
to override even our basic survival instincts. Likewise, the rational economic picture of human
decision-making runs counter to the large numbers of voters who appear to disregard their
own economic, health, and other considerations in favor of more strongly felt social affiliations
and other powerful motivational forces. These have not been traditional targets of computational
modeling, but perhaps they should become the main focus, to probe the deepest, darkest
secrets of our motivational systems.

This Opinion article highlights central challenges and progress in developing computational
models of human motivation, focusing on a biologically based approach involving interactions
among different brain systems to understand how both the normal and disordered system
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functions. Two central questions, the answers to which would significantly advance our compu-
tational models, are as follows.
• Can we specify with computationally useful levels of precision the nature and dynamics of the

internal goals that drive our motivational system?
• How can the motivational system be sufficiently flexible and open ended to support the huge

range of human motivated cognition and behavior, and our ability to rapidly adapt to novel
situations, tasks, etc.?

If good answers to these questions can be found, perhaps wewill then understand the underlying
basis of human flexibility, adaptability, and overall robustness, which remains unmatched in any
artificial system, even with all the recent advances in AI.

The Nature and Dynamics of Goal States
It is broadly accepted that we can usefully characterize our motivational systems in terms of
internal goals, which serve as the core construct for understanding how motivated behavior is
organized toward achieving specific desired outcomes [4–17]. However, defining with computational
precision exactly what a goal is, and how it functions in the biological networks of the brain, remains a
central challenge. An important point of departure is to at least assert that active goal states ultimately
correspond to states of neural activity in the brain, which are architecturally centrally positioned to
drive behavior in ways that other neural activity states are not. This central, influential status of goal-
related activation states implies, under most mechanistic attempts to define properties of conscious
awareness [18,19], that typically they should be something we are aware of. However, that does not
mean that we are necessarily aware of the various forces driving the activation of active goal states in
the first place [14] – this is a major but separable topic that is not pursued further here.

A major challenge here is that the term goal can refer to many different things. Perhaps this
can instead be turned into an opportunity, by adopting a distributed, multifactorial model of goal
states (Figure 1). Specifically, we can think of an overall goal state as comprisingmultiple interacting
yet distinguishable components, with good support for at least the following three major compo-
nents based on a substantial body of systems neuroscience research and theory [17,20–31].

• Internal representations of biologically and affectively salient outcomes [e.g., the uncondi-
tioned stimulus (US) of classical conditioning, including food, water, social connection, etc.].
There is considerable evidence that the ventral-medial prefrontal cortex (vmPFC), specifically
including the orbitofrontal cortex (OFC), plays a central role in actively maintaining and tracking
these US-like states (which are richer and more stimulus specific than pure ‘value’), and OFC
damage impairs the ability to adapt behavior to rapid changes in these US outcomes [16]. As
in classical conditioning theory, a critical feature of these US-like representations is that they
provide a biologically based a priori grounding to the entire motivational system: goals are
not purely arbitrary and fanciful, but rather are ultimately driven by core biologically based
needs. There is an extensive literature on drives going back to Hull [34] andMaslow’s hierarchy
of needs [35], which relate to this essential component of motivated behavior, and modern
neuroscience research suggests that many different specialized subcortical areas, including
the amygdala and hypothalamus for example, are the source of neural projections that
converge into the OFC to anchor our highest-level cortical goal states [21].

• Sensory-motor plans that specify how behavior and cognition should be directed to achieve
the desired outcomes. Extensive research indicates that networks in the dorsolateral prefron-
tal cortex (dlPFC) support such representations and strongly influence other brain areas in
support of such plans [36–38]. For example, scoring a goal in a game (using a particular
strategy) is an action-oriented, plan-level ‘goal’ to achieve the outcome goal of winning. The
426 Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6
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Figure 1. Three Core Elements of Distributed Goal States. Schematic for how four different anatomically defined loops
through the frontal cortex and basal ganglia [20] correspond to a three-factor distributed, componential goal state, which
collectively drives concrete action selection in the fourth, motor-oriented loop [supplementary motor area (SMA)]. The
orbitofrontal cortex (OFC) maintains and tracks biologically salient outcomes, the dorsolateral prefrontal cortex (dlPFC)
selects, maintains, and guides sensory-motor plans, and the anterior cingulate cortex (ACC) integrates these factors,
along with potential effort and other costs, in terms of overall utility. The consistent frontostriatal loops across these
areas support flexible, dynamically gated active maintenance and updating of these distributed goal states (e.g., [32,33]).
Abbreviations: DMS, dorsomedial striatum; DS, dorsal striatum; MD, medial dorsal thalamus; MVS, medial ventral striatum;
VA, ventral anterior thalamus; VL, ventral lateral thalamus; VS, ventral striatum.
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dlPFC also interacts extensively with the parietal lobe, which represents the sensory aspects of
the action plan (e.g., the visualization of the ball going into the net).

• Integrated utility combines information from the above components to determine the net
balance between the value of the potential outcome (in the OFC) and the relative costs and
effort associated with the specific plan being considered to obtain that outcome (in the
dlPFC). There is extensive evidence that the anterior cingulate cortex (ACC) encodes this inte-
grated utility information, including uncertainty and conflict signals associated with potential
action plans [39,40].

All of these brain areas (and other related neighboring areas, such as the anterior insula and
broader vmPFC) interact through extensive interconnectivity in the process of converging on an
overall goal state. This goal state in turn drives subsequent behavior in accord with the engaged
action plan, with extra attentiveness to progress toward, and opportunities consistent with, the
expected outcome. The ACC state may play a critical role in energizing behavior in proportion
to the net overall utility [41,42]. A critical advantage of incorporating these multiple factors
together under the goal construct is that they all shouldmutually interact in the goal-selection pro-
cess: the specific sensory-motor plans necessary to achieve a given affectively salient outcome
must be appropriate to the specifics that particular outcome (indicating the need for more than
purely abstract value representations), and the integrated utility obviously depends on both of
these components, but also feeds back to potentially modify plans and outcome goals to maxi-
mize overall utility.

Computationally, this process of converging on an overall goal state can be described as a
parallel constraint satisfaction process [44–46], where many individual factors, encoded directly
Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6 427
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via rates of neural firing communicated over learned synaptic weights, mutually influence each
other over a number of iterative stepwise updates to converge on an overall state that (at least
locally) maximizes the overall goodness of fit between all of these factors. The properties of this
systemmay explain how unconscious factors can come to influence overt behavior in the course
of solving the reduction problem of choosing one plan amongmany alternatives [47,48]. We have
implemented this process in two related models [43,46] as illustrated in Figure 2, both of which
demonstrate the importance of this interactive, constraint-satisfaction process of goal selection.

This notion of tightly interacting yet functionally separable brain areas can help to make sense of
empirical data showing that while individual neurons throughout all of these areas exhibit tuning
for each of the aforementioned factors, more comprehensive population-code data in monkeys
show clearer differences in overall coding across these areas, in ways that correspond nicely
with the aforementioned functional account [30,49]. The separability of these areas also aligns
TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 2. Computational Model of Constraint-Satisfaction Goal Selection. Computational model demonstrating how multiple separate goal-state components
interact to produce coherent overall goal selection [43]. A simulated rat (named ‘Emery’) forages in a plus-maze-like environment with four different possible primary
value (PV) locations (red, meat; blue, water; yellow, sugar; green, veggies). In addition to these positive PV outcomes, each location can also have negative outcomes
(e.g., veggies can be bitter, meat can be rotten). For each run, Emery experiences two states of negative body state deprivation (e.g., thirst and need for vitamins from
veggies), which drive goal selection. Emery processes a bitmap first-person camera view into the environment, to extract an invariant Object IT representation. The anterior
cingulate cortex (ACC) ActPlans units encode the four different potential targets to approach, coordinating the orbitofrontal cortex (OFC) positive learned value (PosLV)
representations that learn the specific target features associated with different PV outcomes, with the specific dorsolateral prefrontal cortex (dlPFC) motor plan required
(Approach Target in this case). The negative learned value (NegLV) OFC representation encodes negative outcomes associated with different targets and helps to constrain
the target-selection process. All of these prefrontal cortex (PFC) areas interact through bidirectional connections to settle on the target that best satisfies all of these factors
(constraint satisfaction). At that point, those PFC states are gated in [via simulated ventral striatum (VS) gating] and maintained during the goal-engaged period. These top-
down signals bias the dopamine-driving pathways in simulated amygdala (CeM, BLA) to produce phasic dopamine signals in response to increments of progress toward
the target state.
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with the separate loops of interconnectivity between these frontal areas and corresponding basal
ganglia areas [20,50] (Figure 1) and with the overall idea that the OFC encodes stimulus-driven
motivationally salient information as part of the overall ventral pathway while the ACC
encodes action-based affective information as part of the dorsal pathway [51].

Finally, as noted earlier, these high-level, cortical systems interact extensively with the many
different subcortical affective/motivational areas including the amygdala, hypothalamus, lateral
habenula, and ventral striatum (nucleus accumbens), which in turn modulate the firing of deep
midbrain neuromodulatory systems including the ventral tegmental area (VTA) dopaminergic
system and the serotonergic system in the dorsal raphe nucleus. These neuromodulators in
turn shape learning throughout the affective/motivational system, focusing learning on affectively
significant, unexpected outcomes. Computational models of these systems at multiple levels of
analysis show how these interacting systems can produce the signature phenomena of classical
and instrumental conditioning, thereby explaining how perceived rewards and punishments can
modulate behavior [52–55].

In summary, from the earlier discussion, the existing systems neuroscience literature can provide
a specific and concrete basis for the development of computational models of how componential,
distributed goal states could work together to guide behavior in motivationally appropriate ways.
The detailed way in which any given specific goal state might come into activation may be
complex, chaotic, and difficult to explain [14], but hopefully we can at least articulate the broader
principles and organization of the neural systems involved, and the computational models can
provide a critical bridging link between these neural systems and overall adaptive behavior.

Temporal Dynamics of Goal-Engaged versus Goal-Selection States
Another major set of questions for computational models concern the temporal dynamics of
when these goal states become activated, how long they are maintained, and how the
system knows when a goal has been completed and can therefore move on to another.
Interestingly, our everyday subjective vocabulary characterizes these goal dynamics well,
providing at least some potential insight into how the neural system functions. We experience
satisfaction and pleasure when our goals are achieved, frustration and anger when they are
impeded, and disappointment, sadness, and rage when we are forced to finally give them
up. Boredom dominates when we cannot find anything interesting to engage in, and the
aversiveness of this state suggests the overall importance of having actively engaged
goals [56]. The broad scope and likely universal nature of these states associated
with goal-driven processing suggests that our brains have biologically grounded, primary
motivational/affective states associated with keeping ourselves in a productive, goal-
engaged mode of functioning.

One of the most effective components of the standard treatment for major depressive disorder is
the concerted reestablishment of basic goal-engaged behaviors, known as behavioral activation
[57]. Self-actualization, or the achievement of major life goals, confers a broad sense of satisfac-
tion, and soldiers and parents report high levels of life satisfaction even while experiencing higher
levels of adversity and challenge on a moment-to-moment basis [58]. The importance of these
goal-oriented states for our everyday lives again points to the centrality of motivation for under-
standing human cognition, and a key computational modeling challenge is to construct the
necessary metacognitive monitoring and motivationally significant grounding to enable a model
to capture the corresponding goal dynamics.We really need ourmodels to experience something
like frustration when we impede their ability to make progress on goal states that were activated
through their own constraint-satisfaction process.
Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6 429
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Further insight into these dynamics comes from considering the puzzle of procrastination: if
goal achievement is so rewarding, why dowe procrastinate somuch? This and other interesting phe-
nomenology can be explained by considering the different forces in play at two different points in the
overall goal dynamics [8,12,13,43,59]: when you are currently engaged in pursuing an active goal
(goal engaged) versus when you are selecting the next goal state to engage in (goal selection).
These are labeled postdecisional or volitional versus predecisional or motivational according to the
Rubiconmodel [13]. In the goal-engaged state, the brain develops a form of tunnel vision and can be-
come obsessed with completing the goal, sometimes to the point of neglecting other important
needs. Video games in particular have perfected the engagement of this state, by providing incremen-
tal positive rewards and indicators of progress toward the goal, which seem particularly important for
sustaining the goal state. In recent years, many activities have become ‘gamified’ by adopting the
same strategy, with exercise equipment, point cards, and especially social media apps tapping into
the same drive to ‘keep surfing that wave of progress toward your goal’. Giving up on our goals is
aversive, so even if we no longer value the outcome that much, it is hard to stop. How many times
have you finally managed to disengage from an addictive game or binge-watching a TV series, only
to realize with disgust how much time has been wasted on a seemingly meaningless activity?

It is precisely this obsessive, locked-in nature of the goal-engaged state that requires the goal-
selection process to be cautious and careful. In effect, your brain knows that whatever goal you
end up selecting to engage in, you will run the risk of overcommitting, so it works extra hard to
ensure that only the best goals are selected. However, what is best for your brain’s reward path-
ways may not be what you rationally consider to be the best. Your brain evolved in times of scarcity
and challenge and thus a quick, safe, highly rewarding outcome is generally preferred over
a longer-term, more uncertain gamble [60] – this is the same dynamic for why we prefer
sugary and fatty foods instead of the longer-term benefits of healthy vegetables etc. This is also
why you tend to gravitate toward simpler, more satisfying tasks when faced with the unwelcome
prospect of writing that overdue paper, paying those bills, doing your taxes, or replying to those
more difficult emails that have been festering in your inbox. Your brain is just being ‘rational’ in
choosing the most immediately rewarding goals for you. To overcome this biological bias, you
must somehow align your sense of value with those things that you actually need to do, and that
is where deadlines come in: they force the issue and finally get that difficult task over threshold.

Inevitably, once you start on those challenging tasks, you experience the ever-surprising feeling
that it was not so bad after all (only to forget it again in time for the next such difficult task). This
discrepancy clearly demonstrates that we have fundamentally different value functions operating
during goal selection versus the goal-engaged state, and computational models will need to in-
corporate these state-dependent differences in value. Heckhausen, Gollwitzer, and colleagues
have published several studies demonstrating the differences between these states, providing
further potential targets for computational models [13].

Interestingly, the opposite of procrastination, precrastination, has also been found, where people
prefer to get a more difficult task out of the way first [61]. This reversal of the usual pattern may be
attributable to the desire to reduce the dread or weight of more difficult tasks, which is another
countervailing motivational force that helps to mitigate against procrastination. The exact balance
of these forces in any given situation may have to do with the perceived inevitability of the different
tasks: if it is clearly not possible to put off the more difficult task, it makes more sense to get it out
of the way first, as that will lighten your mental burden.

These kinds of pervasive mental phenomena that are strongly tied to the dynamics of goal activa-
tion and completion provide concrete targets for computational modeling and are further
430 Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6
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evidence for the central importance of goal states in shaping our mental lives. Computational
models are likely to require built-in motivational drive states associated with all of the aforemen-
tioned dynamics (satisfaction, disappointment, etc.) to keep the system productively engaged
in a sequence of goal-selection and -completion cycles. The breakdown of various elements in
this overall dynamic could lead to the emergence of a depressive state, which produces a self-
reinforcing feedback loop of disappointment and sadness associated with the lack of goal
engagement (and associated feelings of lack of overall self-efficacy and self-worth).

The prevalence of depression, and the diversity of etiologies that all converge on the same general
dysfunctional behavior, suggests that the balance of this goal-driven machinery may be relatively
delicate overall. Although it sounds a bit creepy in an uncanny-valley sense, there is no obvious
theoretical reason why computational models could not exhibit all of these kinds of dynamics
and thus provide significant insights into the complex emergent dynamics of these motivational
systems. The existence of such models would be likely to undermine the widely held belief that
it is precisely this capacity for complex emotional and motivational dynamics that makes us
uniquely human.

Flexibility, Novelty, and the Importance of Sequential Processing
Let us now turn to the second major question posed at the outset: how can the motivational
system be sufficiently flexible and adaptive to account for these signature properties of human
behavior and cognition? The central hypothesis considered here is that the distributed, multifac-
torial nature of goal states, along with basic physical constraints, converges to require goal-
related processing to be fundamentally sequential in nature, and this sequentiality in turn affords
important benefits for flexibility and the ability to deal effectively with novel situations [46].

Physically, we can generally only do one thing at a time (walking and chewing gum being the ex-
ception rather than the rule), and this constraint appears to extend into the cognitive realm as well
[62]; apparent multitasking is usually accomplished by rapid switching between tasks. Thus, goal
selection represents the fulcrum bywhich otherwise parallel processing systems in the brainmust
produce a serial sequence of individual actions, carefully selected to optimize this extremely
limited serial resource. The parallel constraint-satisfaction process that drives goal selection
must therefore properly integrate the many different factors relevant to the current situation
(internal body state, external cues and constraints, etc.) to come up with a plan that satisfies as
many of these constraints as possible within a given plan of action.

The transition to a serial mode of processing, while slower overall, also affords many benefits,
which can be summarized by ‘the three Rs’: reduce, reuse, and recycle. Serial processing re-
duces binding errors that would otherwise arise from considering multiple options at the same
time, across multiple distributed brain areas. For example, if the ACC activates an ‘effortful’
representation in response to multiple different dlPFC plans being considered in parallel, how
does the system know which plan is being so evaluated? This is a widely recognized problem
for parallel distributed systems [63], which is avoided by only considering one potential plan at
a time, so that the associated representations across the rest of the brain areas can be assumed
to reflect the evaluation of that one plan. This is a key feature of our existing models of this parallel
distributed constraint-satisfaction process [43,46] (Figure 2). However, even when the focus is on
one particular goal, other goals (e.g., longer-term ones) can still inject relevant constraints into the
process and thus influence and integrate across time scales, etc.

In addition, serial processing enables the same representations to be reused over time, greatly
facilitating the ability to transfer knowledge from one situation to another and supporting the ability
Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6 431



Outstanding Questions
What other components or factors are
represented in distributed goal states
and which brain areas are critical for
such representations?

What kindsofmonitoring ormetacognitive
signals are required to implement
computational models of motivational
states like satisfaction, frustration,
boredom, etc.? These involve tracking
progress toward the achievement
of desired outcomes – how is this
progress tracking encoded in the brain
and how does it connect to central
affective brain systems involved in
dopamine regulation, etc.?

The most important specific version
of the previous question is how we
determine when a goal has been
accomplished? Is it just the first sight
or first taste of a desired outcome or
do you have to consume the whole
thing? Likewise, how do secondary
reinforcers like money, which can be
very abstract these days, drive primary
reward pathways? These issues have
critical implications for all aspects of
learning, as they determine when a
phasic dopamine signal occurs.

How are different timescales of goals
encoded? Are the intuitive inner and
outer loops of subgoals and goals
represented by distinct neural systems
or is everything just interleaved within
a common distributed system that
unfolds over time?

How are dlPFC plans represented such
that they can bias the unfolding of a
sequence of actions over time to
accomplish specific goals? In effect,
they function like a computer program –

how close is this analogy and are there
neural equivalents of core elements
such as loops, conditionals, subroutines,
variable binding, etc.?

To what extent can existing
reinforcement-learning computational
frameworks be extended to incorporate
the richer motivational systems impli-
cated in this Opinion article?

How can novel goal states be learned?
Many models assume a preexisting,
limited vocabulary of possible goals,
but human goals are open ended
and endlessly creative. The ultimate
challenge here is to understand how
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to make reasonable decisions in novel situations. For example, a single common distance repre-
sentation could be used in many different sequential goal-selection contexts to help compute
expected time and effort costs, whereas a parallel system would require multiple such represen-
tations to avoid interference.

Finally, serial processing allows prior states to recycle or reverberate over time, contextualizing the
evaluation of subsequent processing with some of the main conclusions derived from earlier pro-
cessing steps. By contrast, purely parallel systems require dedicated, separate substrates for
each type of processing being in done in parallel, and it is often challenging or even impossible
to ensure that the proper information and constraints are communicated across each of these
parallel channels. This is the fundamental reason why even relatively simple machines can be
universal computational devices (i.e., Turing machines) but parallel computers must be carefully
configured to achieve specialized computational functions (and many problems are simply not
computable in parallel due to mutual interdependencies). Thus, to achieve this same kind of
universal, flexible computational ability, the brain must likewise rely on fundamentally serial
processing.

Multiple approaches have converged on the idea that the neural engine responsible for imposing
sequential processing on an otherwise fundamentally parallel distributed neural computer is the
basal ganglia [32,46], as featured in the ACT-R production system model [64–66]. The basal
ganglia has opposing Go versus NoGo pathways [67,68] that compete to decide whether to
engage a proposed goal state that is currently activated and being evaluated in parallel across
the distributed cortical representations [46]. If the basal ganglia registers a NoGo (based on its
history of dopamine-modulated learning [55,69]), the process is iterated again with a new plan
that emerges from the ashes of the previous one, and so on until something gets the basal
ganglia’s Go approval, subject to relevant time and other constraints, etc.

Thus, the basic limitations against doing multiple things at the same time can give rise to a much
greater level of flexibility enabled by serial processing. The frontal cortex and basal ganglia may
have initially evolved to support basic motor action selection, but it is notable that these very
structures are among the most enlarged in humans, and our unique symbolic cognitive abilities
may represent the further development of these serial processing mechanisms to produce a
powerful integration of both massively parallel and flexible serial processing [70].

Concluding Remarks
In summary, there are considerable constraints on and relevant data for the development of com-
putational models of distributed goal representations that capture the differential value functions
associated with the goal-selection versus goal-engaged state. Furthermore, if these models
operate with significant serial dynamics, they can achieve greater flexibility, at the cost of slower
overall functioning. Managing the complexities of these serial dynamics is notoriously difficult in
complex recurrent networks, so this represents a major challenge as well as an opportunity.

Many important further questions arise directly from the ideas discussed here (see Outstanding
Questions), including major issues regarding the relevant timescales over which goals operate
and how the longer-term goals interact with the more immediate, active goal states that drive
online behavior. Hierarchical models are appealing [17], but a more heterarchical framework
may be more flexible, with longer-term goals providing various forms of context and constraint
that guide the ongoing dynamics of goal selection and goal-engaged pursuit. In any case, under-
standing the basic properties of goal dynamics and learning at the simplest level would be likely to
provide important insights into these bigger questions. There is also recent work in the machine
432 Trends in Cognitive Sciences, June 2020, Vol. 24, No. 6



‘arbitrary’ patterns of neural activity turn
into something that can motivate and
guide behavior toward the achievement
of specific, desired outcomes.
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learning/AI community that is adapting traditional RL algorithms to include multiple goals and re-
lated motivational issues [71,72].

Thus, there are many exciting open challenges in understanding the nature of human motivation,
and this untapped frontier has great potential for basic and applied scientific benefits. Fundamen-
tally, we all seek control and self-determinism most strongly, and understanding how we achieve
at least the illusion of it (and strive to maintain this illusion through various dissonance reduction
mechanisms) can provide deep insights into why we can at once be so manifestly irrational and
yet much more adaptive, robust, and flexible than any existing artificial system.
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