
Introduction

In this poster, we present a

biologically-based dual-process

model of recognition memory.

Dual-process models posit that

recognition judgments are based on:

- recollection of specific details, and

- nonspecific feelings of familiarity

Recollection depends on the

hippocampus.

Recent data suggest that medial

temporal neocortical regions (MTLC)

play an important role in supporting

familiarity-based recognition (for a

review, see Aggleton & Brown, 1999).

We seek to understand, in

mechanistic detail, how MTLC and

the hippocampus contribute to

recognition memory, by constructing

neural network models of these

structures, and using them to

simulate recognition data from

lesioned and intact subjects.

Two Incompatible Goals

Our overall view of neocortical and hippocampal

processing builds on the Complementary

Learning Systems Framework set forth by

McClelland, McNaughton, & O'Reilly (1995).

This framework starts from the premise that

learning about specifics and extracting

generalities are computationally incompatbile

tasks. Thus, we have evolved specialized

networks for performing these tasks.

Neocortex learns slowly, integrating across

episodes to arrive at a representation of what is

generally true in the environment.

Hippocampus learns rapidly, binding together

co-active cortical neurons in a manner that

allows stored patterns to be completed based on

partial cues.

Neocortex assigns similar representations to

similar stimuli => this allows it to generalize to

novel stimuli based on their similarity to

previously encountered stimuli

Hippocampus assigns distinct representations

to stimuli => use of relatively non-overlapping

("pattern-separated") representations allows the

hippocampus to learn rapidly without suffering

from catastrophic interference

Modeling Hippocampal and Neocortical

Contributions to RecognitionMemory

Kenneth A. Norman, Randall C. O'Reilly, & David E. Huber

Dept. of Psychology, University of Colorado at Boulder

poster presented at the 2000 Cognitive Neuroscience Societymeeting

questions/comments? email Ken Norman, norman@psych.colorado.edu

Computational

Cognitive

Neuroscience

Laboratory



Recognition in the Hippocampus

Recognition in the hippocampal model is based on the extent to

which the test cue is recalled. Specifically, we use the measure:

(# of recalled features that match the test cue) -

	 (# of recalled features that mismatch the test cue)

The mismatch term reflects the fact that lures sometimes trigger

recollection of a similar studied item, and this can serve as

grounds for rejecting the lure.
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Recognition in MTLC:

Familiarity as Sharpening

How can MTLC contribute to recognition

after a single study exposure, if it is supposed

to learn slowly (integrating over events)?

Although each weight changes only slightly

when an item is studied, these small weight

changes combine to yield a reliable, detectable

effect on how that item is represented in

MTLC.

As items become more familiar,

representations become sharper:

- unfamiliar stimuli weakly activate a large

number of units

- familiar stimuli strongly activate a relatively

small number of units

Sharpening occurs because Hebbian learning

specifically tunes some units to represent the

stimulus.

When the stimulus is presented again, the

well-tuned units are strongly activated, and

these units suppress other, less well-tuned

units via inhibitory competition.

Converging evidence from single-cell

recording: Stimulus familiarization causes

some neocortical neurons to fire less to that

stimulus, whereas other neurons -- those

selected to represent the stimulus -- fire more

(e.g., Rolls et al., 1989).

To index sharpness -- and thus familiarity --

we compute the following measure:

average activity of units that are active

(with act > .01)

- When a stimulus is unfamiliar, weakly active

units drag down the average

- With familiar stimuli, units that are active

tend to be strongly active => therefore, the

average activity of these units will be high

The Models

Both the hippocampal and neocortical networks were

constructed using the Leabra model (O'Reilly & Munakata,

2000), which brings together several widely-accepted

characteristics of learning in the brain -- including, but not

limited to, Hebbian LTP/LTD (long term potentiation/

depression) and inhibitory competition between neurons.

The hippocampal

network links

overlapping patterns in

entorhinal cortex (EC)

to relatively non-

overlapping patterns in

region CA3; recurrent

connections in CA3

bind together all of the

units involved in

representing a

particular EC pattern;

the CA3 representation

is linked back to EC

via region CA1.

The cortical network is a

simple two-layer net, in

which the hidden layer

(corresponding to MTLC)

encodes regularities that

are present in the input

layer (corresponding to

"lower" cortical regions).

Initial simulations were run separately in the hippocampal and

neocortical networks.

- The same inputs were presented to both models.

- The same parameter values were used for all of these

simulations.

unfamiliar familiar
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Explaining the List

Strength Results

The lack of a list strength effect for MTLC (when

item similarity is relatively low) can be explained

in terms of differentiation -- strengthening an

item's memory trace makes it less likely to be

activated by other items (McClelland &

Chappell, 1998; Shiffrin & Steyvers, 1997).

Differentiation occurs in the model because of

Hebbian LTD.

Hebbian learning increases weights from active

inputs to active MTLC units (LTP), but it also

decreases weights from inactive inputs to active

MTLC units (LTD).

The LTD effect works to decrease interference,

by decreasing the odds that an item's MTLC

representation will be (spuriously) activated by

other items at test.

When items are relatively dissimilar, LTD effects

balance out LTP effects, and there is no

interference.

Interference occurs in the hippocampus because

recollection is a competitive process (only one

pattern can be recalled at a time), and because

the hippocampus does not completely eliminate

overlap between patterns.

When a hippocampal unit is activated by two

different inputs, strengthening the unit's

connections to pattern X will necessarily lead to

worse recall of pattern Y (since activated "X"

features will compete with "Y" features).

Thus, even though there is less overlap between

patterns in the hippocampus than in the cortex,

this small amount of overlap is more

consequential because of the "zero sum" nature

of recollection.

The fact that overlap is so harmful to recollection

underlines the need for pattern separation in the

hippocampus.

Interference: List Strength

Effects

In both the hippocampal and cortical models, presenting an

item multiple times improves recognition of that item (an

item strength effect).

Here, we explore whether there is also a cost associated

with strengthening some memory traces: Does repeating

some studied items impair recognition of other (non-

repeated) studied items? This is called a list strength effect.

We ran simulations examining the list strength effect; we

also manipulated average item similarity to see if this factor

interacts with list strength.

Data are presented using interference difference scores;

positive values indicate the presence of a list strength effect.

Error bars in this poster indicate 95% confidence intervals.

Key results:

- Hippocampus shows a list strength effect regardless of

item similarity.

- MTLC only shows a list strength effect once item

similarity exceeds 20% overlap.

Empirical support:

The model's prediction of a list strength effect for

(hippocampal) recollection was confirmed by Norman

(submitted).

The finding that overall recognition performance is

typically unaffected by list strength (e.g., Ratcliff, Clark, &

Shiffrin, 1990) can be explained in terms of subjects relying

primarily on neocortical familiarity.

The model predicts that a recognition list strength effect

should emerge when the contribution of hippocampal

recollection is increased. Evidence consistent with this

prediction was obtained by Norman (submitted).
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Interference:

Main Effects of Item Similarity

How does increasing the average similiarity of items to one another affect hippocampally-

driven and neocortically-driven recognition?

Key result:

- Moving from low

to moderate levels

of similarity,

hippocampally-

driven recognition

decreases but

MTLC shows a

small but reliable

increase in

recognition performance.

The decrease in hippocampally-driven recognition is not difficult to explain:

- Increasing similarity increases overlap in the hippocampus and (as discussed earlier)

increasing overlap impairs recollection.

Why does increasing similarity improve recognition in MTLC?

- Increasing item similarity makes both studied items and lures more familiar.

- For complex reasons, the increase in familiarity is larger at first for studied items than lures,

leading to an increase in d'.

Empirical support from studies of divided attention (at encoding):

=> Dividing attention at encoding should lower the distinctiveness of memory traces, by

preventing subjects from elaborating on studied items.

- Studies using the process dissociation procedure (e.g., Jacoby, 1991) have found that

dividing attention -- thus increasing trace similarity -- impairs recollection but not familiarity.

- Curran (in press) has isolated distinct ERP correlates of recollection and familiarity. In a

recent study, Curran (personal communication) found that dividing attention at encoding led

to an increase in the ERP effect associated with familiarity, and a decrease in the ERP effect

associated with recollection.
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ROC Curves

Does our model produce the ROC curves predicted by extant (non-mechanistic) dual-process models?

Yonelinas, Jacoby, and colleagues have devised several procedures for estimating recollection and familiarity from

behavioral data (Jacoby et al., 1997); these procedures all rely on the following assumptions:

1) familiarity is an equal-variance signal detection process

2) recollection is a high-threshold process: Studied items are sometimes recollected (as having been studied), but

this never happens for lures

3) recollection and familiarity are independent

Assumptions 1 and 2 lead to concrete, distinctive predictions about the shapes of ROC curves (generated by

plotting hits vs. false alarms while varying response bias; Yonelinas et al., 1996):

- familiarity ROCs should be symmetrical

and curvilinear

- recollection ROCs should be linear

Key result: The curves generated by our

models are remarkably similar to the

curves predicted by Yonelinas.

Our model therefore provides a principled

justification for Yonelinas' assumptions 1

and 2 (assumption 3, the independence

assumption, is addressed later in this

poster...)

=> we should note, however, that our model

does not behave exactly in accordance with

Yonelinas' assumptions; for example, we

treat recollection as a continuously varying

signal (which can take on above-zero values

for lures), whereas recollection is all-or-

none in Yonelinas' framework

The high-threshold nature of recollection in our model (the fact that it is possible -- if you select a high enough

threshold -- to eliminate recollection false alarms without totally eliminating recollection hits) is a consequence of

hippocampal pattern separation:

- lures have to be quite similar to studied items before they trigger any kind of recollection

- when a lure is very similar to a studied item, it will often trigger recall of that item, and can be rejected based on

mismatch between the recalled studied pattern and the test probe

By contrast, cortical processing is much more graded:

- the cortical familiarity signal triggered by a stimulus at test is a smoothly varying function of its similarity to

studied items (i.e., its "global match")

- thus, lures that happen to share features with studied items will trigger a strong familiarity signal, resulting in

false recognition�
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Lure Similarity and Test Format

The ROC results suggest that MTLC should perform especially poorly, relative to the hippocampus, on recognition tests

where lures are related to studied items.

To review:

- related lures should trigger strong feelings of familiarity, leading to false recognition (and low d' scores) in the MTLC

model; the hippocampus should show better discrimination because of its ability to pattern-separate similar inputs

- with unrelated lures, both models should show good discrimination (unrelated lures will be relatively unfamiliar, and

they will not trigger recollection)

Effects of test format:

Although related lures will be highly familiar, they should be reliably less familiar than the corresponding studied item

=> Thus, when lures are related to studied items, MTLC should greatly benefit from use of a forced-choice (FC) test

procedure, in which subjects choose between studied items and corresponding lures

- this test format allows subjects to tune into the small but reliable familiarity differences that exist between these items.

We conducted simulations where we varied lure relatedness and test format: standard, yes/no (YN) single probe testing

vs. FC testing. To facilitate comparison of the models, MTLC performance was matched to hippocampal performance

in the unrelated lures condition.

Key result:

MTLC performed worse than the hippocampus on the YN related

lures test, but MTLC was unimpaired on the FC related lures test.

In summary, the models predict a 3-way interaction whereby MTLC

performance is significantly worse (relative to the hippocampus) on

YN tests with related lures, as compared to all other conditions

defined by crossing test format (YN/FC) and lure relatedness.

Empirical support:

We tested the models' prediction via our collaboration with Andrew

Mayes. Mayes' group has conducted extensive testing of patient YR,

who suffered focal hippocampal damage, sparing surrounding MTLC

regions.

YR is severely impaired at recalling specific details

=> thus, YR has to rely primarily on neocortical familiarity when

making recognition judgments

Results are consistent with the predicted 3-way interaction!

- YR was significantly impaired on a YN recognition test which used related lures, but she performed slightly better

than the control mean on a FC version of the same test (Holdstock et al., submitted).

- YR was not significantly impaired on any of a large number of YN and FC recognition tests using unrelated lures.

- This pattern can not be explained in terms of difficulty confounds (e.g., controls found the YN related lure test to be

easier than the FC related lure test).
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The Combined Model and Independence

What is the statistical relationship between hippocampal recollection and MTLC familiarity?

Specifically, are the two independent, as the process dissociation procedure assumes?

To address this question, we implemented a

more realistic combined model, whereby the

hidden (MTLC) layer of the cortical network

serves as the input layer to the hippocampal

network.-- this arrangement accurately reflects

how the two structures are connected in the

brain.

This model outputs a familiarity and

recollection signal for each item. We ran a

simple recognition simulation using the

combined model and measured the extent to

which the recollection and familiarity signals

were correlated.

A priori, one might suspect that having the

MTLC as input to the hippocampus would result in a correlation between these two systems.

Key result: Recollection and familiarity were completely independent.

This result shows that there are enough independent sources of variability in the two networks to eliminate

correlations induced merely by the way the networks are connected.

However, recollection and familiarity need not always be independent; the model can be used to explore

when to expect independence violations.

For example, encoding variability could produce dependence...

=> if items vary substantially in how well they are

encoded, poorly-encoded items will be unfamiliar

and will not be recollected; well-encoded items will

be more familiar, and more likely to trigger

recollection.

We ran simulations in the combined model where

we manipulated encoding variability by varying the

probability of complete encoding failure from 0 to

.50.

As predicted, increasing encoding variability

increased the recollection-familiarity correlation.
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Associative Recognition

A central feature of the hippocampus is that it forms conjunctive representations that bind

together separate features of an event into a unitary representation.

Is MTLC familiarity only sensitive to individual features, or is it also sensitive to

feature conjunctions?

We explored this using an associative recognition paradigm, in which subjects study pairs of

stimuli (A-B, C-D); at test, subjects have to discriminate between studied pairs and

associative lures generated by re-combining studied pairs (A-D, B-C).

The hippocampus can discriminate between studied items and associative lures based on

recollection of actual study pairs (e.g., recollecting what was actually said in conjunction

with "A" at study).

How will MTLC perform on associative recognition tests?

Using the combined model, we simulated an associative recognition experiment (using YN

testing); we also ran a standard, "unrelated lures" recognition experiment for comparison.

Key results:

- Cortically-driven recognition is

worse, relative to hippocampally-

driven recognition, when related

associative lures are used at test

vs. when unrelated lures are used

at test

=> this replicates the YN related

lure deficit reported earlier

- The cortical network's ability to

discriminate between studied

items and associative lures was

well above chance

=> this shows that cortex is

sensitive to feature co-occurrence in addition to (individual) feature occurrence

Evidence consistent with this conclusion comes from recent studies showing good

associative recognition performance in patients with focal hippocampal damage, sparing

MTLC (Vargha-Khadem et al., 1997; Holdstock et al., submitted).



Summary and

Conclusions

We used neural network models of the hippocampus

and medial temporal neocortex (MTLC) to explore

these structures' contributions to recognition

memory.

We identified several manpulations that should

differentially affect hippocampally-driven and

MTLC-driven recognition: list strength, average

between-item similarity, and the relatedness of lures

to studied items.

These differences support the idea that the

hippocampus and MTLC make qualitatively

distinct contributions to recognition memory.

We cited a wide variety of empirical results in

support of the model's predictions. Most strikingly,

we cited new patient data confirming our model's

prediction of a three-way interaction between MTLC

vs. hippocampus, YN vs. FC testing, and related vs.

unrelated lures.

The model provides provisional support for the three

key assumptions of Yonelinas and Jacoby's dual-

process framework. We plan to use the model to

deliniate the conditions under which the assumptions

break down.

More generally, this work brings together two

streams of memory research -- precise, formal

modeling of list-learning data, and cognitive

neuroscience approaches to memory -- that, up to

this point, have operated in parallel.

By establishing an explicit mapping between the

brain structures involved in recognition, and the

processes they support, this work makes it possible

to:

- bring cognitive neuroscience constraints to bear on

mechanistic models of recognition memory, and...�

- use these models to predict cognitive neuroscience

data (e.g., lesion effects, neuroimaging activations)

Future directions

The cortical model can be used to

explain priming data -- we think

that familiarity and priming reflect

the same underlying mechanisms

operating at different levels of the

neocortical hierarchy.

The hippocampal model can be

used to simulate cued recall (e.g.,

source memory data).

We can use the combined model to

simulate:

- data on the time course of

recollection and familiarity

- data from paradigms where

recollection and familiarity are

placed in opposition (e.g., Jacoby's

process dissociation paradigm)

The combined model can be used

to predict neuroimaging

activations (simply by reading out

the activation of different parts of

the model in response to different

test probes).

We should be able to precisely

predict the effects of different

kinds of medial temporal lesions

by lesioning the corresponding

part of the combined network.

We are using the same cortical-

hippocampal model to account for

the effects of hippocampal lesions

on animal learning (O'Reilly &

Rudy, 1999).�
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