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How is the prefrontal cortex (PFC) organized such that it
is capable of making people more flexible and in control
of their behavior? Is there any systematic organization
across the many diverse areas that comprise the PFC, or
is it uniquely adaptive such that no fixed representa-
tional structure can develop? Going against the current
tide, this paper argues that there is indeed a systematic
organization across PFC areas, with an important func-
tional distinction between ventral and dorsal regions
characterized as processing What versus How infor-
mation, respectively. This distinction has implications
for the rostro-caudal and medial-lateral axes of organ-
ization as well. The resulting large-scale functional map
of PFC could prove useful in integrating diverse data, and
in generating novel predictions.

The What-How, Abstraction, Cold/Hot (WHACH) model
of PFC organization

The prefrontal cortex (PFC) is known to be important for
cognitive control, enabling behavior to be at once flexible
yet task-focused [1,2]. One of the principal means of un-
derstanding how it achieves these remarkable feats is by
characterizing the nature of its underlying neural repres-
entations. The central question addressed here is: are PFC
representations systematically organized across areas,
and if so, what is the nature of this organization? Although
many have attempted to answer the former in the affir-
mative, with a variety of different organizational schemes,
the broadest consensus in the field seems to be that, if there
is any organization there, it is extremely difficult to charac-
terize. Indeed, some go so far as to argue that PFC should
not exhibit any kind of systematic organization, by virtue of
its very nature [3,4] (Box 1).

However, there are also strong reasons to believe that
the PFC should have some kind of stable systematic
organization (Box 1), and considerable data appear to be
consistent with a specific proposal advanced here: the
What-How, Abstraction, Cold/Hot (WHACH) model
(Figure 1). This model is organized along 3 major axes:
ventral versus dorsal (What versus How), rostral versus
caudal (Abstraction), and lateral versus medial (Cold ver-
sus Hot). The ventral versus dorsal distinction is the
primary focus of the paper. The key idea is to bring the
What versus How distinction between ventral and dorsal
pathways in posterior cortex, developed by Goodale and
Milner [5], forward into the PFC in terms of ventrolateral
(VLPFC) versus dorsolateral (DLPFC). The characteriz-

Corresponding author: O’Reilly, R.C. (randy.oreilly@colorado.edu)

ations of the other two dimensions have been extensively
discussed in the literature and are not themselves novel,
but they interact in potentially interesting ways with the
first dimension, and are discussed in that context.

The What versus How idea is developed below, and then
related to the two other axes of PFC organization in
subsequent sections.

What versus How

There are two broad frameworks for understanding the
ventral versus dorsal organization of the posterior cortex:
the What versus Where distinction advanced by Ungerlei-
der and Mishkin [6], and the later What versus How model
of Goodale and Milner [5]. The key distinction between
these two frameworks is in characterizing the role of the
dorsal pathway (principally the parietal cortex) — is it
primarily about spatial representations (Where) or is it
primarily about transforming perception into action
(How)? Some of the data motivating the How model showed
that people with ventral pathway damage could not
describe shape information (e.g. the angle of a slot that
was rotated in different ways), but could nevertheless
clearly express shape knowledge when it was used to
constrain their actions (e.g. putting a card into the rotated
slot) [5].

Thus, Goodale and Milner’s key insight was that shape
information can be processed by both pathways, and the
crucial distinction is how the information is used - the
dorsal pathway extracts visual signals relevant for driving
motor behavior ( perception for action), whereas the ventral
pathway extracts information relevant for identification
and other forms of semantic knowledge. Note that spatial
information is often very relevant for guiding motor beha-
vior, and this could explain the prevalence of Where infor-
mation in the dorsal pathway, such that the How model can
be considered a generalization of the Where model.

The notion of taking a ventral versus dorsal distinction
from posterior cortex forward into the PFC was pioneered
by Goldman-Rakic and others, in the context of the original
What versus Where model [7-9]. A significant motivation
for doing so is that the appropriate ventral-to-ventral and
dorsal-to-dorsal connectivity patterns between PFC and
corresponding posterior cortical areas are predominant [9-
11] (Figure 2). But the evidence in support of this What
versus Where distinction in PFC, in both monkeys and
humans, has not been very consistent [12,13].

The main claim of this paper is that Goldman-Rakic’s
overall strategy was correct, but that the characterization
of posterior cortex she used was too narrow: if you instead
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Box 1. Dedicated versus dynamic PFC representations
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The adaptive coding hypothesis offered by John Duncan, building in
part on the ideas and work of Earl Miller, suggests that PFC neurons
are capable of rapidly adapting to new tasks, and thus explains how
the PFC can play such an important role in supporting flexible, task-
relevant behavior [3,4]. This hypothesis accounts for the evident
adaptability of monkey PFC neurons when trained on new tasks
(although such training typically takes a long time), and considerable
neuroimaging data showing that many diverse PFC functions activate
highly-overlapping brain areas [4]. But it also appears incompatible
with the idea that the PFC has the kind of systematic long-term
organizational structure proposed here.

However, the adaptive coding hypothesis ignores a crucial aspect of
neural processing: neurons do not communicate using symbols that
have intrinsic meaning. Thus, it is not possible for a neuron to rapidly
change what it encodes, because it cannot communicate this new
representation to other neurons. Instead, meaning in neural networks
must be learned over time and in relationship to larger patterns of
overall neural activity, and this strongly favors stable long-term
representations and larger-scale structuring thereof.

Neurons broadcast simple spike impulses, each the same as any
other, with at least the majority of the information contained in the
firing rate over time [67]. This contrasts strongly with human spoken
language, where we have elaborate phonological distinctions that
multiply over time to convey words and sentences that have
independent meaning. Imagine instead if we could only modulate

the volume of our voices, but nothing else: this is how neurons
communicate. This volume-based communication is appropriate
given that a given neuron is listening to roughly 10,000 other neurons
at the same time: it would be impossible to decode and integrate
more complex signals with this level of parallelism.

In effect, neurons operate within a giant social network, where the
whole game is to become a reliable source of information that other
neurons can learn to trust (Figure I). The meaning of the neural
message is all about the identity of the sender and the relationship of
its neural firing to all the others within the network. Receiving
neurons gradually learn to respond to reliable patterns of incoming
activation, and pass along filtered and transformed versions thereof
to other neurons. If a given neuron were to suddenly change its
representation, there would be no way for other neurons to interpret
its new meaning (its spikes would look the same as ever). They have
to learn over time the new relationships between this neuron and the
others. This poses a strong constraint on the adaptive coding
hypothesis.

There are several alternative ways to account for data supportive of
the adaptive coding hypothesis within this framework, including that
PFC representations are (a) highly abstract, and thus encompass
many specific tasks, (b) highly context-sensitive, taking on different
activation patterns in different tasks or other contexts, and (c) strongly
modulated by the basal ganglia to maintain different information in a
very dynamic manner [2].
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Figure l. Social network analogy for neural communication and learning. In panel (a), the author is in a central node and communicates with various colleagues. Over
time, the author has come to learn which people in his network are reliable, what their expertise is, and how to evaluate the kinds of things they might say. Hence, if the
social network were to undergo dynamic reconfiguration (b), the consequences could be devastating for the author’s ability to trust, filter, and otherwise build upon the

information coming from the network.

take the What versus How characterization of ventral
versus dorsal pathways forward into the PFC, it provides
amuch more compelling fit with the available data. Specifi-
cally, the proposal is that VLPFC (Brodmann areas
44,45,47,12) (denoted as What* where the * indicates
the cognitive control and robust active maintenance abil-
ities associated with the PFC) provides a cognitive control
system for ventral What pathway processing, and DLPFC
(Brodmann areas 8, 9, 46, How*) provides cognitive control
for the dorsal pathway. This idea has not been explored
very extensively — a thorough literature search revealed
only one relatively brief discussion of this specific idea [14],
and another paper discusses the Goodale and Milner ideas
more broadly in relation to PFC [15].

What about What?

The first obstacle for the What* versus How* model is that
several of the arguments against the What/Where idea in
PFC were focused on the shared What aspect. For example,
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Miller and colleagues showed that monkeys trained on tasks
that integrate both What and Where information had highly
overlapping distributions of What and Where cells over a
large area of lateral PFC [13]. Romanski [9] provides a nice
discussion of these and other relevant data, and argues that
a major part of the problem is that the VLPFC in the
macaque that actually interconnects with the ventral
posterior cortex is quite far ventral relative to where many
relevant neural recordings took place. Furthermore, many
of these recordings include the region between the clearly-
defined VLPFC and DLPFC areas, corresponding roughly to
inferior frontal junction (IFJ) in humans, and this could
represent a more polymorphous bridging region between
What and How pathways [16]. The What* versus How*
distinction should definitely be considered as more of a
continuum. Also, the posterior aspect of VLPFC (e.g. along
the 44/6 border) is a grey area because adjacent motor areas
(organized somatotopically) can drive very different repres-
entations, such as a spatial eye field map [17].
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Figure 1. The complete set of broad functional organizations discussed, along
each of the three major axes: dorsal [How = perception for action = Stimulus (S) to
Response (R) mappings] versus ventral [What= Stimulus-driven semantic
representations (S’)]; within PFC rostral (abstract) versus caudal (concrete);
medial (Hot value representations) versus lateral (Cold cognitive calculations).
How* (DLPFC) indicates a control system for the How posterior pathway, as What*
(VLPFC) does for the What pathway. Grey numbers indicate Brodmann areas on
the lateral surface.

Human neuroimaging studies of the VLPFC provide
ample evidence to support a clear What* role. Numerous
studies have shown that the VLPFC plays a crucial role in
guiding the selection and retrieval of semantic/linguistic
knowledge that is almost certainly encoded in the infer-
otemporal cortex (i.e. ventral What posterior cortex) [18-
20]. From a computational perspective, the most straight-
forward account of these data involves the active mainten-
ance of stimulus information in VLPFC, and this produces
a top-down biasing effect to drive selection and retrieval
dynamics in posterior cortex [2,21].

Most of the above-mentioned VLPFC data come from
studies with predominant left hemisphere activation -
what about the right VLPFC? This area has been charac-
terized as important for response inhibition [22], and this
would seem at odds with the What* account. However,
recent data suggest that this area could be more important

Trends in Neurosciences Vol.33 No.8

for monitoring the sensory signals that indicate when to
inhibit, rather than the inhibitory process itself [23]. This
account is highly consistent with the What¢* model for
VLPFC. Perhaps the lateralization differences have more
to do with the left hemisphere being dominant for the
primary task, whereas the right takes on secondary tasks
(as discussed more later).

How about How?
The advantage of the DLPFC How® side of the story
relative to the earlier Where* account is that it encom-
passes a much broader range of cognitive processing — one
should expect to see DLPFC activation whenever the
parietal cortex requires extra cognitive control (such as
working memory and top-down biasing) to carry out the
processing of sensory information to guide action outputs.
For example, studies show that parietal cortex plays an
important role in guiding the encoding and retrieval of
memories [24], representing number and mathematical
transformations [25], and encoding various forms of
relationships (spatial and more abstract) [26]. Thus, the
definition of perception for action must include a broad
range of more abstract ‘cognitive’ actions such as memory
retrieval and mathematical transformations, in addition to
more concrete motor actions. As discussed later, this
account of DLPFC aligns well with Petrides’ theory [27].
The relevant DLPFC data are generally consistent with
the How* view. Starting at the most posterior end of DLPFC,
areas 6 (which is properly not prefrontal, just frontal) and 8
have been shown to encode simple action rules [28-30], and
also spatial maps associated with saccade planning and
spatial working memory [17]. Moving somewhat more
anterior, monkey neurophysiology data from studies of
temporal order processing show that VLPFC neurons
respond selectively to object identity, whereas DLPFC
neurons respond selectively to sequential order [31,32].
Sequential order is a good example of higher-level How
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Central sulcus
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Figure 2. Summary of anatomical connectivity (in the macaque, where most of the anatomical work has been done) suggesting that dorsal versus ventral distinctions in
posterior cortex should influence prefrontal cortex, due to dominant dorsal-dorsal and ventral-ventral connectivity. Reproduced, with permission, from Ref. [9].
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Figure 3. Results from the Wager and Smith meta-analysis [12], highlighting the selectivity of (a) VLPFC areas (Brodmann areas 44, 45; circled) for object and verbal content
information, consistent with the What pathway account; and (b) DLPFC areas (Brodmann areas 6, 8, 9, 46) for updating and order processing, consistent with the How
pathway account, in that these are broad categories of cognitive actions that also activate parietal cortex areas.

pathway information — it is important for coordinating
motor commands, and probably involves number-line-like
representations in parietal cortex to organize order infor-
mation [33]. An even more abstract example of DLPFC task-
rule encoding comes from neurons that encoded a repeat—
stay/change—shift strategy, independent of specific stimuli
or actions involved [34]. More generally, DLPFC regions are
widely reported for action selection and behavioral rule
performance tasks [35-39], consistent with a role as a
top-down bias on parietal How processing pathways (and
all of these studies find strong co-activation between DLPFC
and parietal cortex).

Direct dorsal/ventral contrasts

A major source of data on PFC functional organization is
the Wager and Smith [12] meta-analysis of neuroimaging
studies. Although they conclude that the What/Where
model is inconsistent with the data, a careful re-examin-
ation of their findings in light of the What/How framework
suggests that it could be quite consistent (Figure 3).
Specifically, areas 44 and 45 (VLPFC) showed exclusively
object and verbal encoding (with appropriate right-left
lateralization), with no spatial sensitivity. Although these
differences did not achieve statistical criterion, there is
clearly a strong numerical trend across a large number of
studies that is very consistent with a What* encoding in
VLPFC. Conversely, when studies were sorted according to
various processing-oriented categories, DLPFC areas 6, 8
and 9 showed significant activation differences, but
VLPFC areas did not. This is consistent with a How* role
for DLPFC. These same DLPFC areas did not exhibit
strong content selectivity according to object, verbal or
spatial information. This result is damaging for a Where*
account of DLPF'C function, but not for a How* account — a
crucial feature of the How* framework is that dorsal path-
way representations are specifically not thought to be
organized according to stimulus input categories, and
instead are best categorized in terms of transforming a
wide range of sensory inputs into appropriate motor
outputs. Consistent with this view, they also found parietal
cortex activations for spatial and non-spatial ‘executive’
tasks, whereas IT activations were more consistently for
visual object based tasks.
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A recent study on response versus semantic selection
difficulty manipulations provides additional converging
evidence for dorsal versus ventral PFC involvement [40].
They found that DLPFC was modulated by response selec-
tion difficulty, but not by semantic selection difficulty, and
vice-versa for VLPFC, exactly as would be predicted by the
What versus How model. Intrinsic functional connectivity
analyses also reveal distinct dorsal versus ventral fronto-
parietal networks [41].

Taken together, these data are consistent with the
What* versus How?* distinction between VLPFC and
DLPFC, and this in turn is based on the predominant
connectivity of these regions with corresponding ventral
and dorsal pathways in posterior cortex. In the next two
sections we explore how this What* versus How* account
might interact with other widely-discussed axes of PFC
functional organization: a rostral-caudal gradient of
abstraction, and a lateral-medial Cold versus Hot distinc-
tion.

The rostral-caudal axis
Two predominant ideas about the rostral-caudal organiz-
ation of PFC are in terms of gradients of abstraction
[30,42-45] or rule complexity [46-49]. According to the
abstraction idea, more anterior PFC areas encode more
abstract information, in terms of having broader categories
(e.g. ‘color’ versus ‘red’ versus ‘brick red’), or otherwise
being more distantly removed from concrete physical
objects (e.g. ‘beauty’ versus ‘sunset’). By contrast, rule
complexity refers to the number of different elements that
must be taken into account to generate a task-appropriate
response. For example, the rule ‘hit the left button if the
previous stimulus was an A and the current one is an X’
requires two items to be integrated (A and X) to determine
the response. Interestingly, the abstraction gradient
appears to align with the VLPFC What* domain, in that
it is focused more on semantic and categorization issues.
By contrast, rule complexity is more response-focused and
thus seems to fit better within the DLPFC How®* domain.
Given this alignment, it seems possible that there are
actually two parallel rostral-caudal gradients, one within
DLPFC organized according to rule-complexity, and
another within VLPFC organized according to abstraction.



Computational modeling and other work suggests that
each of these organizational gradients can emerge from
hierarchical connectivity patterns (where more anterior
PFC areas provide contextualization to more posterior
PFC areas) [27,50-52]. But what about the extant data?

Unfortunately, the relevant fMRI data come from task
paradigms that do not cleanly distinguish between
abstraction and rule complexity as characterized above.
For example, Badre and D’Esposito [30] describe their
hierarchy specifically in terms of abstraction, but their
task manipulation includes a strong rule complexity con-
found (which they acknowledge). Consistent with this
confounding of the two factors, their hierarchy crosses over
between DLPFC (area 6) for the most concrete response-
oriented 1st level, to anterior VLPFC (area 47) for the 3rd
level, with the 2nd level being intermediate on the dorsal-
ventral axis. Interestingly, a similar but not identical
hierarchical pattern was found by Koechlin and colleagues
[29], but their 2nd level was more clearly in VLPFC (area
44). Both studies also found activation in fronto-polar PFC
(area 10) for the highest level, but this area is not clearly
dorsal or ventral in nature, and is thus outside the scope of
this paper.

In short, more careful experimental work is needed to
determine if the What versus How distinction might help to
clarify the hierarchical structure of representations across
lateral PFC.

The medial-lateral axis

Across the cortex, medial areas tend to be more directly
connected to subcortical systems, and play a role in limbic’
or affective/motivational systems, whereas lateral areas
tend to be more involved in sensory/motor processing.
Thus, it is uncontroversial to characterize the lateral
PFC areas (which have been the focus of discussion to this
point) as Cold cognitive processing, whereas the medial
PFC contains Hot emotional and motivational areas. In
this context, we again ask if the What versus How ventral/
dorsal distinction could have some currency. The answer
appears to be ‘yes.’

Considerable animal data suggest that ventral medial
PFC (VMPFC) (e.g. orbital frontal cortex, OFC) is special-
ized for representing the emotional and motivational value
of stimuli (i.e. What-based processing) [53], whereas
DMPFC areas (including the anterior cingulate cortex,
ACCQC), appear to be important for encoding affective values
of actions [54,55]. In human neuroimaging, the specific role
of the ACC within DMPFC has been characterized in many
different ways, including conflict and error monitoring
[56,57]. A way of reconceptualizing these ideas about
ACC that is consistent with a putative Hot—How control
area, is to think of it as providing a motivational cost signal
associated with prospective actions that could be taken. Ifa
given action is associated with high levels of conflict or
error, then more cognitive effort will be required, and it is
less likely that the action will be taken. The Brown and
Braver model of ACC, where it learns to associate arbitrary
task cues with conflict, error, and other difficulty signals, is
particularly compatible with this view [58]. Also consistent
are recent neuroimaging data from Koechlin and col-
leagues that show a relationship between DMPFC regions
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and corresponding lateral PFC regions, where the DMPFC
areas are organized along a parallel hierarchy as discussed
in the previous section [59].

In sum, there appears to be a homology in the overall
functions of the dorsal and ventral MPFC areas — each
forms affective value associations, and these value repres-
entations then drive behavior, for example - to approach
positive stimuli and avoid negative ones (VMPFC What),
and to perform successful, rewarding actions and avoid
difficult, risky behaviors (or exert more cognitive control
when attempting them) (DMPFC How). This account can
also help to explain the apparent asymmetry between
VMPFC and DMPFC value representations, where
DMPFC areas seem to have generally more negative value
coding (such as error and conflict, generally the cost of
taking an action), whereas VMPFC value representations
are more a mixture of positive and negative: actions are
often not intrinsically rewarding, and generally incur effort
and other costs, whereas stimuli are often the end goals
that drive actions (towards reward and away from punish-
ment).

Relationship to other frameworks

The What/How distinction can be related to other preva-
lent ways of describing the division between ventral and
dorsal PFC. For example, Petrides [27] has argued, based
on a wide range of data, that VLPFC is important for
‘simple working memory’ of stimulus information and
other ‘first-order executive functions’ such as selection
and comparison, whereas DLPFC is important for more
complex higher-order information-processing operations.
This maps well onto the What/How framework, in that PFC
executive control over What pathway information is likely
to be manifest as apparently simpler functions such as
active maintenance of sensory stimuli, and top-down bias-
ing to select information in IT cortex. By contrast, PFC
executive control over dorsal How processing will appear
more complex, involving coordination of motor and cogni-
tive actions over time, and selection of relational, spatial,
and mathematical operations encoded in parietal cortex.

A different take on DLPFC versus VLPFC comes from
Corbetta and Shulman [60], who characterize DLPFC as
important for endogenous attentional focusing, whereas
VLPFC is more exogenously driven. Interestingly, the
endogenous cases associated with the DLPFC that they
considered involved spatial and motion information that is
processed in the dorsal visual pathway, whereas the
exogenous cases were more stimulus-oriented tasks invol-
ving low-frequency ‘oddball’ tasks. Thus, their actual data
are broadly consistent with the What/How distinction, even
if their overall characterization does not obviously map
onto it.

The Stuss and Alexander framework [61], based on
lesion data, also does not appear at first to be related to
the What/How model, but is in fact quite compatible. They
argue for a lateralization account, where left lateral PFC is
important for ‘task setting’, whereas right lateral PFC is
important for ‘monitoring’. Alternatively, one can think of
these as reflecting the same basic function (active main-
tenance of task context and top-down biasing of appropri-
ate processing), but the left hemisphere is more important
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for the task being currently performed, whereas the right
hemisphere could be more important for maintaining infor-
mation about other possible tasks that might be relevant at
some other point in time (i.e. monitoring; see also Ref. [23]
as discussed above). They also argue that medial PFC is
responsible for ‘energization’, and this is compatible with
the Hot role - for example, dorsal medial PFC areas are
important for motivational selection of task-appropriate
action plans.

Banich and colleagues [62] have developed a cascade of
control model that involves DLPFC (attentional task set),
VLPFC (stimulus feature representations), and ACC
(response selection and evaluation) — these functions are
generally compatible with the What versus How model,
and we are currently designing experiments to further test
the relationship between these frameworks.

Lebedev and Wise [15] discuss the Goodale and Milner
framework with a focus on perceptual awareness. Based in
part on experimental results showing no clear anatomical
dissociation in PFC for cells responsive or not to a visual
illusion [63], they conclude that this dorsal versus ventral
distinction does not carry forward as such into the PFC,
and is instead more intermixed. Given that they recorded
in the bridging area between dorsal and ventral (similar to
Ref. [13], as discussed earlier), this could be taken as
further evidence for intermixing in this area.

Finally, Tanji and Hoshi [32] provide a thorough
review of anatomy and functional data regarding ventral
versus dorsal PFC organization, and this is highly com-
patible with What/How distinction. However, they and
others (e.g. Ref. [64]) continue to reject the notion that
PFC is important for working memory (WM), based on
studies showing intact WM following PFC lesions. But
such results can instead be accounted for in terms of
lingering memory traces in posterior cortical areas, and
these are sufficient when there are no intervening dis-
tractors or other forms of processing, but are otherwise
not as robust as PFC-mediated WM representations [65].
In any case, ‘working memory’ has many different mean-
ings to different researchers, so it is clearer to instead use
the more precise computationally-explicit terminology of
robust active maintenance of neural firing over time, and
this seems to be crucial for many PFC functions beyond
simple short-term maintenance, including top-down
attention, action selection, manipulation, control, and
so forth [2,21].

Conclusion

The proposal outlined above and summarized in Figure 1
constitutes a comprehensive map of the functional proper-
ties of the PFC along multiple dimensions: ventral What*
versus dorsal How?*; anterior Abstract versus posterior
Concrete; lateral Cold versus medial Hot (i.e. the WHACH
model). The primary What versus How distinction seems to
have relevance for understanding issues within the other
two axes of organization, and thus could represent a pro-
ductive theoretical framework for integrating a diverse
range of empirical data across many different content
areas and task domains. We are currently formalizing this
framework by developing integrated computational
models of dorsal and ventral PFC areas interacting with
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Box 2. Outstanding Questions

e To what extent does the What/How distinction correctly char-
acterize PFC organization?

e Where exactly are the boundaries between What and How, and

how do these pathways interact to produce overall cognitive

control?

Are there two parallel forms of hierarchical organization along the

rostro-caudal axis, one within DLPFC and another within VLPFC,

or do both dorsal and ventral areas fit within one larger hierarchy?

Can the What* model provide a unifying account of both left and

right VLPFC, or for example does right VLPFC really have a

specific role in response inhibition that cannot be accounted for in

terms of monitoring?

Is left VLPFC engaged for the dominant, focal task, whereas right

VLPFC takes on secondary tasks? Can this be tested using task

switching and dual task paradigms?

e Does the medial Hot organization of brain mirror the lateral
surface (e.g. in terms of a rostral-caudal hierarchy as suggested
by Koechlin et al. [69]), or does the affective/motivational side
have its own separate hierarchy, for example, a goal hierarchy?

e How do dedicated neural representations support the rapid
adaptation phenomena used by Duncan to develop his adaptive
coding hypothesis [4] (Box 1)?

associated posterior cortical (and basal ganglia) areas, [66].
Many important questions remain (Box 2), but hopefully
future empirical research, guided in part by predictions
from computational models, can begin to answer them and
test the validity of this overall framework.
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