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Abstract:

Over the course of development, brain areas can become increasingly dissociated in their functions, or
increasingly integrated. Computational models can provide insights into how and why these opposing
effects happen. This paper presents a computational framework for understanding the specialization
of brain functions across the hippocampus, neocortex, and basal ganglia. This framework is based on
computational tradeoffs that arise in neural network models, where achieving one type of learning func-
tion requires very different parameters from those necessary to achieve another form of learning. For
example, we dissociate the hippocampus from cortex with respect to general levels of activity, learn-
ing rate, and level of overlap between activation patterns. Similarly, the frontal cortex and associated
basal ganglia system have important neural specializations not required of the posterior cortex system.
Taken together, these brain areas form an overall cognitive architecture, which has been implemented in
functioning computational models, provides a rich and often subtle means of explaining a wide range
of behavioral and cognitive neuroscience data. The developmental implications of this framework, and
other computational mechanisms of dissociation and integration, are reviewed.

Introduction

The brain is not a homogeneous organ: different brain areas are specialized for different cognitive func-
tions. On the other hand, it is also clear that the brain does not consist of strictly encapsulated modules with
perfectly segregated contents. This paper reviews one approach to understanding the nature of specialized
functions in terms of the logic of computational tradeoffs in neural network models of brain areas. The
core idea behind this approach is that different brain areas are specialized to satisfy fundamental tradeoffs
in neural network’s performance of different kinds of learning and memory tasks. This way of character-
izing the specializations of brain areas is generally consistent with some other theoretical frameworks, but
it offers a level of precision and subtlety suitable for understanding complex interactions between different
brain areas.

Countering these specialization pressures is the need to integrate information to avoid the well-known
binding problem that arises with completely segregated representations. For example, if color and shape
information are encoded by distinct neural populations, it then becomes difficult to determine which color
goes with which shape when multiple objects are simultaneously present in the stimulus input. One pop-
ular solution to this problem is to invoke the mechanism of synchronous neural firing, such that stimulus
features corresponding to the same object fire together, and out of phase with those for other objects (e.g.,
von der Malsburg, 1981; Gray, Engel, Konig, & Singer, 1992; Engel, Konig, Kreiter, Schillen, & Singer,
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1992; Zemel, Williams, & Mozer, 1995; Hummel & Biederman, 1992). However, there are a number of
problems with this approach, as elaborated below. One alternative is to use conjunctive representations,
where individual neural representations encode multiple stimulus features (e.g., one unit might encode the
conjunction of “blue” and “triangle”). This solution, in its simple form, is also highly problematic, produc-
ing a combinatorial explosion of different representations for each possible conjunction, and the inability to
generalize knowledge across different experiences. There is a more subtle and powerful form of conjunc-
tive representations, however, known as distributed coarse-coded conjunctive representations, which avoid
these problems (Hinton, McClelland, & Rumelhart, 1986; Wickelgren, 1969; Seidenberg & McClelland,
1989; St John & McClelland, 1990; Mozer, 1991; Mel & Fiser, 2000; O’Reilly & Soto, 2002; O’Reilly,
Busby, & Soto, 2003). Individual units in such representations encode multiple subsets of conjunctions (i.e.,
coarse-coding), and the distributed pattern of activation across many such units serves to distinguish dif-
ferent stimulus configurations. This type of representation is ubiquitous in the brain, and its computational
features are explored later in this paper.

Taking these two forces of integration and dissociation together, a clear reconciliation emerges. Instead
of viewing brain areas as being specialized for specific representational content (e.g., color, shape, location,
etc), areas are specialized for specific computational functions by virtue of having different neural param-
eters. Within each area, many types of representational content are intermixed in distributed coarse-coded
conjunctive representations, to avoid the binding problem. This framework flies in the face of the pervasive
tendency to associate brain areas with content (e.g., the fusiform face area (Kanwisher, 2000); the ventral
what pathway vs. the dorsal where pathway (Ungerleider & Mishkin, 1982); the hippocampus as a spa-
tial map (O’Keefe & Nadel, 1978), etc). Instead it is aligned with alternative frameworks that focus on
function. For example, the dorsal “where” pathway has been reinterpreted as “vision for action”, which
integrates both “what” and “where” information in the service of performing visually-guided motor actions
(Goodale & Milner, 1992). Similarly, the fusiform face area has been characterized instead as an area suit-
able for subordinate category representations of large numbers of similar items, which includes faces but
also birds in the case of bird experts, for example (Tarr & Gauthier, 2000). Below, the case for understanding
the hippocampus as a system specialized for the general function of rapid learning of arbitrary conjunctive
information, including but not restricted to spatial information, is reviewed (O’Reilly & McClelland, 1994;
McClelland, McNaughton, & O’Reilly, 1995; O’Reilly & Rudy, 2001; Norman & O’Reilly, 2003).

This “functionalist” perspective has been instantiated in a number of neural network models of different
brain areas, including posterior (perceptual) neocortex, hippocampus, and the prefrontal cortex/basal ganglia
system. We are now in the process of integrating these different models into an overall biologically-based
cognitive architecture (Figure 1). Each component of the architecture is specialized for a different function
by virtue of having different parameters and neural specializations (as motivated by computational trade-
offs), but the fundamental underlying mechanisms are the same across all areas. Specifically, our models
are all implemented within the Leabra framework (O’Reilly, 1998; O’Reilly & Munakata, 2000), which
includes a coherent set of basic neural processing and learning mechanisms that have been developed by
different researchers over the years. Thus, many aspects of these areas work in the same way (and on the
same representational content), and in many respects the system can be considered to function as one big
undifferentiated whole. For example, any given memory is encoded in synapses distributed throughout the
entire system, and all areas participate in some way in representing most memories. Therefore, this architec-
ture is much less modular than most conceptions of the brain, while still providing a principled and specific
way of understanding the differential contributions of different brain areas. These seemingly contradictory
statements are resolved through the process of developing and testing concrete computational simulations
that help us understand the ways in which these areas contribute differentially, and similarly, to cognitive
and behavioral functions.

In the remainder of the paper, the central computational tradeoffs underlying our cognitive architecture
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Figure 1: Tripartite cognitive architecture defined in terms of different computational tradeoffs associated with Poste-
rior Cortex (PC), Hippocampus (HC) and Frontal Cortex (FC) (with motor frontal cortex constituting a blend between
FC and PC specializations). Large overlapping circles in PC represent overlapping distributed representations used to
encode semantic and perceptual information. Small separated circles in HC represent sparse, pattern-separated repre-
sentations used to rapidly encode (“bind”) entire patterns of information across cortex while minimizing interference.
Isolated, self-connected representations in FC represent isolated stripes (columns) of neurons capable of sustained
firing (i.e., active maintenance or working memory). The basal ganglia also play a critical role in the FC system by
modulating (“gating”) activations there based on learned reinforcement history.

are reviewed, along with a more detailed discussion of the binding problem and the distributed coarse-coded
representations solution to it. In each case, these ideas are applied to relevant developmental phenomena,
where they may have some important implications, despite the fact that these ideas have been largely based
on considerations from the adult system (though across multiple species). There are also some important
computational mechanisms of integration and dissociation that do not emerge directly from this computa-
tional tradeoff framework, which are briefly reviewed.

Specializations in Hippocampus and Posterior Neocortex

One of the central tradeoffs behind our approach involves the process of learning novel information
rapidly without interfering catastrophically with prior knowledge. This form of learning requires a neu-
ral network with very sparse levels of overall activity (leading to highly separated representations), and a
relatively high learning rate (i.e., high levels of synaptic plasticity). These features are incompatible with
the kind of network that is required to acquire general statistical information about the environment, which
needs highly overlapping, distributed representations with relatively higher levels of activity, and a slow rate
of learning. The conclusion we have drawn from this mutual incompatibility (see Figure 2a for a summary)
is that the brain must have two different learning systems to perform these different functions (O’Reilly &
McClelland, 1994; McClelland et al., 1995; O’Reilly & Rudy, 2001; Norman & O’Reilly, 2003). This
computational tradeoff idea fits quite well with a wide range of existing theoretical ideas and converging
cognitive neuroscience data on the properties of the hippocampus and posterior neocortex, respectively
(Scoville & Milner, 1957; Marr, 1971; Grossberg, 1976; O’Keefe & Nadel, 1978; Teyler & Discenna, 1986;
McNaughton & Morris, 1987; Sherry & Schacter, 1987; Rolls, 1989; Sutherland & Rudy, 1989; Squire,
1992; Eichenbaum, Otto, & Cohen, 1994; Treves & Rolls, 1994; Burgess & O’Keefe, 1996; Wu, Baxter, &
Levy, 1996; Moll & Miikkulainen, 1997; Hasselmo & Wyble, 1997; Aggleton & Brown, 1999; Yonelinas,
2002).

We have instantiated our theory in the form of a computational model of the hippocampus and neocortex
(Figure 2b). This same model has been extensively tested through applications to a wide range of data from
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Figure 2: a) Computational motivation for two complementary learning & memory systems in the brain: There
are two incompatible goals that such systems need to solve. One goal is to remember specific information (e.g.,
where one’s car is parked). The other is to extract generalities across many experiences (e.g., developing the best
parking strategy over a number of different days). The neural solutions to these goals are incompatible: Memorizing
specifics requires separate representations that are learned quickly, and automatically, while extracting generalities
requires overlapping representations and slow learning (to integrate over experiences) and is driven by task-specific
constraints. Thus, it makes sense to have two separate neural systems separately optimized for each of these goals. b)
Our hippocampal/cortical model (O’Reilly & Rudy, 2001, Norman & O’Reilly, 2003). The cortical system consists
of sensory input pathways (including elemental (Elem) sensory coding and higher-level association cortex (Assoc))
and motor output. These feed via the entorhinal cortex (EC in, superficial layers of EC) into the hippocampus proper
(dentate gyrus (DG), the fields of Ammon’s horn (CA3, CA1), which in turn project back to cortex via EC out (deep
layers of EC). The DG and CA3 areas have particularly sparse representations (few neurons active), which enables
rapid learning of arbitrary conjunctive information (i.e., “episodic learning”) by producing pattern separation and thus
minimizing interference.

humans and animals (O’Reilly, Norman, & McClelland, 1998; O’Reilly & Rudy, 2001; Norman & O’Reilly,
2003; Rudy & O’Reilly, 2001; Frank, Rudy, & O’Reilly, 2003) (see O’Reilly & Norman, 2002 for a concise
review). The hippocampal model performs encoding and retrieval of memories in the following manner:
During encoding, the hippocampus develops relatively non-overlapping (pattern-separated) representations
of cortical inputs (communicated via entorhinal cortex, EC) in region CA3 (strongly facilitated by the very
sparse dentate gyrus (DG) inputs). Active units in CA3 are linked to one another (via Hebbian learning),
and to a sparser but stable re-representation of the EC input pattern in region CA1. During retrieval, pre-
sentation of a partial version of a previously encoded memory representation leads to reconstruction of the
complete original CA3 representation (supported by Hebbian-strengthened connections within CA3, and
other synaptic modifications throughout the hippocampus). This is pattern completion, which is essentially
cued recall, where an entire representation is completed or filled-in based on a partial cue. As a consequence
of this pattern completion in CA3, the entire studied pattern on the EC output layer is reconstructed (via area
CA1), which then spreads out to cortex to fully represent the recalled information. As reviewed in Norman
and O’Reilly (2003) and O’Reilly and Rudy (2001), our hippocampal model closely resembles other neural
network models of the hippocampus (Treves & Rolls, 1994; Touretzky & Redish, 1996; Burgess & O’Keefe,
1996; Wu et al., 1996; Moll & Miikkulainen, 1997; Hasselmo & Wyble, 1997). There are differences, but
the family resemblance between these models far outweighs the differences. Recent data comparing neural
activation patterns in CA3 and CA1 clearly supports the model’s distinctions between these two areas, where
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CA3 is subject to more pattern completion and separation, while CA1 is a more stable but sparser encoding
of the current inputs (Lee, Yoganarasimha, Rao, & Knierim, 2004; Vazdarjanova & Guzowski, in press).

In contrast with the rapid, conjunctive learning supported by the hippocampus, our cortical model can
support generalization across a large number of experiences, as a result of two neural properties. First, our
simulated cortical neurons have a slow learning rate (i.e., small changes in synaptic efficacy after a single
presentation of a stimulus). That property insures that any single event has a limited effect on cortical
representations. It is the gradual accumulation of many of these small impacts that shapes the representation
to capture things that are reliably present across many experiences (i.e., the general statistical structure
or regularities of the environment). Second, our model employs representations that involve a relatively
large number of neurons (e.g., roughly 15-25%). This property increases the probability that similar events
will activate overlapping groups of neurons, thereby enabling these neurons to represent the commonalities
across many experiences. More discussion of cortical learning and development is presented later.

Hippocampal and Cortical Contributions to Recall and Recognition Memory

To flesh out some of the implications of this approach, we briefly review the application of this model
to human memory, where we can understand the distinction between recall and recognition memory (Nor-
man & O’Reilly, 2003). The key result is that the ability of the hippocampus to rapidly encode novel con-
junctive information with minimal interference is critical for supporting recall of detailed information from
prior study episodes. In contrast, the cortex, even with a slow learning rate, can contribute to the recognition
of previously experienced stimuli by providing a global, scalar familiarity signal. This familiarity-based
recognition does not require the ability to pattern-complete missing elements of the original study episode.
Instead, it simply requires some kind of ability to match the current input with an existing representation, and
report something akin to the “global-match” between them (e.g., Hintzman, 1988; Gillund & Shiffrin, 1984).
It turns out that our cortical network can support this recognition function as a result of small “tweaks” to the
weights of existing representations in the network. These small weight changes cause a recently-activated
cortical representation to be somewhat “sharper” than before (i.e., the difference between active and inactive
units is stronger; the contrast is enhanced). This difference in sharpness can be reliably used to distinguish
“old” from “new” items in recognition memory tests.

This distinction between hippocampal recall and cortical recognition is consistent with many converging
sources of data, as reviewed in Yonelinas (2002). One of the interesting novel predictions that arose from
our model is that input stimulus similarity and recognition test format should critically impact the cortical
system, but not the hippocampal system. Specifically, as the similarity of input stimuli increases, the cor-
responding cortical representations will also increase in overlap, and this will cause the cortical recognition
signal (sharpness) to also overlap. Thus, on a recognition memory test using novel test stimuli that overlap
considerably with studied items (e.g., study “CAT” and test with “CATS”), the cortical system would be
much more likely to false alarm to these similar lures. In contrast, the pattern separation property of the
hippocampal system will largely prevent this similarity-based confusion, by encoding the patterns with rel-
atively less overlapping internal representations. However, if both the studied item and the similar lure were
presented together at test in a forced-choice testing paradigm, then the cortical system can still provide good
performance. This is because although the similar lure will activate an overlapping cortical representation,
this representation will nevertheless be reliably less sharpened than that of the actual studied item.

These predictions from the computational model have been tested in experiments on a patient (YR)
with selective hippocampal damage, and matched controls (Holdstock, Mayes, Roberts, Cezayirli, Isaac,
O’Reilly, & Norman, 2002). YR is a 61-year-old woman that had focal hippocampal damage due to a
painkiller overdose. The damage did not extend to the surrounding medial temporal lobe cortex. On the
yes/no recognition task, images were presented one at a time, and the subjects had to respond “yes” if the
image was seen in the previous study phase. On the forced-choice recognition task, a studied image was
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presented with two novel ones, and the subjects were asked to find the studied one. YR was impaired
relative to controls only on the yes/no recognition test with similar lures, and not on the forced-choice test
with similar lures, or either test with dissimilar lures. Furthermore, she was impaired at a recall test matched
for difficulty with the recognition tests in the control group. This pattern matches exactly the predictions of
the model with respect to the impact of a selective hippocampal lesion.

There are numerous other examples where the predictions from our computational models have been
tested in both humans and animals (O’Reilly et al., 1998; O’Reilly & Rudy, 2001; Norman & O’Reilly,
2003; Rudy & O’Reilly, 2001; Frank et al., 2003). In many ways, the understanding we have achieved
through these computational models accords well with theories derived through other motivations. For
example, there is broad agreement among theorists that a primary function of the hippocampus is the encod-
ing of episodic or spatial memories (e.g., Vargha-Khadem, Gadian, Watkins, Connelly, Van Paesschen, &
Mishkin, 1997; Squire, 1992; O’Keefe & Nadel, 1978). This function emerges from the use of sparse rep-
resentations in our models, because these representations cause the system to develop conjunctive represen-
tations that bind together the many different features of an episode or location into a unitary encoding (e.g.,
O’Reilly & Rudy, 2001; O’Reilly & McClelland, 1994). However, the models are also often at variance
with existing theorizing. For example, the traditional notions of “familiarity” and “recall” do not capture
all the distinction between neocortical and hippocampal contributions, as we showed in a number of cases
in Norman and O’Reilly (2003). For example, neocortical representations can be sensitive to contextual
information, and even to arbitrary paired associates, which is not well accounted for by traditional notions
of how the familiarity system works.

Developmental Implications

Some implications of this overall framework for understanding various developmental phenomena were
described by Munakata (2004). One intriguing application is to the phenomenon of infantile amnesia, where
most people cannot remember any experiences prior to the age of about 2-3 years (Howe & Courage, 1993).
As with many accounts of this phenomenon, she argues that representational change in the cortex during
this formative period can result in the inability to retrieve hippocampal episodic representations later in
life (e.g., McClelland et al., 1995). However, this general account does not explain why it is that this
representational change does not render all forms of knowledge inaccessible; why does it seem to specifically
affect hippocampal episodic memories? Munakata (2004) argues that the pattern separation property of the
hippocampus makes it especially sensitive to even relatively small changes in cortical representations. By
contrast, the cortex itself would be much less sensitive to such changes, because it tends to generalize across
similar patterns to a much greater extent.

Another potential application of this framework is in the domain of so-called “fast-mapping” phenomena,
where children are capable of rapid (e.g., one-trial) learning of novel information (Hayne, this volume;
Hayne, Boniface, & Barr, 2000; Markson, this volume; Bloom & Markson, 1998). In the case of the
mobile-conjugate reinforcement learning and deferred imitation studies of Hayne and colleagues, infants
and children exhibit one-trial learning that is highly sensitive to the study/test stimulus overlap, for both
task-relevant and irrelevant stimulus features. This sensitivity to pattern overlap (and fast learning) is highly
suggestive of hippocampal function, where the sparse activity levels result in units that are sensitive to
stimulus conjunctions (O’Reilly & Rudy, 2001) — only if the study and test environments have sufficient
similarity will pattern completion be triggered to produce successful recall. Otherwise, pattern separation
will result in an inability to recall the study episode. Nevertheless, there is some question as to when the
hippocampus becomes functional in human development, and it is also possible that the high degree of
plasticity in the infant neocortex could support rapid learning of this sort. However, the apparently highly
conjunctive nature of this fast learning, which fits so well with the hippocampal mechanisms, remains to be
explained under this account. Computational models of the detailed behavioral results would be useful to
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explore these alternative hypotheses.

The fast mapping phenomena studied by Markson and colleagues in the context of early word learning
may reflect a more complex interaction between cortical and hippocampal learning mechanisms. This is
because this form of learning appears to support considerable generalization and inference, which are hall-
marks of cortical representations. Thus, the hippocampus in this case may be only responsible for linking a
word with otherwise fairly well-developed cortical representations of the underlying perceptual world. As
we saw in the case of recognition memory, the cortical system can exhibit behaviorally-measurable one-
trial learning, as long as this learning involves small changes to largely existing representations. Therefore,
word-learning fast mapping may be best explained as relatively small changes in the landscape of existing
semantic representations, which serve to bring some latent representations “over threshold”, while the hip-
pocampus helps in the linking of these semantic representations with an associated arbitrary verbal label.
Again, this is a rich domain that is just waiting to be explored from this hippocampus/cortex computational
modeling framework.

The Prefrontal Cortex/Basal Ganglia System

The same tradeoff logic applied to the hippocampal/cortical system has been applied to understanding
the specialized properties of the frontal cortex (particularly focused on the prefrontal cortex, PFC) relative to
the posterior neocortex and hippocampal systems. The tradeoff in this case involves specializations required
for maintaining information in an active state (i.e., maintained neural firing) relative to those required for
performing semantic associations and other forms of inferential reasoning. Specifically, active maintenance
(often referred to by the more general term of working memory) requires relatively isolated representations
so that information does not spread out and get lost over time (O’Reilly & Munakata, 2000; O’Reilly,
Braver, & Cohen, 1999). In contrast, the overlapping distributed representations of posterior cortex support
spreading associations and inference by allowing one representation to activate aspects of other related
representations (e.g., McClelland & Rogers, 2003; Lambon-Ralph, Patterson, Garrard, & Hodges, 2003).
This tradeoff is illustrated and described further in Figure 3. Neural anatomy and physiology data from
prefrontal cortex in monkeys is consistent with this idea. Specifically, prefrontal cortex has relatively isolated
“stripes” of interconnected neurons (Levitt, Lewis, Yoshioka, & Lund, 1993), and neurons located close by
each other all maintain the same information according to electrophysiological recordings of “iso-coding
microcolumns” (Rao, Williams, & Goldman-Rakic, 1999).

In addition to relatively isolated patterns of connectivity, the prefrontal cortex may be specialized relative
to posterior cortex by virtue of its need for an adaptive gating mechanism. This mechanism dynamically
switches between rapidly updating new information (gate open) and robustly maintaining other information
(gate closed) (Figure 4a). (Cohen, Braver, & O’Reilly, 1996; Braver & Cohen, 2000; O’Reilly et al., 1999;
O’Reilly & Munakata, 2000). This adaptive gating also needs to be selective, such that some information
is updated while other information is maintained. This can be achieved through the parallel loops of con-
nectivity through different areas of the basal ganglia and frontal cortex (Figure 4b) (Alexander, DeLong, &
Strick, 1986; Graybiel & Kimura, 1995; Middleton & Strick, 2000). We postulate that these parallel loops
also operate at the finer level of the isolated anatomical stripes in prefrontal cortex, and provide a mechanism
for selectively updating the information maintained in one stripe, while robustly maintaining information in
other stripes.

A detailed computational model of how such a system would work, and how it can learn which stripes to
update when, has been developed (O’Reilly & Frank, submitted). This model avoids the “homunculus prob-
lem” that arises in many theories of prefrontal cortex, where it is ascribed powerful “executive functions”
(e.g., Baddeley, 1986) that remain mechanistically unspecified. In effect, these theories rely on unexplained
human-like intelligence in the PFC, amounting to a “homunculus” (i.e., a small man inside the head). In
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Figure 3: Demonstration of the tradeoff between interconnected and isolated neural connectivity and in-
ference vs. active maintenance. a) Interconnected network: Weights (arrows) connect hidden units that
represent semantically related information. Such connectivity could subserve semantic networks of poste-
rior cortical areas. b) Input and hidden unit activity as the interconnected network is presented with two
inputs (top half of figure) and then those inputs are removed (bottom half of figure). Each row corresponds
to one time step of processing. Each unit’s activity level is represented by the size of the corresponding black
square. The network correctly activates the corresponding hidden units when the inputs are present, but fails
to maintain this information alone when the input is removed, due to interactive representations. c) Network
with isolated representations: Each hidden unit connects to only itself, rather than to other semantically-
related units, and thus information does not spread over time, supporting robust active maintenance abilities
associated with prefrontal cortical areas. Adapted from O’Reilly & Munakata (2000).
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Figure 4: a) Illustration of adaptive gating. When the gate is open, sensory input can rapidly update working memory
(e.g., encoding the cue item A in the 1-2-AX task), but when it is closed, it cannot, thereby preventing other distracting
information (e.g., distractor C) from interfering with the maintenance of previously stored information. b) The basal
ganglia (striatum, globus pallidus and thalamus) are interconnected with frontal cortex through a series of parallel
loops. Striatal neurons disinhibit prefrontal cortex by inhibiting tonically active substantia nigra pars reticulata (SNr)
neurons, releasing thalamic neurons from inhibition. This disinhibition provides a modulatory or gating-like function.
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contrast, our model learns to solve complex working memory tasks starting with no preexisting knowledge
whatsoever, demonstrating that they are capable of developing powerful forms of intelligence autonomously.

Development of Rule-Like PFC Representations

We have begun to explore some of the developmental implications of the above specialized PFC/BG
mechanisms. In particular, the presence of a adaptive gating mechanism can impose important constraints
on the types of representations that form in the PFC system, which in turn can impact the overall behavior of
the system in important ways. We recently showed that a network having an adaptive gating mechanism de-
veloped abstract, rule-like representations in its simulated PFC, whereas models lacking this mechanism did
not (Rougier, Noelle, Braver, Cohen, & O’Reilly, submitted). Furthermore, the presence of these rule-like
representations resulted in greater flexibility of cognitive control, as measured by the ability to generalize
knowledge learned in one task context to other tasks. As elaborated below, these results may have important
implications for understanding the nature of development in the PFC, and how it can contribute to tasks in
ways that are not obviously related to working memory function (e.g., by supporting more regular, rule-like
behavior).

Rougier et al. (submitted) trained a range of different models on a varying number of related tasks
operating on simple visual stimuli (e.g., name a “feature” of the stimulus along a given “dimension” such as
its color, shape, or size; match two stimuli along one of these dimensions; compare the relative size of two
stimuli). Though simple, these tasks also allowed us to simulate benchmark tasks of cognitive control such
as Wisconsin card sorting (WCST) and the Stroop task. The generalization test for the cognitive flexibility
of the models involved training a given task on a small percentage (e.g., 30%) of all the stimuli, and then
testing that task on stimuli that were trained in other tasks. To explore the impact of the adaptive gating
mechanism and other architectural features, a range of models having varying numbers of these features
were tested.

The model with the full set of prefrontal working memory mechanisms (including adaptive gating)
achieved significantly higher levels of generalization than otherwise comparable models that lacked these
specialized mechanisms. Furthermore, this benefit of the prefrontal mechanisms interacted with the breadth
of experience the network had across a range of different tasks. The network trained on all four tasks gen-
eralized significantly better than one trained on only pairs of tasks, but this was only true for the full PFC
model. These results were strongly correlated (r = .97) with the extent to which the model developed
abstract rule-like representations of the stimulus dimensions that were relevant for task performance. Thus,
the model exhibited an interesting interaction between nature (the specialized prefrontal mechanisms) and
nurture (the breadth of experience): both were required to achieve high levels of generalization.

There are numerous points of contact between this model and a range of developmental and neuroscience
data. For example, the need for extensive breadth of experience in the model to develop more flexible cog-
nitive function may explain the why the prefrontal cortex requires such an extended period of development
(up through late adolescence; Casey, Durston, & Fossella, 2001; Morton & Munakata, 2002b; Lewis, 1997;
Huttenlocher, 1990). That is, the breadth of experience during that time enables the PFC to develop sys-
tematic representations that support the flexible reasoning abilities we have as adults. This model is also
consistent with data showing that damage to prefrontal cortex impairs abstraction abilities (e.g., Dominey &
Georgieff, 1997), and that prefrontal cortex in monkeys develops more abstract category representations
than those in posterior cortex (Wallis, Anderson, & Miller, 2001; Freedman, Riesenhuber, Poggio, & Miller,
2002; Nieder, Freedman, & Miller, 2002). Furthermore, the growing literature on developing task switching
abilities in children should prove to be a useful domain in which to explore the developmental properties
of this model (e.g., Zelazo, Frye, & Rapus, 1996; Munakata & Yerys, 2001; Morton & Munakata, 2002a,
2002b).

In our current research with this PFC/BG model, we are expanding the range and complexity of cognitive
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Red Blue

Square

??

Red Blue

Square

a) Input activates features b) But rest of brain doesn’t know
    which features go with each other

Triangle

Triangle

Figure 5: Illustration of the binding problem. a) Visual inputs (red triangle, blue square) activate separate represen-
tations of color and shape properties. b) However, just the mere activation of these features does not distinguish for
the rest of the brain the alternative scenario of a blue triangle and a red square. Red is indicated by dashed outline and
blue by a dotted outline.

tasks, and in the process undertaking an exploration of the “educational curriculum” that we present to the
model. Specifically, we are trying to build up to a wide range of tasks through the training of a smaller set
of core competencies. We are starting with a simple sensory/motor domain where the tasks involve focusing
on subsets of the visual inputs, and producing appropriate verbal and/or motor outputs. For example, the
network is being trained to name, match, point, etc. according to different stimulus dimensions or locations.
We plan to take this process one step further in the course of developing the full tripartite cognitive architec-
ture, which will involve a more sophisticated perceptual system capable of operating on raw bitmap images,
to perform more complex tasks such as visual search in cluttered environments, and real-world navigation.
This developmental approach to constructing our models is a necessary consequence of the fact that they are
fundamentally learning models. They start out with only broad parametric preconfiguration, and then must
develop their sophisticated abilities through experience-driven learning. Thus, these models should provide
an interesting test-bed for understanding how such parametric variations across different areas of the net-
work lead to differentiations in mature function (e.g., Elman, Bates, Johnson, Karmiloff-Smith, Parisi, &
Plunkett, 1996).

The Need for Integration: Binding

To this point, we have focused on the ways in which neural systems need to be specialized to carry
out different computational functions. However, there are opposing pressures that force the integration
of information processing functions within a single brain area. In particular, as noted earlier, the binding
problem places important demands on how information is represented within a given brain area, requiring
information to be integrated. As shown in Figure 5, the binding problem arises whenever different aspects
of a stimulus input (e.g., color and shape) are encoded by separate neural units. When you have two or more
inputs, then you cannot recover from the internal representation which color goes with which shape: was it a
red triangle or a blue triangle out there in the world? Although the discussion below focuses on the domain
of posterior cortical sensory representations, these binding issues are important for virtually all brain areas.

One trivial solution to the binding problem is to use conjunctive representations to represent each binding
that the system needs to perform. In the example shown in Figure 5, there would be a particular unit that
codes for a blue square and another that codes for a red triangle. While it is intuitively easy to understand
how such conjunctive representations solve the binding problem, they are intractable because they produce
a combinatorial explosion in the number of units required to code for all possible bindings as the number
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red blue

??

Figure 6: Decoding problem for temporal synchrony. Two sets of features are each firing in phase with each other, and
out of phase with the other set (as indicated by the sine wave plots below the features). Without additional mechanisms,
it is unclear how a downstream neuron can decode this information to determine what is actually present: it is being
uniformly driven by synaptic input at all phases, and its activation would be the same for any combination of synchrony
in the input features. Also, even though it looks like the synchronous firing is discriminable, both sets of units have
synchronous firing, so there is no basis to choose one over another. One solution is to build in preferential weights for
one set of features (e.g., “red square”) but this amounts to a conjunctive representation, which the temporal synchrony
approach is designed to avoid in the first place.

of features to be bound increases. As an example, assume that all objects in the world can be described by
32 different dimensions (e.g., shape, size, color, etc), each of which contains 16 different feature values.
To encode all possible bindings using the naive approach, 16

32, or 3.5x10
38 units would be needed. If the

system needed to bind features for 4 objects simultaneously, 4 times as many units would be needed. Of
course, the brain binds many more types of features and does so with far less units.

Temporal synchrony is a popular alternative to simple conjunctive approach to binding (e.g., von der
Malsburg, 1981; Gray et al., 1992; Engel et al., 1992; Zemel et al., 1995; Hummel & Biederman, 1992).
This account holds that when populations of neurons that represent various features fire together, those
features are considered bound together. To encode multiple distinct sets of bindings, different groups of
neurons fire at different phase offsets within an overall cycle of firing, using time to separate the different
representations. In the example of Figure 5, the “red” and “triangle” units would fire together, and out of
phase with the “blue” and “square” units. This temporal interleaving is appealing in its simplicity, and the
many reports of coherent, phasic firing of neurons in the brain appear to lend it some credibility (e.g., Gray
et al., 1992; Engel et al., 1992; Csibra, Davis, & Johnson, 2000).

However, the temporal synchrony account has several problems, as detailed in several existing critiques
(O’Reilly et al., 2003; Cer & O’Reilly, in press; Shadlen & Movshon, 1999). For example, the transience of
temporal synchrony causes problems when bound information needs to be encoded in long-term memory.
One proposal is that there is a separate conjunctive representation system for everything that is encoded
into long term memory (Hummel & Holyoak, 1997), with the idea that this is a small enough set that the
combinatorial explosion of such conjunctions is not a problem. However, there is considerable evidence
that just about every activation state in our brains produces a lasting trace in the synaptic connections that
can later be measured in priming or perceptual learning studies (e.g., Furmanski & Engel, 2000; Gilbert,
Sigman, & Crist, 2001; Adini, Sagi, & Tsodyks, 2002; Aslin, Blake, & Chun, 2002; Wagner, Koutstaal,
Maril, Schacter, & Buckner, 2000; Stark & McClelland, 2000)— this would suggest that combinatorial
explosion is a problem. Furthermore, the process of actually using (“decoding”) the temporal synchrony
binding information is problematic as shown in Figure 6. In addition, the data showing synchronous neural
firing falls well short of demonstrating the interleaved phase-offset synchrony necessary for binding. Instead,
this data may just be an epiphenomenon of spike-based neural firing dynamics.

Fortunately, there is another alternative way of solving the binding problem, which involves a more
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RC
GS

obj1 obj2 R G B S C T BT
RS GC 1 1 0 1 1 0 0
RC GS 1 1 0 1 1 0 1
RS GT 1 1 0 1 0 1 0
RT GS 1 1 0 1 0 1 1
RS BC 1 0 1 1 1 0 0
RC BS 1 0 1 1 1 0 1
RS BT 1 0 1 1 0 1 1
RT BS 1 0 1 1 0 1 0
RC GT 1 1 0 0 1 1 1
RT GC 1 1 0 0 1 1 0
RC BT 1 0 1 0 1 1 1
RT BC 1 0 1 0 1 1 0
GS BC 0 1 1 1 1 0 1
GC BS 0 1 1 1 1 0 0
GS BT 0 1 1 1 0 1 1
GT BS 0 1 1 1 0 1 0
GC BT 0 1 1 0 1 1 1
GT BC 0 1 1 0 1 1 0

Table 1: Solution to the binding problem by using representations that encode combinations of input features (i.e.,
color and shape), but achieve greater efficiency by representing multiple such combinations. Obj1 and obj2 show the
features of the two objects. The first six columns show the responses of a set of representations that encode the separate
color and shape features: R = Red, G = Green, B = Blue, S = Square, C = Circle, T = Triangle. Using only these
separate features causes the binding problem: observe that the two configurations in each pair are equivalent according
to the separate feature representation. The final unit encodes a combination of the three different conjunctions shown
at the top of the column, and this is enough to disambiguate the otherwise equivalent representations.

efficient way of implementing conjunctive representations using distributed coarse-coded conjunctive rep-
resentations (DCC) (Cer & O’Reilly, in press; Mel & Fiser, 2000). A DCC representation encodes binding
information via a number of simultaneously active units (i.e., a distributed representation; Hinton et al.,
1986), where each unit is activated by multiple different conjunctions. For example, a given unit might
respond to red+circle or green+square or blue+triangle. By getting more conjunctive mileage out of each
unit, and leveraging the combinatorial power of distributed representations across multiple units, this solu-
tion can be much, much more efficient than naive conjunctive representations (Table 1). For example, for
the 32 dimensions with 16 features each case mentioned above, only 512 units would be required under
an optimal binary distributed representation (see Cer and O’Reilly (in press) for details). The numbers for
more realistic neural networks would certainly be higher than this, but nowhere near the 3.5x10

38 units of
the simple conjunctive approach. In addition to this efficiency, virtually every neural recording study ever
performed supports these DCC representations, in that individual neurons inevitably encode conjunctions of
different stimulus/task features (e.g., Tanaka, 1996; Rao, Rainer, & Miller, 1997; Barone & Joseph, 1989;
Ito, Westheimer, & Gilbert, 1998; Walker, Ohzawa, & Freeman, 1999).

Spatial Relationship Binding Model

The ability of a neural network to learn these DCC representations, and to systematically generalize
to novel input patterns, was explored by O’Reilly and Busby (2002). This model demonstrates both that
distributed, coarse-coded conjunctive representations can systematically perform binding relationships, and
that not all mechanisms for developing such relationships are equivalent. The network (Figure 7a) was
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Figure 7: a) Spatial relationship binding model, representing posterior visual cortex (O’Reilly & Busby, 2002).
Objects are represented by distributed patterns of activation over 8 feature values in each location, with the input
containing a 4x4 array of object locations. Input patterns contain two different objects, arranged either vertically or
horizontally. The network answers different questions about the inputs based on the activation of the Question input
layer. For the “what?” question, the location of one of the objects is activated as an input in the Location layer, and the
network must produce the correct object features for the object in that location. For the “where?” question, the object
features for one of the objects are activated in the Object layer, and the network must produce the correct location
activation for that object. For the “relation-obj?” question, the object features for one object are activated, and the
network must activate the relationship between this object and the other object, in addition to activating the location
for this object. For the “relation-loc?” question, the location of one of the objects is activated, and the network must
activate the relationship between this object and the other object, in addition to activating the object features for this
object (this is the example shown in the network, responding that the target object is to the left of the other object).
Thus, the hidden layer must have bound object, location, and relationship information in its encoding of the input.
b) Generalization results for different algorithms on the spatial relationship binding task (testing on familiar objects
in novel locations; similar results hold for novel objects as well). Only the 400 Agent, Location x 10 or 20 Patient,
Location cases are shown. It is clear that Leabra performed roughly twice as well as the CHL algorithm, consistent
with earlier results on other tasks (O’Reilly, 2001).

trained to encode and report the spatial relationship between two items presented on its inputs, in addition
to the identity and location of one of these items. Thus, the need for binding was taxed in two ways.
First, the mere presence of two stimulus items demanded the ability to bind the features associated with
one stimulus as distinct from the other. Second, and perhaps more challenging, the need to encode the
spatial relationship information between objects required a kind of relational binding that has often been
discussed in the context of complex structured knowledge representations (e.g., Touretzky, 1986; Hummel &
Biederman, 1992; Hummel & Holyoak, 1997; Smolensky, 1990; Shastri & Ajjanagadde, 1993; Gasser &
Colunga, 1998; Plate, 1995). Specifically, the network needed to be able to identify one of the two inputs as
the “agent” item (i.e., the focus of attention), and report the relationship of the other “patient” item relative
to it, and not the other way around.

The model is a very simplified rendition of the early visual system. During training the model is presented
with a pair of input items in a simulated visual field, and is “asked” one of four corresponding questions (via
the activation of a question input unit) (see Figure 7a for details). The model was implemented as a recurrent
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neural network using the Leabra framework (O’Reilly & Munakata, 2000), and it achieved very high levels
of generalization based on relatively limited amounts of experience (e.g., 95% correct after training on only
25% of the training space, and 80% correct after training on only roughly 10% of the space). In addition, a
model using only contrastive Hebbian (CHL) error-driven learning, and another using the Almedia-Pineda
recurrent backpropagation algorithm, were also run. Of these, it was found that Almedia-Pineda was not
able to learn to successfully preform the task. While both the Leabra and CHL networks were able to learn,
the additional constraints in Leabra (Hebbian learning and inhibitory competition) produced nearly twice as
good generalization as CHL (Figure 7b).

Thus, by incorporating additional, biologically motivated constraints on the development of internal rep-
resentations in the network, the Leabra model is able to achieve more systematicity in its representations,
which subsequently give rise to better generalization performance. Importantly, we analyzed the inter-
nal representations of the Leabra network, and found that it developed both specialized representations of
separable stimulus features (i.e., just representing what or where separately) and distributed coarse-coded
conjunctive representations that integrated across features. This is typically what is observed in neural
recording studies of the visual pathway, where many neurons encode strange conjunctions of stimulus fea-
tures (Tanaka, 1996), while others have relatively more featural selectivity.

Other Mechanisms of Integration and Dissociation

There are numerous other neural mechanisms that can give rise over development to integration and
dissociation of function within the cortex. These mechanisms are generally compatible with the above
framework, but do not emerge directly from the overall computational tradeoffs behind it. A selection of
such mechanisms are briefly reviewed here (see Jacobs, 1999 for a more detailed review).

It is well established that synapses proliferate early in development, and are then pruned as the brain
matures (e.g., Huttenlocher, 1990). This process of refining the connectivity of neurons can lead to the de-
velopment of more clearly delineated functional specializations in different brain areas (Johnson & Vecera,
1996), as has been demonstrated in computational models (Jacobs & Jordan, 1992; Miller, 1995). This pro-
cess has been termed “parcellation”. For example, Jacobs and Jordan (1992) showed that a network with a
bias toward strengthening connections to physically proximal neurons produced a topographic organization
of specialized functions within an initially homogeneous network. Although a focus on pruning is prevalent,
others have emphasized the importance of the ongoing grown of new synapses, which can support continued
plasticity of the system (Quartz & Sejnowski, 1997). As Jacobs (1999) points out, both pruning and synaptic
growth behave functionally very similar to standard forms of Hebbian learning used in many different neu-
ral network models. Thus, it remains to be seen whether including these mechanisms in a broader range of
models will result in fundamentally new computational properties. It could well be that these processes are
a pragmatic physical necessity of wiring up the huge numbers of neurons in the mammalian cortex, whereas
most small-scale models “cheat” and use full connectivity with Hebbian learning mechanisms, possibly with
similar effect.

In both the parcellation models and Hebbian learning, competition plays a critical role in forcing the
specialization of different neurons and brain areas. This competition can take place at many different scales,
from synapses to neurons to larger-scale brain areas. This latter form of competition has been exploited in
the mixture of experts models (Jacobs, Jordan, Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994; Jacobs &
Kosslyn, 1994). These models posit that learning is somehow gated by the relevance of a given group
or pool of neurons (an “expert”) for a given trial of learning. Experts that are most relevant get to learn
the most from the feedback on a trial, and this causes further specialization of these experts for particular
types of trials. Due to competition, experts for one set of trials typically lose out to other experts for other
types of trials, resulting in an overall dissociation or specialization of function across these experts. This
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may provide a reasonable computational model for specialization of function across different cortical areas.
However, as noted in Jacobs (1999), it is unclear if the requisite large-scale competition between brain areas
exists in the brain. Thus, it may make more sense to consider competition to operate fundamentally at
the level of individual neurons (which is relatively well accepted), but to also allow for positive excitatory
interactions among neurons. These excitatory interactions can cause neurons to group together and act
as a more coherent whole. In effect, these excitatory grouping effects, together with pervasive inhibition
mediated by local inhibitory interneurons, may result in emergent learning dynamics that resemble those
captured in the mixture of experts models. This dynamic is present in several existing models of parcellation,
for example in the development of ocular dominance columns (Miller, 1995).

In addition, these kinds of emergent competitive dynamics may have an overlay of more biologically-
determined changes in plasticity over development. For example, one model explored the effects of “trophic
waves” of plasticity that spread from simulated primary sensory areas to higher-level association areas
(Shrager & Johnson, 1996). This trophic wave effect led to greater levels of neural specialization, in partic-
ular to the development of more complex higher-order representations in the higher-level association cortex.

These mechanisms are compelling and should be included more widely into neural network learning
models. It will be interesting to explore in future work the possible interactions between these types of
mechanisms and the general tradeoff principles articulated earlier.

General Discussion

The general conclusions from the computational tradeoffs described above are summarized in the tri-
partite cognitive architecture pictured back in Figure 1. This architecture is composed of posterior cortex
(PC), hippocampus (HC), and frontal cortex/basal ganglia (FC), with each component specialized for a spe-
cific computational function. The posterior cortex is specialized for slowly developing rich, overlapping
distributed representations that encode the general structure of the world, and for using these representa-
tions to support inferential reasoning through spreading activation dynamics, among other functions. The
hippocampus uses sparse distributed representations to avoid interference while rapidly learning about ar-
bitrary novel conjunctions (e.g., episodes), and recurrent connectivity in CA3 of the hippocampus supports
pattern completion (recall) of previously encoded patterns. The frontal cortex/basal ganglia system uses
relatively isolated representations and intrinsic bistability to robustly maintain information in an active state,
and the basal ganglia provides adaptive gating to selectively update these representations according to task
demands.

These distinctions between functional areas do not align with stimulus content dimensions. In contrast,
each area encodes largely the same kinds of content (e.g., different stimulus dimensions and abstractions,
language representations, etc), but does so in a different way, with different computational affordances. This
allows the binding problem to be avoided, as each area can use distributed coarse-coded representations to
efficiently and systematically cover the space of bindings that need to be distinguished.

This architecture lies between the extremes of modularity and equipotentiality — it has elements of both.
However, it is not just any kind of both, but rather a very particular kind of both that focuses on some factors
as critical for driving specialization, and not others. This approach can be summarized with the following
“recipe” for “discovering” dissociated functional areas:

1. Identify essential functions.

2. Identify their requisite neural mechanisms (using computational models).

3. If they are incompatible, separate brain areas are required.
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Of course, each of these steps requires considerable elaboration and judgment to be applied successfully,
but this at least serves to highlight the core of the logic behind the present work.

This recipe can be applied within posterior cortex, for example to help understand the nature of the
specialization in the fusiform face area (FFA) (Kanwisher, 2000; Tarr & Gauthier, 2000). From the hip-
pocampal modeling work, we know that sparse activity levels lead to pattern separation, and thus the ability
to distinctly represent a large number of similar input patterns. The apparent ability of the FFA to support
identification of highly similar subordinate category members (e.g., faces) would certainly be greatly facili-
tated by this kind of sparse activity. Thus, it may be that this is what is unique about this brain area relative
to other areas of posterior cortex. Note that because this area does not need to also support pattern comple-
tion from partial cues in the same way that the hippocampal system does, it therefore does not require the
full set of neural specializations present in the hippocampus. In any case, this view of FFA specialization
is appealing in its biological simplicity (it is easy to see how such a simple parametric variation could be
genetically coded, for example), and is consistent with the notion that this area can also be co-opted for
other forms of subordinate category representation (Tarr & Gauthier, 2000).

In conclusion, this paper has hopefully stimulated some interest in the notion that a cognitive architecture
defined in terms of computational tradeoffs, with each area integrating information using distributed coarse-
coded conjunctive representations to avoid binding problems, may provide some useful understanding of
complex patterns of behavior from development to the mature system.
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