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We describe a neurobiologically informed computational model of phasic dopamine signaling to account
for a wide range of findings, including many considered inconsistent with the simple reward prediction
error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary
value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value
(LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents
the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents
the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory
projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data
supporting the separability of these systems, including individual differences in CS-based (sign-tracking)
versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways
representing evidence for and against specific USs, which can explain data dissociating the processes
involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in
accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of
second-order conditioning. Finally, we show how additional separable pathways representing aversive
USs, largely mirroring those for appetitive USs, also have important differences from the positive valence
case, allowing the model to account for several important phenomena in aversive conditioning. Overall,
accounting for all of these phenomena strongly constrains the model, thus providing a well-validated
framework for understanding phasic dopamine signaling.
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Phasic dopamine signaling plays a well-documented role in
many forms of learning (e.g., Wise, 2004) and understanding the
mechanisms involved in generating these signals is of fundamental
importance. The temporal differences (TD) framework (Sutton &

Barto, 1981, 1990, 1998), building on the reward prediction error
(RPE) theory of Rescorla and Wagner (1972), provided a major
advance by formalizing phasic dopamine signals in terms of con-
tinuously computed RPEs (Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997). To summarize this dopamine
reward prediction error hypothesis (DA-RPE; Glimcher, 2011),
the occurrence of better than expected reward outcomes produces
brief, short-latency increases in dopamine cell firing (phasic
bursts), while worse than expected outcomes produce correspond-
ing phasic decreases (pauses/dips) relative to a tonic firing base-
line. These punctate error signals have been shown to function as
temporally precise teaching signals for Pavlovian and instrumental
learning, and are widely believed to play an important role in the
acquisition and performance of many higher cognitive functions
including: action selection (Frank, 2006), sequence production
(Suri & Schultz, 1998), goal-directed behavior (Goto & Grace,
2005), decision making (Doll & Frank, 2009; St. Onge & Floresco,
2009; Takahashi et al., 2010), and working memory manipulation
(O’Reilly & Frank, 2006; Rieckmann, Karlsson, Fischer, & Back-
man, 2011).

Despite the well-documented explanatory power of this simple
idea, it has become increasingly clear that a more nuanced under-
standing is needed, as there are many aspects of dopamine cell
firing that are hard to reconcile within a simple RPE formalism.
For example, dopamine cell bursting has long been known to occur
robustly at both CS- and US-onset for a period of time early in
training (Ljungberg, Apicella, & Schultz, 1992). Moreover, recent
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work suggests that as the delay between CS-onset and US-onset
increase beyond a few seconds, dopamine cell bursting at the time
of the US diminishes progressively less until it is statistically
indistinguishable from the response to randomly delivered reward,
even after a task has been thoroughly learned (Fiorillo, Newsome,
& Schultz, 2008; Kobayashi & Schultz, 2008). In contrast, condi-
tional stimulus (CS) firing is acquired relatively robustly across
these same delays, albeit less so as a function of increasing delay
(i.e., flatter decay slope; Fiorillo et al., 2008; Kobayashi & Schultz,
2008).

More subtle anomalies include the asymmetrical pattern seen for
earlier than expected versus later than expected rewards (Holler-
man & Schultz, 1998); and certain aspects of the conditioned
inhibition paradigm, including the lack of a RPE-like dopamine
response at the time of omitted reward when a conditioned inhib-
itor is presented alone at test (Tobler, Dickinson, & Schultz, 2003).
Further, extinction learning and related reacquisition phenomena
have been shown to involve additional learning mechanisms be-
yond those involved in initial acquisition, suggesting the likelihood
of additional wrinkles in the pattern of dopamine signaling in-
volved. Finally, the pattern of phasic dopamine signaling seen
under aversive conditioning paradigms is not a simple mirror-
image of the appetitive case, with evidence for heterogeneous
subpopulations of dopamine neurons that respond to primary aver-
sive outcomes in opposite ways (Brischoux, Chakraborty, Brierley,
& Ungless, 2009; Bromberg-Martin, Matsumoto, & Hikosaka,
2010b; Fiorillo, 2013; Lammel, Lim, & Malenka, 2014; Lammel et
al., 2012; Matsumoto & Hikosaka, 2009a). In addition, a long-
standing controversy has surrounded the phasic bursting often seen
for aversive and/or high intensity stimulation (e.g., Comoli et al.,
2003; Dommett et al., 2005; Fiorillo, 2013; Horvitz, 2000;
Humphries, Stewart, & Gurney, 2006; Mirenowicz & Schultz,
1996; Schultz, 2016), which has been interpreted as a component
of salience or novelty-coding in addition to simple RPE-coding
(Kakade & Dayan, 2002).

Such departures from the simple RPE formalism should not be
surprising, however, because it is an abstract, mathematical for-
malism corresponding to David Marr’s (1982) algorithmic, or even
computational, level of analysis. Thus, the present work can be
seen as an attempt to bridge between the biological mechanisms at
Marr’s implementational level and the higher-level RPE formal-
ism, providing specific testable hypotheses about how the critical
elements of that formalism arise from interactions among distrib-
uted brain systems, and the ways in which these neural systems
diverge from the simpler high-level formalism. There is an impor-
tant need for this bridging between levels of analysis, because the
neuroscience literature has implicated a large and complex net-
work of brain areas as involved in dopamine signaling, but under-
standing the precise functional contributions of these diverse areas,
and their interrelationships, is difficult without being able to see
the interacting system function as a whole. The computational
modeling approach provides this ability, and the ability to more
systematically test and manipulate areas to determine their precise
contributions to a range of different behavioral phenomena. Fur-
thermore, the considerable divergences between appetitive
(reward-defined) and aversive (punishment-defined) processing
are particularly challenging and informative, because the same
networks of brain areas are involved in both to a large extent, and
the abstract RPE formalism makes no principled distinction be-

tween them. Thus, our biologically based model can help provide
new principles that make sense of these discrepancies, in ways that
could be of interest to those working at the higher abstract levels.

There have been various attempts to develop more detailed
neurobiological frameworks for understanding phasic dopamine
function (e.g., Brown, Bullock, & Grossberg, 1999; Carrere &
Alexandre, 2015; Hazy, Frank, & O’Reilly, 2010; Houk, Adams,
& Barto, 1995; O’Reilly, Frank, Hazy, & Watz, 2007; Redish,
Jensen, Johnson, & Kurth-Nelson, 2007; Suri & Schultz, 1999,
2001; Tan & Bullock, 2008; Vitay & Hamker, 2014), which we
build upon here to provide a comprehensive framework that ac-
counts for the above-mentioned empirical anomalies to the simple
RPE formalism while also incorporating most of the major bio-
logical elements identified to date. This framework builds on our
earlier PVLV model (primary value, learned value; pronounced
“Pavlov”; Hazy et al., 2010; O’Reilly et al., 2007), and includes
mechanistically explicit models of the following major brain sys-
tems: the basolateral amygdalar complex (BLA); central amygdala
(lateral and medial segments: CEl and CEm); pedunculopontine
tegmentum (PPTg); ventral striatum (VS; including the nucleus
accumbens [NAc]); lateral habenula (LHb); and of course the
midbrain dopaminergic nuclei themselves (ventral tegmental area
[VTA]; and substantia nigra, pars compacta [SNc]). These areas
are driven by simplified inputs representing the brain systems
encoding appetitive and aversive USs, CSs, variable contexts, and
temporally evolving working memory-like representations of US-
defined goal-states mapped to ventral-medial frontal cortical areas,
primarily the orbital frontal cortex (OFC).

Our overall goal is to provide a single comprehensive frame-
work for understanding the full scope of phasic dopamine firing
across the biological, behavioral, and computational levels. Al-
though the model is considerably more complex than the single
equation at the heart of the RPE framework, it nevertheless is
based on two core computational principles that together deter-
mine much of its overall function—many more details are required
to account for critical biological data, but these are all built upon
the foundation established by these core computational principles.
The basic learning equations are consistent with the classic Re-
scorla-Wagner/delta rule framework (Rescorla & Wagner, 1972),
but the first core computational principle is that two separate
systems are needed to enable this form of learning to account for
both the anticipatory nature of dopamine firing (at the time of a
CS, which occurs in the LV or learned-value system, associated
with the amygdala), and the discounting of expected outcomes at
the time of the US (in the PV or primary-value system, associated
with the ventral striatum). These two systems give the PVLV
model its name, and have remained the central feature of the
framework since its inception (Hazy et al., 2010; O’Reilly et al.,
2007). The recent discovery of strong individual differences in
behavioral phenotypes, termed sign-tracking (CS-focused learning
and behavior) versus goal-tracking (US-focused learning and be-
havior) is suggestive of this kind of anatomical dissociation (Flagel
et al., 2011; Flagel et al., 2010).

The second core computational principle, which cuts across both
the LV and PV systems in our model, is the use of opponent-
processing pathways based on the reciprocal functioning of dopa-
mine D1 versus D2 receptors (Collins & Frank, 2014; Frank, 2005;
Frank, Loughry, & O’Reilly, 2001; Mink, 1996). The value of
opponent-processing has long been recognized, in terms of en-
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abling fundamentally relative (instead of absolute) comparisons
(e.g., in color vision), and allowing more flexible forms of learn-
ing, for example learning a broad positive association with specific
negative exceptions. Furthermore, the dopamine modulation of
these pathways supports both the opposite valence-orientation of
appetitive versus aversive conditioning, as well as acquisition
versus extinction learning, across both systems. The importance of
this opponent-processing framework is particularly evident in the
extinction learning case, where the context-specificity of extinc-
tion can be understood as the learning of context-specific excep-
tions in the opponent pathway relative to the retained initial
association.

Thus, it is important to appreciate that we did not just add
biological mechanisms in an ad hoc manner to account for specific
data—our goal was to simplify and exploit essential computational
mechanisms, while remaining true to the known biological and
behavioral data. As the famous saying attributed to Einstein goes:
“Everything should be made as simple as possible, but not sim-
pler”—here we weigh heavier on the “but not simpler” part of
things relative to the abstract RPE framework and associated
models, in order to account for relevant biological data. Neverthe-
less, neuroscientists may still regard our models as overly abstract
and computational—it is precisely this middle ground that we seek
to provide, so that we can build bridges between these levels, even
though it may not fully satisfy many on either side. As such, this
model represents a suitable platform for generating numerous
novel, testable predictions across the spectrum from biology to
behavior, and for understanding the nature of various complex
disorders that can arise within the dynamics of these brain systems,
which have been implicated in a number of major mental disor-
ders.

As noted earlier, PVLV builds upon various neural-level imple-
mentational models that have been proposed for the phasic dopa-
mine system, integrating proposed neural mechanisms that explain
the effects of both timing (Houk et al., 1995; Vitay & Hamker,
2014) and reward magnitude and probability on phasic dopamine
responses (Montague et al., 1996; Tan & Bullock, 2008), as well
as the neural mechanisms underlying inhibitory learning that con-
tribute to extinction of responses to reward (Pan, Schmidt, Wick-
ens, & Hyland, 2005; Redish et al., 2007). Several models also
integrate timing and magnitude and probability signals, proposing
that separate neural pathways may be involved in each type of
computation (Brown et al., 1999; Contreras-Vidal & Schultz,
1999).

Also relevant, although not explicitly about the phasic dopamine
signaling system, are recent neural models of fear conditioning in
the amygdala. These models have highlighted the circuitry that
contributes to the learning and extinction of responses to negative
valence stimuli, including neural circuits implementing the effects
of context on learning and extinction (Carrere & Alexandre, 2015;
Krasne, Fanselow, & Zelikowsky, 2011; Moustafa et al., 2013).
Despite this wealth of neural modeling work, the PVLV model
provides additional explanatory power beyond these prior models
by incorporating both the positive and negative valence pathways,
along with excitatory and inhibitory learning in both systems. and
their effects on the phasic dopamine system, grounded in a wide
range of neural data supporting the computations made by each
part of the model and their effects on phasic dopamine firing.

Motivating Phenomena

Several empirical phenomena—and related neurocomputational
considerations—have especially guided our thinking about phasic
dopamine signaling as a functioning neurobiological system.
These are briefly summarized here, with additional details pro-
vided later in the relevant sections.

1. The acquisition of phasic dopamine bursting for CSs, and
reduction for expected USs, are dissociable phenomena.
The dissociation between these two aspects of phasic do-
pamine function is central to the PVLV model, as noted
above, and reviewed extensively in our earlier articles
(Hazy et al., 2010; O’Reilly et al., 2007). The evidence for
this dissociation includes: (a) phasic bursting at both CS
and US onset coexist for a period of time before the latter
is lost (e.g., Ljungberg et al., 1992); (b) at interstimulus
intervals greater than about four seconds, very little loss of
US-triggered bursting is observed in spite of extensive
overtraining—even though substantial bursting to CS-onset
is acquired (Fiorillo et al., 2008; Kobayashi & Schultz,
2008); and (c) under probabilistic reward schedules the
acquired CS signals come to reflect the expected value of
the outcomes, but US-time signals adjust to reflect the
range or variance of outcomes that occur (Tobler, Fiorillo,
& Schultz, 2005). Thus, CS- and US-triggered bursting are
neither mutually exclusive nor conserved, in contradistinc-
tion to simple TD models that predict a fixed-sum
backward-chaining of phasic signals. There now seems to
be a consensus among biologically oriented modelers that
there are two distinct (though interdependent) subsystems
with multiple sites of plasticity (e.g., Hazy et al., 2010; Tan
& Bullock, 2008; Vitay & Hamker, 2014). Under the PVLV
framework, the acquisition of phasic dopamine cell bursting
at CS-onset (i.e., LV learning) is mapped to the amygdala,
while the loss of phasic bursting at US-onset (PV learning)
is mapped to the ventral striatum (VS, including the nucleus
accumbens [NAc]). In the present version of the model, we
also include an explicit lateral habenula (LHb) component
that is driven by the VS to cause phasic pauses in dopamine
cell firing, for example, for omissions of expected rewards.

2. Rewards that occur earlier than expected produce phasic
dopamine cell bursting, but no pausing at the usual time of
reward, whereas rewards that occur late produce both
signals. While a simple RPE formalism predicts that both
early and late rewards should exhibit both bursts and
pauses, the empirically observed result (Hollerman &
Schultz, 1998; Suri & Schultz, 1999) actually makes better
sense ecologically: Once an expected reward is obtained an
agent should not continue to expect it. We interpret this
within a larger theoretical framework in which a temporally
precise goal-state representation for a particular US devel-
ops in the OFC as each CS–US association is acquired. The
occurrence of a CS activates this OFC representation,
which is then maintained via robust frontal active-
maintenance mechanisms, and it is cleared when the US
actually occurs (i.e., when the goal outcome is achieved). It
is the clearing of this expectation representation that pre-
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vents the pause from occurring after early rewards. This
role of OFC active maintenance in bridging between the
two systems in PVLV (LV/CS and PV/US) replaces the
temporal chaining dynamic in the TD model, and provides
an important additional functional and anatomical basis for
the specialization of these systems: The PV (VS) system
depends critically on OFC input for learning when to expect
US outcomes, while the LV (amygdala) system is more
strongly driven by sensory inputs that then acquire CS
status through learning. In other words, the LV/amygdala
system is critical for sign tracking while the PV/VS system
is critical for goal tracking (Flagel et al., 2010; see General
Discussion). In the present model, we do not explicitly
simulate the active maintenance dynamics of the OFC sys-
tem, but other models have done so (Frank & Claus, 2006;
Pauli, Atallah, & O’Reilly, 2010; Pauli, Hazy, & O’Reilly,
2012).

3. Extinction is not simply the unlearning of acquisition. Ex-
tinction and the related phenomena of reacquisition, spon-
taneous recovery, renewal, and reinstatement exhibit clear
idiosyncrasies in comparison with initial acquisition. For
example, reacquisition generally proceeds faster after ex-
tinction than does original acquisition (rapid reacquisition;
Pavlov, 1927; Rescorla, 2003; Ricker & Bouton, 1996), and
a single unpredicted presentation of a US after extinction
can reinstate Conditioned Responses (CRs) to near preex-
tinction levels (reinstatement; Bouton, 2004; Pavlov, 1927).
In addition, extinction learning has a significantly stronger
dependency on context than does initial acquisition as dem-
onstrated in the renewal paradigm (Bouton, 2004; Corc-
oran, Desmond, Frey, & Maren, 2005; Krasne et al., 2011).
The clear implication is that extinction learning is not the
symmetrical weakening of weights previously strengthened
during acquisition, which a simple RPE formalism typically
assumes, but instead involves the strengthening of a differ-
ent set of weights that serve to counteract the effects of the
acquisition weights. In support of this inference, much
empirical evidence implicates extinction-related plasticity
in different neurobiological substrates from those impli-
cated in initial acquisition (e.g., Bouton, 2004; Bouton,
2011; Herry et al., 2008; Quirk & Mueller, 2008). These
phenomena support the use of opposing pathways—one for
acquisition and another for extinction—within both the
LV-learning amygdala subsystem and the PV-learning VS
subsystem.

4. Although logically related, the loss of bursting at the time of
an expected reward and pausing when rewards are omitted
are dissociable phenomena. There is evidence that the
mechanisms involved in the former are relatively tempo-
rally imprecise, compared with the latter, which are neces-
sarily more punctate since they cannot begin until it has
been determined that a reward has, in fact, been omitted.
Rewards delivered early show progressively more bursting
the earlier they are, implying the mechanisms involved in
blocking expected rewards are ramping up before the ex-
pected time of reward (Fiorillo et al., 2008; Kobayashi &
Schultz, 2008). Further, there is a slight, but statistically

significant, ramping decrease in tonic firing rate prior to
expected rewards (Bromberg-Martin, Matsumoto, & Hiko-
saka, 2010a). On the other hand, the mechanisms impli-
cated in producing pauses for omitted rewards are more
temporally precise, with an abrupt, discretized onset (Ma-
tsumoto & Hikosaka, 2009b), and no apparent sign of early
increases in firing in the lateral habenula (LHb; Matsumoto
& Hikosaka, 2009b). This dissociation, along with congru-
ent anatomical data, motivates a distinction between the
inhibitory shunting of phasic bursts (hypothesized to be
accomplished by known VS inhibitory projections directly
onto dopamine neurons; Joel & Weiner, 2000), and a sec-
ond, probably collateral pathway through the LHb (and
RMTg) that is responsible for pausing tonic firing. This
latter pathway enables the system to make the determina-
tion that a specific expected event has not in fact occurred
(Brown et al., 1999; Hazy et al., 2010; O’Reilly et al., 2007;
Tan & Bullock, 2008; and see Vitay & Hamker, 2014, for
an excellent review and discussion of this important prob-
lem space).

5. Conditioned inhibitors acquire the ability to generate pha-
sic pauses in dopamine cell firing when presented alone.
When a novel stimulus (conditioned inhibitor, CI, denoted
X) is presented along with a previously trained CS (denoted
A), and trained with the nonoccurrence of an expected
appetitive outcome (i.e., AX-), the CI takes on a negative
valence association and produces a phasic pause in dopa-
mine firing (Tobler et al., 2003). This represents an impor-
tant point of overlap between appetitive and aversive con-
ditioning, because a CI stimulus (X-) behaves very much
like a CS directly paired with an aversive US as reported by
for example, Mirenowicz and Schultz (1996). However, in
the CI case, there is no overt negative US involved—only
the absence of a positive US. Thus, the conditioned inhibi-
tion paradigm helps inform ideas about the role of USs in
driving CS learning. In our framework, aversive CSs come
to excite the LHb via the striatum (and pallidum), to pro-
duce dopamine cell pauses. Biologically, there is a pathway
through the striatum to the LHb, in addition to well-
documented direct US inputs to LHb, and electrophysio-
logical results consistent with the role of the striatal path-
way in driving pauses in dopamine firing via the LHb
(Hong & Hikosaka, 2013). Preliminary direct evidence for
a role of the LHb in conditioned inhibition has recently
been reported (Laurent, Wong, & Balleine, 2017).

6. In Rescorla’s (1969) summation test of conditioned inhibi-
tion, conditioned inhibitors tested with a different condi-
tioned stimulus can immediately prevent both the expres-
sion of acquired conditioned responses as well as phasic
dopamine pauses. Specifically, this paradigm involves first
training A� and separately B�; then training AX- (i.e.,
conditioned inhibition training), but not BX-; and then,
finally, testing BX-. At the otherwise expected time of the
B� US, there is no dopamine pause for the BX- case
(Tobler et al., 2003), indicating that the X has acquired a
generalized ability to negate the expectation of the US and
is not just specific to the AX compound. Furthermore,
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presentation of the BX compound at test also prevents the
expression of acquired B� CRs (e.g., salivation, food-cup
approach; Tobler et al., 2003), implying that the acquired X
inhibitory representation has reached deep subcortical be-
havioral pathways.

7. Conditioned inhibitors do not produce bursting at the ex-
pected time of the US when presented alone. According to
a simple RPE formalism of conditioned inhibition, the X
stimulus should acquire negative value itself and also serve
to drive learning that predicts its occurrence, all trained by
the dopamine pauses. Subsequently, when the X is pre-
sented by itself (without A-driven expectation of getting a
reward), an unopposed expectation of the negative (reward
omission) outcome should trigger a positive dopamine burst
at the time when the US would have otherwise occurred.
This is analogous to the modest relief bursting reported
when a trained CS is presented but the aversive US is
omitted at test (Matsumoto, Tian, Uchida, & Watabe-
Uchida, 2016; Matsumoto & Hikosaka, 2009a), or when a
sustained aversive US is terminated (Brischoux et al.,
2009). In fact, however, no such X- relief burst was de-
tected by Tobler, Dickinson, and Schultz (2003)—even
though they explicitly looked for one.

8. Phasic dopamine responses to aversive outcomes include
both pauses and bursts, with distinct subpopulations iden-
tifiable. The nature of phasic dopamine responses to pri-
mary aversive outcomes has been a topic of long-standing
controversy with multiple studies reporting either pauses
(e.g., Mirenowicz & Schultz, 1996), bursts (Horvitz, 2000;
Horvitz, Stewart, & Jacobs, 1997), or a mixture of both
including cells exhibiting a biphasic response pattern (Ma-
tsumoto & Hikosaka, 2009a). Although there is now a clear
consensus that bursting responses for aversive events do
occur, the interpretation remains controversial (e.g., Fior-
illo, 2013; Schultz, 2016). All things considered, the most
parsimonious interpretation may be that different popula-
tions of dopamine neurons may have different response
profiles, with a majority (generally more laterally located)
displaying a predominantly valence-congruent (RPE-
consistent) response profile (i.e., pausing for aversive out-
comes), while a smaller (more medial) subpopulation re-
sponds with bursting for aversive outcomes. Functionally, it
may be that both forms of response make sense: for instru-
mental learning based on reinforcing actions that produce
“good” outcomes and punishing those leading to “bad” ones
(e.g., Frank, 2005; Thorndike, 1898, 1911), valence-
congruent dopamine signaling would seem essential to pre-
vent confusion across both appetitive and aversive contexts;
on the other hand, one or more smaller specialized sub-
population(s) displaying bursting responses for aversive
outcomes may be important for learning to suppress freez-
ing and enable behavioral exploration for active avoidance
learning. In line with this latter idea, it now appears there
may be at least two small subpopulations of dopamine cells
that respond with unequivocal bursting to aversive events:
(a) a small subpopulation of posteromedial VTA neurons
exhibiting unequivocal bursting to aversive events project

narrowly to subareas of the accumbens shell and to certain
ventromedial prefrontal areas that may play a role in the
suppression of freezing (Lammel et al., 2012; Maier &
Watkins, 2010; Moscarello & LeDoux, 2013); and (b) even
more recently, a second subpopulation of aversive-bursting
dopamine cells has been described in the posterolateral
aspect of the SNc, with this population projecting only to
the caudal tail of the dorsal striatum and seemingly in-
volved in simple avoidance learning (Menegas, Akiti,
Uchida, & Watabe-Uchida, 2018; Menegas, Babayan,
Uchida, & Watabe-Uchida, 2017; Menegas et al., 2015).
Aversive-bursting dopamine cells are included in the PVLV
framework as a second, distinct dopamine unit as discussed
in Neurobiological Substrates and Mechanisms.

9. Dopamine pauses to aversive outcomes appear not to be
fully discounted through learned expectations. For the sub-
set of dopamine neurons that exhibit valence-congruent
pauses to aversive outcomes and CSs, these pauses seem
not to be fully predicted away (Fiorillo, 2013; Matsumoto
& Hikosaka, 2009a). Behaviorally, it makes sense not to
fully suppress aversive outcome signals since these out-
comes remain undesirable, even potentially life-
threatening, and an agent should continue to be biased to
learn to avoid them. In contrast, the discounting of expected
appetitive outcomes would seem to serve the beneficial
purpose of biasing the animal toward exploring for even
better opportunities. Thus, there are several fundamental
asymmetries between the appetitive and aversive cases that
sensibly ought to be incorporated into functional models.

10. Both appetitive and aversive processing involve many of the
same neurobiological substrates—in particular the
amygdala and the lateral habenula. Overwhelming empir-
ical evidence shows that the amygdala, ventral striatum, and
lateral habenula all participate in both appetitive and aver-
sive processing (Belova, Paton, Morrison, & Salzman,
2007; Cole, Powell, & Petrovich, 2013; Donaire et al.,
2019; Lee, Groshek, Petrovich, Cantalini, Gallagher, &
Holland, 2005; Matsumoto & Hikosaka, 2009b; Paton, Be-
lova, Morrison, & Salzman, 2006; Roitman, Wheeler, &
Carelli, 2005; Setlow, Schoenbaum, & Gallagher, 2003;
Shabel & Janak, 2009; Stopper & Floresco, 2013). This
implies that the processing of primary aversive events must
coexist without disrupting the processing of appetitive
events in these substrates, despite all the important differ-
ences between these basic situations as noted above. Prop-
erly integrating yet differentiating these two different va-
lence contexts within a coherent overall framework presents
an important challenge for any comprehensive model of the
phasic dopamine signaling system. We find that an oppo-
nent processing framework—based on the opposite effects
of D1 and D2 dopamine receptors on cells in the striatum
and amygdala—can go a long way toward meeting this
challenge, combined with an architecture that specifically
segregates the processing of individual USs.

11. Pavlovian conditioning generally requires a minimum 50-
to 100-ms interval between CS-onset and US. Our original
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PVLV model emphasized the problem that a phasic dopa-
mine signal generated by CS onset could create a positive
feedback loop of further learning to that CS, leading to
saturated synaptic weights (Hazy et al., 2010; O’Reilly et
al., 2007). We now account for data indicating CSs must
precede USs by a minimum of 50–100 ms to drive condi-
tioned learning (Mackintosh, 1974; Schmajuk, 1997; Sch-
neiderman, 1966; Smith, 1968; Smith, Coleman, & Gor-
mezano, 1969). With this constraint in place, it is not
possible for CS-driven dopamine to reinforce itself, pre-
venting the positive feedback problem. Incorporating this
change now allows our model to include the effects of
phasic dopamine on CS learning in the amygdala (in addi-
tion to the important role that US inputs play in driving
learning there, as captured in the prior models), supporting
phenomena such as second-order conditioning in the BLA
(Hatfield, Han, Conley, & Holland, 1996).

Conceptual Overview of the PVLV Model

In this section we provide a high-level, conceptual overview of
the PVLV model and how all the different parts fit together. Figure
1 shows how the fundamental LV versus PV distinction cuts
through a standard hierarchical organization of brain areas at three
different levels: cortex, basal ganglia (BG), and brain stem. Cortex

is generally thought to represent higher-level, more abstract, dy-
namic encodings of sensory and other information, which provides
a basis for learning about the US-laden value of different states of
the world (in standard reinforcement learning terminology). The
basolateral amygdala (BLA) is described as having a cortex-like
histology in its neural structure (e.g., Pape & Pare, 2010), but it
also receives direct US inputs from various brain stem areas. Thus,
it serves nicely as a critical hub/connector area that learns to
associate these cortical state representations with US outcomes,
which is the core of the LV function in the PVLV framework. In
contrast, the central amygdala (CEA) has cell types and connec-
tivity characteristic of the striatum of the basal ganglia (Cassell,
Freedman, & Shi, 1999), and according to classic BG models (e.g.,
Collins & Frank, 2014; Frank, 2005; Frank et al., 2001; Mink,
1996), it should be specialized for selecting the best overall inter-
pretation of the situation by separately weighing evidence-for (Go,
direct pathway, CElON) versus evidence-against (NoGo, indirect
pathway, CElOFF) in a competitive, opponent-process dynamic
(Ciocchi et al., 2010; Li et al., 2013).

Thus, the CEA in our model takes the higher-dimensional,
distributed, contextualized representations from BLA and boils
them down to a simpler, quantitative evaluation of how likely a
particular US outcome is given the current cortical state represen-
tations. When this evaluation results in an increased expectation of
positive outcomes, it drives phasic bursting in the VTA/SNc do-
pamine nuclei. This occurs via direct connections, and via the
pedunculopontine tegmental nucleus (PPTg), which may help in
driving bursting as a function of changes in expectations, as
sustained activity in BLA does not appear to drive further phasic
dopamine bursting (e.g., Ono, Nishijo, & Uwano, 1995). In sum-
mary, through these steps, this stack of LV areas is responsible for
driving phasic dopamine bursting in response to CS inputs.

The opponent organization scheme in the amygdala also serves
to address the subtly challenging problem of learning about the
absence of an expected US outcome as occurs during extinction
training. This is challenging from a learning perspective because
the absence of a US is a “nonevent,” and thus cannot drive learning
in the traditional activation-based manner, and further, the issue
remains of which of the indeterminate number of nonoccurring
events should direct learning. The explicit representation of ab-
sence in the opponent-processing scheme solves this problem by
using selective modulatory, permissive connections from
acquisition-coding to extinction-coding units so that only USs with
some expectation of occurrence can accumulate evidence about
nonoccurrence. Thus, only at the last step in the pathway is the
US-specific nature of the representations abstracted away to the
pure value-coding nature of the effectively scalar phasic dopamine
signal, in contrast to many other computational models that only
deal with this abstract value signal (e.g., standard TD models). In
addition, learning constrained to separate representations for dif-
ferent types of rewards (punishments) can directly account for
phenomena such as unblocking by reward type, something that is
otherwise challenging for value-only models like TD (e.g., Taka-
hashi et al., 2017), and depends on activity of dopamine neurons
(Chang, Gardner, Di Tillio, & Schoenbaum, 2017).

Bridging the CS-driven US expectations into the PV side of the
system, the BLA also drives areas in the orbital (OFC) and
ventromedial prefrontal cortex (vmPFC), particularly the OFC (see
Figure 1). Projections from this cortical level to ventral striatum

Cortex

Basal
Ganglia

BLA

CS

hctapSV xirtamSVAEC

Brain
Stem VTA/

SNc
LH

(US)
LHb

vmPFC

(distributed,
 abstract,
 attentional)

(opponent,
 selection)

US, CR

LV PV
(CS driven) (US expectations)

Figure 1. Overview of PVLV: The main division into LV (learned value)
and PV (primary value) cuts across a hierarchy of function in cortical, basal
ganglia, and brain stem areas. The cortex provides high-level, abstract,
dynamic state representations, and the basolateral amygdala (BLA), which
has a cortex-like histology, links these with specific US outcomes. The
basal-ganglia-like central amygdala (CEA) quantitatively evaluates the
overall evidence for the occurrence of reward or punishment using
opponent-processing pathways, and drives phasic dopamine bursts in the
midbrain dopamine areas (VTA, SNc) if this evaluation is in favor of
expected rewards. BLA also triggers updating of US expectations in
ventral/medial prefrontal cortex (vmPFC), especially the OFC (orbitofron-
tal cortex), which then drives another opponent-process evaluation process,
in the ventral striatum patch-like areas (VSpatch), the results of which can
shunt dopamine bursts for expected US’s, and drive pauses in dopamine
firing when an expected US fails to arrive, via projections to the lateral
habenula (LHb). Various brain stem areas (e.g., the lateral hypothalamus,
LH) drive US inputs into the system, and are also driven to activate CRs.
See the online article for the color version of this figure.
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drive a BG-like evaluation of evidence for and against the immi-
nent occurrence of specific USs at particular points in time. Cells
in the patch-like compartment of the VS send direct inhibitory
projections to the midbrain dopamine cells so as to produce a
shunt-like inhibition that blocks dopamine bursts that would oth-
erwise arise from an appetitive US. Furthermore, via a pallidal
pathway, the VSpatch also drives a more temporally precise acti-
vation (disinhibition) of the LHb that causes pausing (dips) of
tonic dopamine firing if not offset by excitatory drive from an
actual US occurrence. In summary, this PV stack of areas works
together to anticipate and cancel expected US outcomes.

There is another pathway through the VS that does not fit as
cleanly within the simple LV/PV distinction, which we hypothe-
size is mediated by the matrix-like compartments within the VS
(VSmatrix). This pathway is necessary for supporting the ability of
CS inputs to drive phasic dipping/pausing of dopamine firing,
which appears to be exclusively driven by the LHb in response to
VS inputs (Christoph, Leonzio, & Wilcox, 1986; Hikosaka, 2010;
Hikosaka, Sesack, Lecourtier, & Shepard, 2008; Ji & Shepard,
2007; Matsumoto & Hikosaka, 2007; Matsumoto & Hikosaka,
2009b). We are not aware of any evidence supporting a direct
projection from the amygdala to the LHb (Herkenham & Nauta,
1977), which would otherwise be a more natural pathway for CS
activation of phasic dipping according to the overall PVLV frame-
work. An important further motivation for this VSmatrix pathway
is that, by hypothesis, it is also responsible for gating information
through the thalamus so as to produce robust maintenance of US
outcome/goal state representations in OFC (Frank & Claus, 2006;
Pauli et al., 2010; Pauli et al., 2012). Such working memory-like
goal state representations are hypothesized to be important for
supporting goal-directed (vs. habitual) instrumental behavior, be-
havior known to depend on intact OFC (e.g., Gallagher, McMahan,
& Schoenbaum, 1999). Thus, the very same plasticity events
occurring at corticostriatal synapses onto VSMatrix cells could be
responsible for learning to gate US information into OFC working
memory in response to a particular CS, while acquiring an ability
to drive phasic dopamine signals (via LHb) in response to those
same CS events.

Appetitive/Aversive and Acquisition/Extinction
Pathways

The above overview is framed in terms of appetitive condition-
ing, as that is the simplest and most well-established case. How-
ever, a critical feature of the current model is that it incorporates
pathways within the LV and PV systems for processing aversive
USs as well, leveraging the same opponent-process dynamics, with
an appropriate sign-flip, as described above. Figure 2 shows the
full set of pathways and areas in the PVLV model. As in the BG,
each pathway is characterized by having a preponderance of do-
pamine D1 versus D2 receptors, which then drives learning from
phasic bursts (D1) or dips (D2; e.g., Frank, 2005; Frank et al.,
2001; Gerfen & Surmeier, 2011; Mink, 1996). Thus, assuming the
standard RPE form of dopamine firing, D1-dominated pathways
are strengthened by unexpected appetitive outcomes, while D2-
dominated ones are strengthened by unexpected aversive out-
comes. Thus, this differential dopamine receptor expression can
account for the differential responses of appetitive- versus
aversive-coding neurons in the amygdala (LV), as shown in Figure

2. Although the BLA is not strongly topographically organized, we
assume a similar opponency between subsets of neurons, as is
more clearly demonstrated in the central amygdala CElON versus
CElOFF cells (Ciocchi et al., 2010; Li et al., 2013). In addition to
these lateral pathway neurons, we include a final medial output
pathway (CEm) that computes the net balance between on versus
off for each valence pathway (appetitive and aversive).

The VS (PV) system is likewise organized according to standard
D1 versus D2 pathways, within the US-coding patch areas and the
CS-coding matrix areas, again with separate pathways for appeti-
tive versus aversive, with the sign of D1 versus D2 effects flipped
as appropriate. For example, VSpatch aversive-pathway D2 neu-
rons learn from unexpected aversive outcomes, and thereby learn
to anticipate such outcomes. The complementary D1 pathway
there learns from any dopamine bursts associated with the nonoc-
currence of these aversive outcomes, such that the balance between
these pathways reflects the net expectation of the aversive out-
come. Figure 2 shows how each VS pathway sends a correspond-
ing net excitation or inhibition to the LHb (via a pallidal pathway),
with excitation of the LHb causing inhibition of VTA/SNc tonic
firing via the RMTg (rostromedial tegmental nucleus—in our
model, we combine the LHb and RMTg into a single functional
unit).

In addition, the VSpatch D1 appetitive pathway sends direct
shunting inhibition to these midbrain dopamine areas, to block
excitatory firing from expected US’s. Although this pathway may
seem redundant with the LHb inhibition, the differential timing of
these two functions motivates the need for separate mechanisms.
On the one hand, a complete inhibition of bursting requires an
input arriving at least slightly prior to the time of reward, or else
at least a little activity will necessarily occur on the front end. On
the other hand, an omission-signaling input (for pausing) can only
arrive at least slightly after the expected time of the reward
because an agent can determine that an expected event did not
occur only after the time it was expected, reflecting at least some
finite amount of time to compute and transmit the omission signal.
Indeed, omission pauses are empirically seen to have greater
latency than corresponding bursts.

Finally, apropos of the asymmetries between appetitive versus
aversive conditioning discussed above, there are a number of
aspects where these two differ in the model. For example, appet-
itive, but not aversive, pathways in the amygdala can directly drive
dopamine burst firing, consistent with our overall hypothesis (and
extant data) that the LHb is exclusively responsible for driving all
phasic pausing in dopamine cell firing. This has some important
functional implications, by allowing the amygdala dopamine path-
way to be positively rectified—that is, it only reports when the
amygdala estimates the current situation to be better than the
preceding one. Furthermore, the extent to which VSpatch expec-
tancy representations can block dopamine pauses associated with
expected aversive outcomes is significantly less than its ability to
block bursts for expected appetitive outcomes as suggested by the
available empirical data (Matsumoto & Hikosaka, 2009a).

Differences From Previous Versions of PVLV

The present model represents a significant elaboration and re-
finement of the PVLV framework since our prior publication
(Hazy et al., 2010), as briefly summarized here:
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• Earlier versions of PVLV included only a central nucleus
amygdalar component (CEA; formerly CNA). In the cur-
rent version we have added a basolateral amygdalar com-
plex (BLA), which serves as a primary site for CS-US
pairing during acquisition (acquisition-coding cells) and,
critically, for the pairing of CSs with the nonoccurrence of
expected USs (extinction-coding cells). This is especially
important in accounting for extinction-related phenomena
reflecting the idea that extinction is an additional layer of
learning and not just the unlearning (weakening) of acqui-
sition learning and, importantly, underlies the ability of the
current version to account for the differential sensitivity of
extinction to context (see Simulation 2b).

• Earlier versions of PVLV treated the inhibitory PV com-
ponent as unitary with no distinction between a shunting
effect onto dopamine cells that prevents bursting at the

time of expected rewards and the pausing effect that
occurs when expected rewards are omitted. Since that time
it has been established that the LHb plays a critical role in
the latter phenomenon and may serve as the sole substrate
responsible for producing pauses on dopamine cell firing
of any cause. Accordingly, the new version adds a LHb
component which receives disynaptic collaterals from the
same VSpatch cells that provide direct shunting inhibition
onto dopamine cells. These collaterals result in net excit-
atory inputs onto LHb cells. Critically, the LHb also
receives direct (excitatory) inputs for aversive USs, as
well as net inhibitory inputs associated with both reward-
ing outcomes and expectations of reward. The LHb com-
ponent is important for producing the dissociation between
shunting inhibition and overt pauses, it also enables the
new model to produce (modest) disinhibitory positive

Figure 2. Detailed components of PVLV, showing the opponent processing pathways within the PV and LV
systems, which separately encode the strength of support for and against each US, and with opposite dynamics for
appetitive versus aversive valence. BLA has pathways for appetitive and aversive USs, along with distinctions
between acquisition and extinction learning, all of which engage in broad inhibitory competition. The BLA projects
to central amygdala (CEl, CEm) neurons that integrate the evidence for-and-against a given US, and communicate this
net value to the VTA (and SNc, not shown). The ventral striatum (VS) has matrix and patch subsystems, where matrix
(VSm) receives modulatory inputs from corresponding BLA neurons and represents CSs in a phasic manner, and
patch (VSp) anticipates and cancels USs. Both have a full complement of opposing D1- and D2-dominant pathways,
which have opposing effects for appetitive versus aversive USs. LV � learned value; PV � primary value; BLA �
basolateral amygdala; OFC � orbitofrontal cortex; LHb � lateral habenula; CS � conditional stimulus; VTA �
ventral tegmental area; PBN � parabrachial nucleus. See the online article for the color version of this figure.
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dopamine signals at the time of expected-but-omitted pun-
ishment (see Simulation 4b).

• Like TD, and RPE generally, earlier versions of PVLV
really only contemplated appetitive context, that is, the
occurrence and omission of positively valenced reward; it
largely ignored learning under aversive context (e.g., fear
conditioning). In the current version, additional comple-
mentary channels for appetitive versus aversive processing
(and associated learning) have been incorporated through-
out the model, with their convergence occurring only at
two distinct sites where population coding is largely, but
not exclusively, unitary: (a) the LHb (which projects to the
VTA/SNc); and (b) the dopamine cells themselves in the
VTA/SNc. Incorporating aversive processing channels
alongside appetitive ones is important for demonstrating
that the core idea underlying the DA-RPE theory can
survive the integration of all these parallel processing
pathways and their significant convergence onto most
dopamine cells. This extension enabled the current PVLV
version to simulate basic aspects of aversive conditioning
(see Simulation 4a, b), and provides a richer more accurate
account of conditioned inhibition.

• Also like TD and RPE, earlier versions of PVLV treated
reward as a single scalar value throughout the model
without distinguishing between different kinds of reward
(or punishment), for example, food versus water, or shock
versus nausea. By representing different kinds of reward
separately in both the amygdala and ventral striatum,
learning in the current version of PVLV can also produce
separate expectancy representations about different re-
wards. This provides a direct mechanism that can help
account for the phenomenon of unblocking-by-identity
(e.g., see Simulation 3a).

Overview of Remainder of the Article

The next two sections examine first the neurobiology that con-
strains various aspects of the PVLV framework, and then the
actual computational implementation of the model. After that, the
Results section describes and discusses 12 simulations covering
several well-established Pavlovian conditioning phenomena and,
especially, serve to highlight the most important features of the
overall framework. The article concludes with a General Discus-
sion in which we highlight the main contributions of the PVLV
framework, compare our approach with others in the literature, and
identify several unresolved questions for future research.

Neurobiological Substrates and Mechanisms

In this section, we provide a neurobiological-level account of
the computational model outlined above, followed in the subse-
quent section by a computationally focused description. To that
end, we provide a selective review of salient biological and be-
havioral data most influential in informing the overall framework,
and we focus specifically on data that go beyond the foundations
covered in earlier articles (Hazy et al., 2010; O’Reilly et al., 2007).

The Amygdala: Anatomy, Connectivity, and
Organization

The amygdala is composed of a dozen or so distinct nuclei and/or
subareas (Amaral, Price, Pitkanen, & Carmichael, 1992), each of
which can exhibit several subdivisions (McDonald, 1992). Despite
such anatomical complexity, however, the literature has largely con-
ceptualized amygdalar function in terms of two main components: a
deeper/inferior basolateral amygdalar complex (BLA) more involved
in the processing of inputs; and a more superficial/superior central
amygdalar nucleus (CEA) that has long been implicated in driving
many of the more primitive manifestations of emotional expression
(changes in heart rate, breathing, blood pressure; freezing, and so on;
Figure 3a). Both BLA and CEA contain both glutamatergic and
GABAergic cells (both local interneurons and projecting), with con-
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Figure 3. Basic organization, information flow, and opponent-processing
in the amygdala. (a) Schematic diagram of a coronal section of unilateral
amygdala with most prominent nuclei outlined according to one common
scheme. The BLA is composed of: lateral (LA), basal (BA), and accessory
basal (AB) nuclei. The central nucleus is composed of a lateral (CEl) and
medial (CEm) segments. Three collections of GABAergic cells make up
the intercalated cell masses (ITCs): the lateral paracapsular (lITC); dorsal
(ITCd); and ventral (ITCv). (b) Basic information flow through the
amygdala: sensory information enters via the LA predominantly flowing
from dorsolateral (LAdl) to ventrolateral (LAvl) and medial (LAm) divi-
sions. From there two parallel pathways reach the central amygdala: (1)
directly from LA to CEA (via CEl; red dotted arrows); and (2) via the basal
(BA) and accessory basal (AB) nuclei (blue dash arrows). (c) Opponent
processing in the BLA following the scheme of Herry et al., 2008:
acquisition-coding cells (ACQ) receive context inputs from the ventral
hippocampus (vHC) and project to the ventromedial PFC, which connects
reciprocally with extinction-coding cells (EXT) in the BLA, with the
vmPFC providing additional context information relevant for extinction.
(d) Opponent processing in the CEl following the scheme of Pare and
Duvarci (2012), with CElON � acquisition and CElOFF � extinction. See
the online article for the color version of this figure.
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siderable topographic patchiness in their relative proportions; for
example, the lateral segment of the CEA (CEl) seems to be almost
exclusively GABAergic. Importantly, the amygdala is richly inner-
vated by all four neuromodulatory systems including a dense, heter-
ogeneously distributed dopaminergic projection (Amaral et al., 1992;
Fallon & Ciofi, 1992). Both main classes of dopamine receptors
(D1-like, D2-like) are richly expressed, although not homogeneously
(Bernal et al., 2009; de la Mora, Gallegos-Cari, Arizmendi-García,
Marcellino, & Fuxe, 2010; de la Mora et al., 2012; Lee, Kim, Kwon,
Lee, & Kim, 2013).

Figure 3 shows the major areas and connectivity. The BLA
receives dense afferents from much of the cerebral cortex, includ-
ing the higher areas in all sensory modalities, as well as associative
and affective cortex, and from corresponding thalamic nuclei and
subcortical areas (Doyère, Schafe, Sigurdsson, & LeDoux, 2003;
LeDoux, 2003; Pitkanen, 2000; Uwano, Nishijo, Ono, & Tamura,
1995). The lateral nucleus (LA) receives the preponderance of
sensory input, preferentially into its dorsolateral division (Pit-
kanen, 2000) and projects to CEA both directly, and indirectly via
the basal and accessary basal nuclei (Pitkanen, 2000). The basal
and accessory basal nuclei exhibit extensive local and contralateral
interconnectivity, and also send feedback projections to two of the
divisions of the LA (Pitkanen, 2000), whereas the LA has rela-
tively little local or contralateral interconnectivity. The BLA also
projects heavily to the ventral striatum and to much of the cortical
mantle (Amaral et al., 1992; Pitkanen, 2000), including a strong
reciprocal interconnection with the orbital frontal cortex (OFC;
Ongür & Price, 2000; Schoenbaum, Chiba, & Gallagher, 1999)
and parts of ventromedial prefrontal cortex including the anterior
cingulate cortex (ACC; Ongür & Price, 2000). Based on neural
recording studies, there seems to be little discernible local topo-
graphical organization of different cell responses in the BLA (i.e.,
a salt-and-pepper distribution; Herry et al., 2008; Maren, 2016),
with one notable exception of a recently described positive-
negative valence gradient in a posterior-to-anterior direction (Kim,
Pignatelli, Xu, Itohara, & Tonegawa, 2016).

The CEA can be functionally divided into medial (CEm) and lateral
(CEl) segments (Figure 3a), with the CEl exerting a tonic inhibitory
influence on the CEm that, when released, performs a kind of gating
function for CEm outputs analogous to that seen in the basal ganglia.
Both CEl and, especially, CEm send efferents to subcortical viscero-
motor areas (autonomic processing) as well as to certain primitive
motor effector sites involved in such affective behaviors as freezing
(Koo, Han, & Kim, 2004; Li et al., 2013; Veening, Swanson, &
Sawchenko, 1984). Importantly, among the subcortical efferents from
CEm are projections to the VTA/SNc, both directly, and via the
pedunculopontine tegmental nucleus (PPTg; Everitt, Cardinal, Hall,
Parkinson, & Robbins, 2000; Fudge & Haber, 2000), and stimulation
of the CEm has been shown to drive phasic dopamine cell bursting
and/or dopamine release in downstream terminal fields (Ahn & Phil-
lips, 2003; Fudge & Haber, 2000; Rouillard & Freeman, 1995; Stal-
naker & Berridge, 2003; see Hazy et al. (2010) for detailed discus-
sion). The CEA also receives broad cortical and thalamic afferents
directly (Amaral et al., 1992; Pitkanen, 2000); these direct inputs are
presumably responsible for the result that the CEA can support
first-order Pavlovian conditioning independent of the BLA (Everitt et
al., 2000).

Division-of-Labor Between BLA and CEA: Analogy
With the Cortical–Basal Ganglia System

In addition to the long-held view of basic amygdalar organiza-
tion that posits the BLA as the input side and the CEA as the
output side, we also embrace emerging ideas (e.g., Duvarci & Pare,
2014; Holland & Schiffino, 2016) that posit that the two areas may
have distinct functional roles analogous to the distinction between
those of the cortex (i.e., BLA) and the basal ganglia (CEA; Figure
1). The BLA has long been described as cortex-like (McDonald,
1992), while the CEA is more basal-ganglia like, particularly its
lateral segment (CEl) whose principal cells bear a strong resem-
blance with the medium spiny neurons (MSNs) of the neostriatum,
with which it is contiguous laterally (Cassell et al., 1999; McDon-
ald, 1992). Thus, one can think about the BLA computing com-
plex, high-dimensional representations of current states of the
world (including both external and internal components) that are
anchored by expectations about the imminent occurrence of spe-
cific USs; in contrast, the CEA involves simpler, low-dimensional
representations about particular primitive actions to be taken based
on those US-anchored anticipatory states (e.g., fear, food antici-
pation). Both BLA and CEA subserve both input and output roles
and function partially in parallel as well as serially, with a major
distinction between their output projections. The BLA projects to
neocortex and basal-ganglia (especially ventral striatum) and ex-
erts a more modulatory effect, while CEA projects almost exclu-
sively to subcortical areas (excluding the basal ganglia), and is a
strong driver of subcortical visceromotor and primitive motor
effectors.

Electrophysiological recording shows that BLA neurons exhibit
a wide range of selectivity to different CSs, USs, and contexts
(Beyeler et al., 2016; Herry et al., 2008; Johansen, Hamanaka, et
al., 2010; Johansen, Tarpley, LeDoux, & Blair, 2010; Muramoto,
Ono, Nishijo, & Fukuda, 1993; Ono et al., 1995; Repa et al., 2001;
Roesch, Calu, Esber, & Schoenbaum, 2010; Toyomitsu, Nishijo,
Uwano, Kuratsu, & Ono, 2002). By adulthood, a significant pro-
portion of the principal cells in both BLA and CEA appear to
stably represent specific kinds of primary rewards and punish-
ments and not undergo significant change thereafter. For example,
discriminative- and reversal-learning experiments have shown that
CS–US associative pairings can undergo rapid remapping when
environmental contingencies change, leaving the underlying US-
specific representational scheme intact (Schoenbaum et al., 1999).
A simple model for Pavlovian conditioning is that previously
neutral CSs acquire the ability to activate these US-coding cells by
strengthening synapses they send to them (Muramoto et al., 1993;
Ono et al., 1995; Toyomitsu et al., 2002). More recent studies
examining larger population-level samples suggests that learning
in the BLA is complex, high-dimensional, and distributed—con-
sistent with a cortex-like system (Beyeler et al., 2016; Grewe et al.,
2017). Nevertheless, the essential function of BLA in linking CSs
and USs remains a useful overarching model.

In addition to a strong US-anchored organization for amygdala
representations, there are also cells in both BLA and CEA that
reflect evidence against the imminent occurrence of particular US
outcomes. For example, Herry et al. (2008) showed that a distinct
set of BLA neurons progressively increased in activity in response
to CS-onset over multiple US omission trials (extinction training),
in contrast with those (acquisition-coding) neurons that had ac-
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quired activity in response to CS-onset during fear acquisition.
Similarly, Ciocchi et al. (2010) showed opponent coding of aver-
sive US presence versus absence in separate populations of CElON

versus CElOFF neurons. These CEl neurons are exclusively
GABAergic and have mutually inhibitory connections, producing
a direct opponent-processing dynamic. This pattern of opponent
organization, which is one of two core computational principles in
our model, is essential for supporting extinction learning from the
absence of expected USs, and also for probabilistic learning par-
adigms (Esber & Haselgrove, 2011; Fiorillo, Tobler, & Schultz,
2003).

Extinction Learning and the Role of Context

Considerable behavioral data strongly supports the idea that
extinction learning is particularly sensitive to changes in both
external and internal context, and that areas in the vmPFC play an
important role in contextualizing extinction learning (Laurent &
Westbrook, 2010; Quirk, Likhtik, Pelletier, & Paré, 2003). Further,
Herry et al. (2008) looked specifically at the connectivity of
extinction-coding versus acquisition-coding cells in the BLA and
found that only the former receive connections from vmPFC. This
has been incorporated into the PVLV framework in the form of
contextual inputs to the model that connect exclusively to the
extinction coding layers of the BLA. Somewhat surprisingly,
Herry et al. (2008) also reported that hippocampal inputs to the
BLA (long implicated in conditioned place preference and aver-
sion) connected only with acquisition-coding cells; this rather
paradoxical situation is discussed in a section on the role and
nature of context representations in the General Discussion sec-
tion. In essence, it is hard to avoid the conclusion that the hip-
pocampus and vmPFC must convey distinctly different forms of
context information to the amygdala. Simulation 2b in the Results
section explores the differential context-sensitivity of extinction
versus acquisition learning.

There are likely differential contributions of the BLA versus
CEA to extinction learning, in part due to the greater innervation
of BLA by contextual inputs. For example, limited evidence sug-
gests that the CEA may not be able to support extinction learning
by itself and instead depends on learning in the BLA (Falls,
Miserendino, & Davis, 1992; Lin, Yeh, Lu, & Gean, 2003; Lu,
Walker, & Davis, 2001; Quirk & Mueller, 2008; Zimmerman &
Maren, 2010). However, muscimol inactivation of BLA at differ-
ent stages of extinction learning demonstrates that extinction can
persist in the absence of BLA activation (Herry et al., 2008).
Although not currently implemented in PVLV, this can potentially
be explained in terms of BLA driving learning in vmPFC which
can in turn drive extinction via direct projections into CEA (e.g.,
Anglada-Figueroa & Quirk, 2005). Finally, the intercalated cells
(ITCs) have been widely discussed as suppressing fear expression
under various circumstances (Ehrlich, Humeau, Grenier, Ciocchi,
Herry, & Luthi, 2009; Likhtik, Popa, Apergis-Schoute, Fidacaro,
& Paré, 2008; Maier & Watkins, 2010; Marowsky, Yanagawa,
Obata, & Vogt, 2005; Pare & Duvarci, 2012; Royer, Martina, &
Paré, 1999). However, some conflicting data has emerged in this
regard (Adhikari et al., 2015). Nonetheless, it seems likely that
ITCs participate somehow in the opponent-processing scheme for
acquisition versus extinction coding in the amygdala. Their role is

currently subsumed within the basic extinction-coding function in
PVLV and not explicitly modeled.

Dopamine Modulation of Acquisition Versus
Extinction Learning

Dopamine has been shown to be important for plasticity-
induction in the amygdala (Andrzejewski, Spencer, & Kelley,
2005; Bissière, Humeau, & Lüthi, 2003). While the other three
neuromodulatory systems (ACH, NE, 5-HT) are undoubtedly im-
portant (e.g., Carrere & Alexandre, 2015), they are not currently
included in the PVLV framework. There are both D1-like and
D2-like receptors in in the BLA (de la Mora et al., 2010), and
blocking of D2s in the BLA impaired acquisition of fear learning,
reducing conditioned responses such as freezing (Guarraci, Fro-
hardt, Falls, & Kapp, 2000; LaLumiere, Nguyen, & McGaugh,
2004) and fear-potentiated startle (de Oliveira et al., 2011; Nader
& LeDoux, 1999) to a CS. Similarly, Chang et al. (2016) reported
that optogenetically driven pauses in DA firing produce expected
effects consistent with aversive conditioning, while antagonism of
D1s blocked fear extinction (Hikind & Maroun, 2008). In the
positive valence domain, antagonism of D1s in the amygdala
attenuated the ability of a cue paired with cocaine to reinstate
conditioned responding (Berglind, Case, Parker, Fuchs, & See,
2006). Similarly consistent D1 and D2 receptor effects have been
documented in CEl as well (De Bundel et al., 2016).

Extending the results and model of Herry et al. (2008), the
PVLV framework accounts for the differential learning of acqui-
sition versus extinction cells in the BLA (and acquisition only in
CEl) in terms of a 2 � 2 matrix of valence X dopamine receptor
dominance. For example, acquisition for appetitive Pavlovian con-
ditioning is trained by (appetitive) US occurrence and modulated
by phasic dopamine bursting effects on D1-expressing positive
US-coding cells, while extinction learning is mediated by phasic
dopamine pausing effects on corresponding D2-expressing cells.
Conversely, aversive acquisition is trained by (aversive) US oc-
currence and phasic dopamine pausing at D2-expressing, negative
US-coding cells, and so on. Considerable circumstantial, but not
yet direct, evidence supports something like this basic 2 � 2
framework.

As noted earlier, the relative timing of phasic dopamine effects
is critical for our model, to prevent CS-driven bursts from rein-
forcing themselves. Behaviorally, it has long been recognized that
excitatory Pavlovian conditioning does not generally occur at
CS-US interstimulus (ISIs) intervals less than approximately 50
ms (Mackintosh, 1974; Schmajuk, 1997; Schneiderman, 1966;
Smith, 1968; Smith et al., 1969), and becomes progressively
weaker and more difficult at ISIs exceeding 500 ms or so, although
there is a great deal of variability across different CRs in the
optimal ISI, which can extend to several seconds for some CRs
(Mackintosh, 1974). Importantly, virtually all of the evidence
bearing on optimal ISIs appears to involve the delay conditioning
paradigm in which the CS remains on until the time of US onset,
which fosters stronger and/or more reliable conditioning relative to
trace paradigms in which there is gap between CS-offset and
US-onset. Although not in the amygdala, recent optogenetic stud-
ies have documented a temporal window of 50–2,000 ms or so
after striatal MSN activity during which phasic dopamine activity
can be effective in inducing synaptic plasticity, which serves as a
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kind of proof of concept (Fisher et al., 2017; Yagishita et al.,
2014).

Amygdala-Driven Phasic Dopamine and the PPTg

The medial segment of the central amygdalar nucleus (CEm)
has been shown to project to the midbrain dopamine nuclei both
directly (Fudge & Haber, 2000; Wallace, Magnuson, & Gray,
1992) and indirectly via the pedunculopontine tegmental nucleus
(PPTg; Fudge & Haber, 2000; Takayama & Miura, 1991; Wallace
et al., 1992), and stimulation of the CEm has been shown to
produce bursting of dopamine cells (Ahn & Phillips, 2003; Fudge
& Haber, 2000; Rouillard & Freeman, 1995). It seems likely that
the PPTg pathway (along with its functionally related neighbor the
laterodorsal tegmental nucleus, LDTg) plays a particularly impor-
tant role in bursting behavior (e.g., Floresco, West, Ash, Moore, &
Grace, 2003; Grace, Floresco, Goto, & Lodge, 2007; Lodge &
Grace, 2006; Omelchenko & Sesack, 2005; Pan & Hyland, 2005),
via direct efferents to the VTA and SNc (Watabe-Uchida, Zhu,
Ogawa, Vamanrao, & Uchida, 2012). The PPTg and LDTg are
located in the brainstem near the substantia nigra and both have
additionally been implicated in a disparate set of functions includ-
ing arousal, attention, and aspects of motor output (Redila, Kinzel,
Jo, Puryear, & Mizumori, 2015). The PPTg projects preferentially
to the SNc while the LDTg projects more to the VTA (Watabe-
Uchida et al., 2012).

Both the PPTg and LDTg contain glutamatergic, GABAergic,
and cholinergic cells (Wang & Morales, 2009) and all appear to be
involved in the projection to the dopamine nuclei, although spe-
cific functions assignable to each remain poorly characterized
(Lodge & Grace, 2006). Recently, subpopulations of cells in PPTg
have been shown to code separately for primary rewards and their
predictors and it has been suggested that the PPTg may play the
key role in calculating RPEs (Hazy et al., 2010; Kobayashi &
Okada, 2007; Okada & Kobayashi, 2013; Okada, Nakamura, &
Kobayashi, 2011). The current PVLV framework implements a
nonlearning version of this basic idea by having the PPTg compute
the positive-rectified derivative of its ongoing excitatory inputs
from the amygdala (where the learning occurs), the positive rec-
tification serving to restrict the effects of all amygdala-PPTg input
onto dopamine cells to positive-only signaling (i.e., bursting).

Homogeneity and Heterogeneity in Phasic
Dopamine Signaling

The midbrain dopamine system is constituted by a continuous
population of dopamine cells generally divided into three groups
based on location and connectivity: retrorubral area (RRA; A8;
most caudal and dorsal), substantia nigra, pars compacta (SNc;
A9), and ventral tegmental area (VTA; A10; most ventromedial;
Joel & Weiner, 2000). Early electrophysiological studies empha-
sized the relative homogeneity of responding to reward-related
events, with roughly 75% of identified dopamine cells displaying
the now-iconic pattern of burst firing for unexpected rewards and
reward-predicting stimuli (e.g., Schultz, 1998). However, it is now
clear that there is considerable heterogeneity in response patterns
existing within this basic homogeneity (e.g., Brischoux et al.,
2009; Bromberg-Martin et al., 2010b; Lammel et al., 2014; Lam-
mel et al., 2012; Menegas et al., 2018; Menegas et al., 2017;

Menegas et al., 2015). For example, it appears that a greater
proportion of the more laterally situated dopamine cells of the SNc
may exhibit a reliable, early salience-driven excitatory response
irrespective of the valence of the US. In the case of aversive USs,
this results in a distinct, biphasic burst-then-pause response pattern
(Matsumoto & Hikosaka, 2009a).

Furthermore, Brischoux, Chakraborty, Brierley, and Ungless
(2009) has described a small subpopulation of putative dopamine
cells clustered in the ventrocaudal VTA in and near the paranigral
nucleus, likely not recorded from previously, that respond with
robust bursting to primary aversive events as reported by
Brischoux et al. (2009). Those authors speculated that those cells
might participate in a specialized subnetwork distinct from the
preponderance of dopamine cells, based on some older studies
reporting that cells in the paranigral nucleus project densely and
selectively to the vmPFC and NAc shell (Abercrombie, Keefe,
DiFrischia & Zigmond, 1989; Brischoux et al., 2009; Kalivas &
Duffy, 1995). However, some caution is warranted before con-
cluding that these cells are actually dopaminergic as several stud-
ies have now characterized a heterogeneous population of gluta-
matergic projecting cells intermingled throughout the dopamine
cell population, including the VTA where they are particularly
concentrated near the midline (see Morales & Root, 2014, for
review). Some of these cells project to the vmPFC and NAc shell
and some respond with excitation to aversive stimuli (Morales &
Root, 2014; Root, Estrin, & Morales, 2018; Root, Mejias-Aponte,
Qi, & Morales, 2014). Thus, further studies are needed to confirm
that the cells described by Brischoux et al. (2009) are indeed
dopaminergic. In any case these aversively bursting cells are
largely out of scope for the current framework, but are included in
the model largely for illustrative purposes; their efferents are not
used by any downstream components for learning or otherwise
(see Simulation 4a and related discussion). A possible role for such
an aversive-specific subnetwork in the learning of safety signals is
discussed in the General Discussion.

The Ventral Striatum

The ventral striatum (VS) is a theoretical construct based on
functional considerations. As usually defined the VS is composed
of the entirety of the nucleus accumbens (NAc) as well as ventro-
medial aspects of the neostriatum (caudate and putamen). The NAc
is further subdivided into a core which is histologically indistin-
guishable from, and continuous with, ventromedial aspects of the
neostriatum (Heimer et al., 1997), and a shell which is histologi-
cally distinct from the core. The shell is itself internally heteroge-
neous, composed of multiple subareas participating in many dis-
tinct subnetworks involving primitive processing pathways
(Reynolds & Berridge, 2002). For the purposes of the current
framework, we focus only on the nonshell aspects of the ventral
striatum.

The principal and projecting cells of the striatum are known as
MSNs. By hypothesis, VS MSNs can be partitioned into eight
phenotypes according to a 2 � 2 � 2 cubic matrix: The first two
axes are identical to those used to partition the principal cells of the
amygdala, namely the valence of the US defining the current
situation (positive/negative) and the dominant dopamine receptor
expressed for the MSN (D1/D2). To these are added a third
orthogonal axis reflecting the compartment of the striatum in
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which an MSN resides—patch (striosomes) versus matrix (matri-
somes). The definitive work identifying this latter compartmental
partitioning has been done in the neostriatum (e.g., Fujiyama et al.,
2011; Gerfen, 1989), but these same subdivisions have been es-
tablished histologically for the NAc core as well (e.g., Berendse,
Groenewegen, & Lohman, 1992; Joel & Weiner, 2000)—although
the patch and matrix compartments are more closely intermixed in
the ventral as compared with the dorsal striatum. Both D1- and
D2-expressing MSNs have been shown to reside in both compart-
ments of the neostriatum (Rao, Molinoff, & Joyce, 1991), and
individual cells have been found in the VS that code selectively for
appetitive or aversive USs (Roitman et al., 2005). Nonetheless,
despite the considerable circumstantial evidence, our proposal for
partitioning VS MSNs into eight functional phenotypes remains
speculative.

The positive/negative valence and D1/D2 distinctions work es-
sentially the same in VS as described for the amygdala. As noted
in the above model overview, we hypothesize that the patch MSNs
learn to represent temporally specific expectations for when spe-
cific USs should occur (based largely on external cortical inputs,
not through timing mechanisms intrinsic to striatum as hypothe-
sized by Brown et al., 1999). By contrast, matrix MSNs are
hypothesized to learn to respond immediately based on CS inputs
that indicate the possibility of imminent specific USs, producing a
gating-like updating signal to OFC and vmPFC areas while simul-
taneously modulating phasic dopamine via projections to the LHb.
The following sections provide some key empirical data that
motivates this basic division-of-labor.

VS Patch MSNs Learn Temporally-Specific
US Expectations

A strong constraint distinguishing the function of patch versus
matrix subtypes comes from studies showing that at least some
MSNs in the patch compartment, but not the matrix, synapse
directly onto dopamine cells of the VTA and SNc, and this is
particularly the case for VS patch cells (Bocklisch et al., 2013;
Fujiyama et al., 2011; Joel & Weiner, 2000). Further, it appears
that the MSNs that synapse directly onto dopamine cells express
D1 receptors (Bocklisch et al., 2013; Fujiyama et al., 2011). Thus,
as described in our earlier article (Hazy et al., 2010) and elsewhere
(Brown et al., 1999; Houk et al., 1995; Vitay & Hamker, 2014),
D1-expressing MSNs of the VS patch compartment that synapse
onto dopamine cells are in a position to prevent bursting of
dopamine cells for primary appetitive events (i.e., USs) as these
become predictable. This produces a negative feedback loop where
phasic dopamine bursts drive learning on these D1-patch neurons,
causing them to inhibit further bursting for expected rewards. This
corresponds directly to the classic Rescorla-Wagner learning
mechanism, and the PV system in PVLV.

We extend this core model by suggesting that these same
D1-expressing VS patch MSNs also send US expectations to the
lateral habenula (LHb), enabling the latter to drive pauses in
dopamine cell firing when expected rewards have been omitted.
Complementarily, some D2-expressing VSPatch MSNs serve as an
extinction-coding or evidence-against counterweight to this D1-
anchored pathway, mitigating the strength of the expectation, for
example in the case of probabilistic reward schedules (see Simu-

lation 2c in Results), and conditioned inhibition training (Simula-
tion 3c).

In essential symmetry with the appetitive case, a second sub-
population of D2-expressing patch MSNs are hypothesized to
provide the key substate responsible for learning a temporally
explicit expectation of aversive outcomes. Again, dopamine cell
pauses provide the appropriate plasticity-inducing signals so as to
strengthen thalamo- and corticostriatal synapses at these D2-
expressing MSNs. In this case, however, there is no direct shunting
of dopamine cells involved and instead it is in the LHb where the
critical cancelling out of expected punishment occurs. The inte-
gration of these signals with other inputs is discussed in the section
on the lateral habenula below.

VS Matrix MSNs Immediately Report CSs

We hypothesize that VS matrix MSNs learn to respond imme-
diately to events that predict upcoming USs (i.e., CSs), with two
separate but synergistic effects, one on phasic dopamine firing, and
the other on updating active representations in vmPFC that can
encode information about potential USs with sustained firing
(Frank & Claus, 2006; Pauli et al., 2012). This latter function is
based on the working memory gating model of dorsal striatum
(Frank et al., 2001; Hazy, Frank, & O’Reilly, 2006, 2007; Mink,
1996; O’Reilly, 2006; O’Reilly & Frank, 2006), where the direct
or Go pathway disinhibits corticothalamic loops, and the indirect
or NoGo pathway is an inhibitory opponent to this process. These
gating functions involve projections through the globus pallidus
and SNr (Alexander, DeLong, & Strick, 1986; Mink, 1996), and in
the case of ventral striatum, also the ventral pallidum (VP; Kup-
chik et al., 2015). One key difference from the dorsal case is that
the D2-dominant pathway in ventral striatum would need to drive
a direct-pathway-like disinhibition for aversive USs, as it serves as
the acquisition side of that pathway. Supporting this possibility,
the Kupchik et al. (2015) study reported that the VS output
pathways through the VP do not seem to be as strictly segregated
as in the dorsal striatum and, more specifically, those authors also
reported that some D2-MSNs in the NAc appear to be in a position
to disinhibit thalamic relay cells in the mediodorsal nucleus, a
function believed to be restricted to D1-MSNs in the dorsal stria-
tum. Overall, this gating-like function could be much more directly
tested in these VS pathways, and remains somewhat speculative. It
is also not directly included in the models reported here, although
its effects are simulated via a controlled updating of OFC inputs to
the model.

The dopaminergic effects of VS matrix signals are hypothesized
based on the need for VS to LHb pathways to drive phasic pauses
or dips in dopamine firing—these same pathways originating in
the VS matrix could then drive pauses for aversive CSs, and we are
not aware of any other pathway for supporting this function (e.g.,
there does not appear to be a direct projection from the amygdala;
Herkenham & Nauta, 1977). This would require a D2-dominant
pathway to produce net excitation (disinhibition) at the LHb and,
according to this scheme, D1-dominant pathways would produce
net inhibition in LHb. The latter could then be in a position to
produce disinhibitory bursting from dopamine cells, or at least be
permissive of such bursting. We review the relevant data on LHb
next.
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The Lateral Habenula and RMTg

A growing body of empirical data implicates the LHb as the
critical substrate responsible for causing tonically active (at �5
Hz) dopamine cells to pause firing in response to negative out-
comes (Christoph et al., 1986; Hikosaka, 2010; Hikosaka et al.,
2008; Ji & Shepard, 2007; Matsumoto & Hikosaka, 2007; Matsu-
moto & Hikosaka, 2009b). The LHb is composed of a largely
homogeneous population of glutamatergic cells (Díaz, Bravo, Ro-
jas, & Concha, 2011; Gonçalves, Sego, & Metzger, 2012; Zahm &
Root, 2017) that have a baseline firing rate in the range of �20–30
Hz (Matsumoto & Hikosaka, 2007, 2009b). Firing rates above
baseline consistently signal negative outcomes irrespective of ap-
petitive or aversive context, while rates below baseline signal
positive outcomes. Thus, primary aversive outcomes (e.g., the pain
of a footshock) phasically increase LHb activity via direct excit-
atory inputs from the spinal cord and related structures (Coizet,
Dommett, Klop, Redgrave, & Overton, 2010; Shelton, Becerra, &
Borsook, 2012), and this increased LHb activity in turn produces
pauses in dopamine cell activity (Bromberg-Martin, Matsumoto,
Hong, & Hikosaka, 2010; Christoph et al., 1986). Conversely,
primary appetitive outcomes (e.g., food) produce corresponding
decreases in LHb cell activity, potentially via direct projections
from the lateral hypothalamic area (Herkenham & Nauta, 1977).
Unlike the other substrates described thus far, the LHb does not
appear to distinguish between appetitive and aversive sources of
excitation or inhibition, and thus represents a final common path-
way where these different threads converge. Consistent with this
idea, Bernard Balleine and colleagues have recently reported that
the LHb seems to play a critical role in conditioned inhibition
(Laurent et al., 2017).

Anatomically, the primary afferents that are in a position to
convey CS and US-expectation signals to the lateral habenula
(LHb) originate from a distinct set of atypical cells in the pallidum,
which have been shown to convey signals from the striatum to the
LHb (DeLong, 1971; Hong & Hikosaka, 2008; Parent, Lévesque,
& Parent, 2001; Richardson & DeLong, 1991; Tremblay, Filion, &
Be’dard, 1989; see Figure 4). These atypical, LHb-projecting cells
appear to reside in two narrow slivers of tissue at the border
between the GPe and GPi and between the GPi and VP (Hong &
Hikosaka, 2008). Further, there appear to be LHb-projecting cells
interspersed within the parenchyma of the VP proper as well
(Hong & Hikosaka, 2013; Jhou, Fields, Baxter, Saper, & Holland,
2009). As partially characterized by Hong and Hikosaka (2008),
the LHb-projecting cells of the pallidum appear to be tonically
active in the range of 50–70 Hz and to exert a net excitatory effect
on LHb cell activity, in contrast to the predominant projection cells
of the pallidum which are uniformly net inhibitory at their down-
stream targets (e.g., Mink, 1996). Also relevant is the recent
demonstration that pallido-habenular axons consistently corelease
both glutamate and GABA (Root, Zhang, et al., 2018), which is
likely important in maintaining an excitatory-inhibitory balance in
the LHb because the latter appears to have little or no local
GABAergic interneurons of its own. Finally, directly stimulating
diverse, heterogeneous regions of the striatum led to excitations,
inhibitions, or neither in the lateral habenula in an indeterminate,
patchy pattern (Hong & Hikosaka, 2013), although it remains to be
determined whether those striatal cells project onto the same GPb
cells that project to lateral habenula (Hong & Hikosaka, 2013), nor

has it been determined the degree to which the striatal afferents to
these cells represent collaterals of typical striatopallidal projec-
tions, or arise from a distinct subpopulation.

For the various D1 versus D2 MSNs to have the appropriate
effects on the LHb, the GABA inhibitory output from the MSNs
must either be conveyed directly or the sign must be reversed, as
shown in Figure 2. For example, for the appetitive VS patch D1
MSNs proposed to shunt dopamine bursts, they need to have a net
excitatory effect on the LHb so that they can drive phasic pausing
of dopamine firing when an anticipated reward is otherwise omit-
ted. To the extent that opposing D2 VS patch MSNs act to inhibit
the LHb, they can counteract this effect, when the US expectation
is reduced or extinguished. Similar logic can be carried through for
all the other cases of VS MSNs.

Because the LHb neurons are predominately glutamatergic,
there must be an intervening inhibitory node between those cells
and the dopamine cells in order to generate pauses. While LHb

Figure 4. Four channels may convey acquired signals from the striatum
to the lateral habenula, with direct path inhibiting GPi (globus pallidus
internal segment) while indirect path via GPe (external segment) has a
disinhibitory effect. The effect of GPi on LHb (lateral habenula) appears to
be net excitatory, while LHb is net inhibitory on DA (VTA, SNc) via the
RMTg (rostromedial tegmental nucleus). As shown, immediate firing from
the matrix pathway can drive appropriate phasic DA signaling (direct �
positive valence; indirect � negative), while patch has more delayed
timing, with the timing becoming more precise via GP dynamics, such that
the effect on LHb opposes the direct effect of USs (dotted lines, negative
valence for the direct pathway, positive for indirect)—if the US does not
occur, then DA responds as shown in the solid lines. See the online article
for the color version of this figure.
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cells have been shown to have a weak projection onto GABAergic
interneurons in the VTA/SNc, the main means by which LHb
activity produces pauses appears to be via a tiny, newly charac-
terized GABAergic collection of cells situated between the LHb
and VTA called the rostromedial tegmental nucleus (RMTg;
Bourdy & Barrot, 2012; Hong, Jhou, Smith, Saleem, & Hikosaka,
2011; Jhou, Fields, et al., 2009; Stamatakis & Stuber, 2012).
Interestingly, cells of the RMTg have also been shown to receive
some direct input from the parabrachial nucleus (PBN), which
encodes aversive USs (Jhou, Geisler, Marinelli, Degarmo, &
Zahm, 2009), and thus excitation of the RMTg seems capable of
driving dopamine cell pauses of dopamine cells via pathways other
than the LHb.

Finally, there is evidence that a tiny subset of LHb axons
synapse directly onto a very small subpopulation of dopamine cells
(Lammel et al., 2012; Watabe-Uchida et al., 2012) and a tiny
minority (2/103) of dopamine cells have been reported to increase
firing in response to LHb stimulation (Ji & Shepard, 2007), pro-
viding a straightforward mechanism by which aversive events
might drive dopamine cell bursting in that small subpopulation,
which could be the same aversion-excited cells identified by
Brischoux et al. (2009). Of course, as noted above, further studies
are needed to confirm that those cells are indeed dopaminergic.
Also of interest, although not included in the PVLV model cur-
rently, is a newly characterized population of nondopaminergic
cells in the VTA that project to the LHb, coreleasing both gluta-
mate and GABA just like the pallido-habenular axons noted earlier
(Root, Zhang, et al., 2018). This pathway appears to be involved
aversive conditioning (Root et al., 2014).

Basolateral Amygdala to Ventral
Striatum Connections

Although the amygdala (LV) and VS-LHb (PV) systems func-
tion largely independently, there are two important ways in which
they interact. First, and more indirectly, VS matrix MSNs are
proposed to gate US-specific working memory-like goal state
representations into the OFC and/or vmPFC, and these cortical
areas have very strong reciprocal interconnectivity with the BLA
(Holland & Gallagher, 2004; Ongür, Ferry, & Price, 2003; Ongür
& Price, 2000; Pauli et al., 2012; Saddoris, Gallagher, & Schoe-
nbaum, 2005; Schoenbaum, Chiba, & Gallagher, 1998, 1999;
Schoenbaum, Setlow, Saddoris, & Gallagher, 2003;). More di-
rectly, and in the other direction, the ventral striatum also receives
a very dense excitatory projection from the BLA originating pre-
dominantly from the basal and accessory basal nuclei (Amaral et
al., 1992; Ambroggi, Ishikawa, Fields, & Nicola, 2008; Stuber et
al., 2011), and there is good reason to believe that these BLA-VS
connections may not function as simple driving inputs and instead
serve a more modulatory function. For example, in addition to
producing excitation of MSNs, Floresco, Yang, Phillips, and Blaha
(1998) showed that BLA inputs can also cause the release of
dopamine from VTA derived terminals in the absence of axonal
activation; and changes in extracellular dopamine levels in VS can
modulate the relative influence between corticostriatal versus hip-
pocampostriatal inputs in driving MSN behavior (Goto & Grace,
2005). Finally, limited circumstantial evidence supports the notion
of a kind of hard-wired one-to-one connectivity between cells
coding for similar USs in BLA and VS (e.g., food-responsive

cells connecting with food-responsive cells). This includes:
some cells in both BLA (Ono et al., 1995; Uwano et al., 1995)
and VS (Roitman et al., 2005) respond selectively to distinct
USs; and the BLA-to-VS projection is substantially topographic
(McDonald, 1991).

Based on these considerations the BLA-VS projection is imple-
mented in the PVLV framework as nonlearning, modulatory con-
nections whose main function is to constrain learning to VS MSNs
(both patch and matrix) coding for the same US representations
currently active in the BLA as a result of CS-US pairing. The
modulatory nature of these connections also makes sense by al-
lowing VS patch neurons to integrate appropriate timing signals
and fire at the expected time of US outcomes, whereas standard
excitatory inputs from BLA would tend to drive immediate rather
than delayed firing. In the following section, we integrate all of
these biological considerations into the explicit computational
mechanisms of the PVLV model.

Methods: PVLV Model Computational
Implementation

This section describes the essential computational features of
the PVLV model, including the key learning equations and general
simulation methods. The intention is to explain the essence of how
the model achieves the functionality it does and give the reader a
foundation for understanding the simulations discussed in the
subsequent Results section. However, to truly understand a model
of this complexity and scope, the reader is encouraged to download
and explore the implemented model which is implemented in the
emergent simulation software (Aisa, Mingus, & O’Reilly, 2008).
See the Appendix for instructions for downloading emergent as
well as the PVLV model. The Appendix also contains additional
details about the computational implementation beyond that pro-
vided here.

General Methods

PVLV is implemented within the general Leabra framework
(O’Reilly, Munakata, Frank, Hazy, & Contributors, 2012) using a
rate-code version of the adapting exponential (AdEx) model of
Gerstner and colleagues (Brette & Gerstner, 2005), which provides
a standard ion-conductance model of individual neuron dynamics,
with excitation, inhibition, and leak channels, integrated in a single
electrical compartment. Except for the BLA layers, simple localist
representations of different USs are used, to facilitate analysis and
visual understanding of model behavior. Four parallel appetitive
and four aversive US-coding pathways are implemented through
both the amygdala and VS components in order to support four
kinds of rewards (e.g., water, food; indexed 0–3) and punishments
(e.g., shock, hotness; indexed 0–3) and these are easily extensible
to accommodate more, if desired.

A schematic of the overall PVLV architecture was shown in
Figure 2, and the actual emergent network used for all the simu-
lations is shown in Figure 5, where differing subtypes of neurons
are organized within separate layers with names as shown. US
occurrence is conveyed to the network via PosPV and NegPV
(primary value) input layers, CS-type activity via a Stim_In input
layer, and context information via a Context_In layer representing
unique conjunctive information associated with the various cir-
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cumstances under which any particular CS might be encountered
by a subject. All other network activity is generated intrinsically
for each unit.

The two major components of the PVLV model, the LV
amygdala system and the PV ventral striatum (VS) system, are
described at a computational level below in the rough order of
information flow for each. The dopamine components (VTAp,
VTAn) integrate the signals received from both systems. Overall,
the LV/amygdala system exhibits sustained, but fluctuating acti-
vation patterns over time, reflecting an evolving overall assess-
ment of the affective implications of the current situation (i.e., the
availability and/or imminence of specific rewards or threats); these
representations are conceived to project broadly to many other
brain areas to alert and inform appropriately on an ongoing basis.
In contrast, the PV/ventral striatum system has more punctate
dynamics, reflecting its more action-oriented role in driving spe-
cific responses to affectively important events as, for example,
initiating an approach or withdrawal response; or, gating US-

specific goal-state representations into OFC working memory as
described in the previous section on neurobiological mechanisms.

To present inputs to the model, time is discretized into 100 ms
timesteps (termed alpha trials in reference to the 10 Hz alpha
rhythm) with the network state updated every millisecond (i.e., one
update cycle �1 ms). Behavioral (experimental) trials (e.g., one
CS-US pairing sequence) typically take place over five sequential
timesteps/alpha trials. The first timestep (t0) typically has nothing
active; followed by the CS onset at t1; a subsequent timestep where
that CS remains active and nothing else new happens (t2), and then
the US either occurs or not on the t3 timestep; and finally both US
and CS go off in the t4 (final) timestep. Activation states are
updated every cycle (corresponding to 1 ms), and weight changes
are computed network-wide at the end of every timestep (alpha
trial). The discretization of input presentation and learning to
100-ms timesteps makes everything simpler; subsequent develop-
ment is planned to extend the model so as to operate in a more
continuous fashion.

Amygdala Learned Value System

The amygdala portion of the model is comprised of two groups
of layers representing BLA and CEA. Each group has layers
reflecting the four principal cell phenotypes described in the pre-
vious section about the neurobiology. In the BLA there are the 2 �
2 D1/D2 � valence layers: BLAmygPosD1, BLAmygPosD2,
BLAmygNegD2, BLAmygNegD1; for the CEA there are four
corresponding layers: CElAcqPosD1, CElExtPosD2, CElAc-
qNegD2, CElExtNegD1 corresponding to four cellular phenotypes
hypothesized for the lateral segment; plus two output layers from
CEm: CEmPos and CEmNeg (medial segment). BLA units receive
full projections from either the Stim_In (CS) layer (acquisition-
coding) or Context_In layer (extinction-coding) and, in the case of
the acquisition-coding layers (BLAmygPosD1, BLAmygNegD2)
US-specific (nonlearning) inputs from the PosPV (appetitive USs)
and NegPV layers, the latter’s onset typically occurring two
timesteps (alpha trials; 200 ms) after CS-onset. Extinction-coding
layers (BLAmygPosD2, BLAmygNegD1) do not receive input
from US-coding layers since USs do not occur on extinction trials.

Learning for the acquisition-coding units occurs for the connec-
tions from Stim_In as a function of three factors: (a) the activation
of the sending inputs on the previous timestep, (b) the temporal
delta over the BLA receiving unit activation between the previous
and the current timesteps, and (c) the absolute value of phasic
dopamine:

�w � � xt�1 (1 � |��) (y* � yt�1) (1)

where � is the learning rate; xt-1 is the sending activation from
Stim_In to BLAAmygPosD1/BLAmygNegD2 (prior timestep); �
is the phasic dopamine signal; y is the current timestep receiving
unit activation; and yt-1 is its activation from the previous timestep.
The absolute value of phasic dopamine (|�|) serves as a learning
rate modulator, and dopamine also modulates the activation of the
receiving neuron, so that the temporal delta reflects the D1 versus
D2 impact of dopamine on each of the different pathways:

y* � g(	 � 
f(�)y) (2)

where 	 is the excitatory net input to a given BLA neuron; 
 is a
phenotypically specific gain factor; and f(�) is a function of the

Figure 5. The PVLV model in emergent. Three input layers to the model
are at top (USTime_In, Stim_In, Context_In). Learned value (LV,
amygdala) layers are highlighted with light blue background. Primary
value (PV, ventral striatum) layers are highlighted by a light red back-
ground. Primary rewards or punishments are delivered by the two layers in
box at lower left. Dopamine and associated nuclei are on the lower right,
p suffix indicates positive valence: VTAp represents majority of standard
RPE-coding DA neurons (including SNc), while VTAn represents small
number of medial DA neurons responding with phasic bursts for aversive
outcomes. PPTg layers drive phasic DA activity and LHbRMTg represents
combined function of lateral habenula and RMTg. See the online article for
the color version of this figure.
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phasic dopamine signal that has a positive relationship to dopa-
mine for D1-dominant neurons, and a negative one for D2-
dominant neurons. The receiving unit activity y ensures that inac-
tive neurons do not experience any dopamine-dependent changes.

This learning rule allows direct US-driven signals, and/or phasic
dopamine, to drive the direction of learning. It resembles a stan-
dard delta rule/Rescorla-Wagner (RW) learning function, and the
TD learning rule, but with a few important differences. First, the
driving activation in the delta, y�, is not a simple scalar reward
outcome (as in RW), and nor does it explicitly contain an expec-
tation of future rewards (as in TD), although the dopamine mod-
ulation can be considered to reflect such an expectation in some
situations. Thus, the resulting representations are not as strongly
constrained as in RW and TD, and in general can reflect various
influences from other types of external inputs, along with local
inhibitory dynamics reflecting the opponency relationship between
D1 and D2, to produce a more complex distributed representation.
Due to the distributed nature of these representations, there is no
constraint that the prior time-step activation learn to predict the
next time step, as in the TD algorithm. Nevertheless, the delta rule
across time like this does drive the BLA to generalize learning at
later times to earlier times, and more generally to be sensitive to
changes in state as compared with static, unchanging elements.
These features, in common with the TD and RW rules, can be
considered essential features of RPE-driven learning, and are
shared with all of the learning in PVLV (including prior versions
of the framework, which are discussed further in the Appendix).

There is one further important difference from TD: The positive
rectification of the PPTg’s derivative computation prevents the
generation of negative dopamine signals from decreases in
amygdala activity (and is generally consistent with the biological
constraint that the LHb is exclusively responsible for phasic do-
pamine dips). This prevents the negative delta driven by US offset
from driving a negative dopamine signal that would otherwise
counteract the positive learning occurring at US onset. Interest-
ingly, the dependence of learning on at least some level of phasic
dopamine (via the |�| term) is also necessary, as otherwise the
negative delta driven by the US offset itself would drive offsetting
learning in the BLA, even if it did not otherwise drive phasic
dopamine dips. In TD, an absorbing reward is typically employed
to achieve a similar effect as this biologically motivated positive
rectification. More generally, this positive rectification means that
while BLA activation states accurately track both ups and downs
in US expectations (due to the US drive and opponent dynamics),
it is strongly biased to only learn about and report positive im-
provements in these expectations over time. This likely reflects an
emphasis on overall progress toward appetitive goals (O’Reilly,
Hazy, Mollick, Mackie, & Herd, 2014), and represents an impor-
tant asymmetry between appetitive and aversive valence.

Extinction-coding BLA units do not receive a direct US projec-
tion, and instead receive modulatory, US-specific connections
from corresponding acquisition-coding units that simulate an up-
state type of modulation, which has the functional effect of con-
straining extinction learning about USs that are actually expected
to occur. This solves the critical problem of learning from a
nonevent, in an expectation-appropriate manner. For simplicity, all
the units responding to a given US are grouped together into
subgroups within the BLA layers. We impose a broad layer-level
inhibitory competition within these BLA layers, reflecting typical

cortical-like inhibitory interneuron effects. In addition, the
extinction-coding layers send all-to-all inhibition back to the ac-
quisition layer, to induce competition between these different
layers. It would also be possible to include similar inhibition from
acquisition to inhibition, but that would be overcome by the above
modulatory effects, so we left this out to make that simpler.

The central nucleus, lateral segment (CEl) units are tonically
active, and US-specific acquisition- and extinction-coding units
are interconnected by mutually inhibitory connections, reflecting
the on and off subtypes. The two acquisition-coding layers (CEl-
AcqPosD1, CElExtNegD2) receive learning CS sensory informa-
tion as full projections from Stim_In, and also nonlearning one-
to-one US projections which function as a teaching signal. Both
acquisition-coding and extinction-coding units (CElAcqPosD2,
CElExtNegD1) receive US one-to-one projections from corre-
sponding BLA layers. All learning connections follow the same
learning rule as for the BLA (Equation 1). CEl extinction-coding
units do not receive input from the Context_In layer and do not
therefore support extinction learning on their own. Instead they
reflect learning upstream in their BLA counterparts.

Thus, although BLA and CEl share a learning rule and basic
organization in terms of representing evidence for and against a
given US, they are envisioned to do this in different ways that align
with their status as neocortex-like (BLA) versus basal-ganglia-like
(CEA): The BLA is more high-dimensional and contextualized,
while the CEA is lower-dimensional, more strongly opponent-
organized, and provides a more continuous, quantitative readout.

The CEm output layer computes the net evidence in favor of
each US, in terms of the difference between acquisition versus
extinction, via one-to-one, nonlearning projections from the cor-
responding CEl units. The sum of all four US-coding units in the
CEmPos (only) layer projects to the single-unit PPTg layer, which
computes the positively rectified derivative of its net input on each
alpha trial. This signal is conveyed to the VTAp unit where it is
integrated with any PosPV layer activity, and any net disinhibitory
LHbRMTg input, to produce the net dopamine cell bursting drive
on each alpha trial, which is then ultimately integrated with any
direct shunting inhibition from the VSPatch layers as well as any
net pause-promoting inhibition from the LHbRMTg (addressed
next).

Ventral Striatum Components

The ventral striatum can be thought of as performing two
distinct versions of the opponent-processing evidence evaluation
ascribed earlier to the CEl, as is evident in Figure 2. VSPatch units
learn to expect the timing and expected value of US outcomes,
while VSMatrix layers learn to report immediate signals at the
time of CS onset. VSPatch layers constitute the primary value
inhibitory (PVi) system from earlier versions of PVLV model, and
they send shunt-like inhibitory projections directly to the main
dopamine cell layer (VTAp) to cancel expected dopamine bursts
(typically US-coding PosPV inputs).

Among other inputs, MSNs of the VS patch receive goal-
related, US-specific information from the OFC and other vmPFC
areas. As these cortical areas are currently outside the scope of the
PVLV framework, a specialized input layer (USTime_In) provides
hypothesized temporally evolving information about the upcoming
occurrence of particular USs to the VSPatch layers. This input
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layer captures the idea that VS matrix MSNs learn to report the
occurrence of events predictive of specific US occurrences and
also trigger the gating of goal-expectation representations for par-
ticular USs (e.g., water) into the OFC. Consistent with neural data,
a component of these representations undergoes a systematic tem-
poral evolution in its activation vector that can act as a reliable
substrate for learning about the fine-grained temporal characteris-
tics of any particular CS–US interstimulus interval (ISI) up to a
scale of several seconds. Here we simply implemented as a localist
time representation that is unique for each particular CS-US pair
(e.g., “A” predicts US1, “A” predicts US2, “B” predicts US1, and
so on).

All VSPatch units receive US-specific modulatory connections
from corresponding BLA acquisition-coding units and these serve
to drive an up-state condition that constrains learning to appropri-
ate US-coding units, and also to bootstrap initial learning before
the weights from the USTime_In representations are sufficiently
strong to produce activation on their own.

All VSPatch afferent connections learn according to the follow-
ing, standard three-factor (dopamine, sending, and receiving acti-
vation) equation, as used in many basal ganglia models (Frank,
2005):

�� � � f(�)x max(y, b) (3)

where like terms are as in the earlier equations and the new term
b represents the up-state conveying signal from the associated
BLA units. The max�. . .� operator serves to bootstrap learning
even when VSPatch units are not themselves yet activated, but
then transitions to letting their own activation values (y) determine
learning subsequently. This latter transition is critical for facilitat-
ing the learning of appropriately calibrated expected value repre-
sentations.

VSMatrix layers do not receive projections from the temporally
evolving representations of the USTime_In layer, but instead re-
ceive input from the same Stim_In layer as projects to the
amygdala. This reflects their role in immediately reporting events
predictive of US occurrence. They also receive modulatory pro-
jections from the BLA similar to those in the VSPatch that act to
constrain learning to the specific US expected and bootstrap learn-
ing until the weights from the Stim_In layer have become strong
enough to produce some VSMatrix unit activity on their own.
Activation in VSMatrix units is acquired for the current alpha trial
when CS-onset occurs and the activity across all VSMatrix layers
is conveyed to the LHbRMTg layer where it is interpreted as
excitatory or inhibitory depending on the particular valence rep-
resentation and dopamine receptor (D1 vs. D2) expressed.

Learning for weights afferent to the VSMatrix layers follows the
general three-factor learning rule, but with a synaptic-tag based
trace mechanism that is used to span the timesteps between CS-
driven VSMatrix activity and subsequent US-triggered dopamine
signals. Specifically, when a given VSMatrix unit becomes active,
connections with active sending input acquire a synaptic tag-like
trace value equal to the product of sending times receiving unit
activation with the trace persisting until a subsequent phasic do-
paminergic outcome signal after which it is cleared. This trace
mechanism is motivated by a growing body of research implicat-
ing such synaptic tagging mechanisms in LTP/D generally (e.g.,
Bosch & Hayashi, 2012; Redondo & Morris, 2011; Rudy, 2015)
and, particularly, recent direct electrophysiological evidence for an

eligibility trace-like mechanism operating on MSN synapses in the
striatum that serves to span delays of roughly �50 but �2,000 ms
between synaptic activation and a subsequent phasic dopamine
signal (Fisher et al., 2017; Gurney, Humphries, & Redgrave, 2015;
Yagishita et al., 2014).

The synaptic tag trace activation is computed as the sender-
receiver activation coproduct:

tr � x y (4)

and subsequent dopamine-modulated learning is driven by this tag
times the phasic dopamine signal:

�w � ε f(�) tr (5)

Midbrain Dopamine Mechanisms: LHb, RMTg, VTA

The LHbRMTg layer abstracts LHb and RMTg function into a
single layer. It integrates inputs from all eight ventral striatal layers
and both PV (US) layers into a single bivalent activity value
between 1.0 and 
1.0 representing phasic activity above and
below baseline respectively. VSPatch activities produce a net input
to the LHbRMTg at the expected time of US occurrence and
reflects the relative strength of D1- versus D2-dominant pathways
for each valence separately. For positive valence, a positive net
VSPatchPosD1–VSPatchPosD2 input produces excitation that
serves to cancel any inhibitory input from a positive US and,
critically, if such excitatory input is unopposed because of US
omission, the LHbRMTg can produce an negative dopamine signal
in the VTAp layer. Symmetrical logic applies for corresponding
aversive VSPatch and NegPV inputs, with the signs flipped and
one additional wrinkle: The VSPatch input is discounted in
strength so that it cannot generally fully cancel out the negative US
even when fully expected (Matsumoto & Hikosaka, 2009a).

VSMatrix inputs follow a similar overall scheme where LH-
bRMTg activity reflects a net balance between D1- and D2-
dominant pathways within each valence, except that the signs are
reversed relative to those from the VSPatch. That is, the positive
valence pathway (VSMatrixPosD1–VSMatrixPosD2) net differ-
ence has an inhibitory effect on LHbRMTg, and vice versa for the
aversive valence pathway. Thus, a CS associated with an aversive
outcome will drive a net excitation of the LHbRMTg and a
resulting negative dopamine signal. See the Appendix for pseudo-
code of the integration computation performed.

PVLV’s main dopamine layer (VTAp) receives input from
primary US inputs (PosPV, NegPV), the CEm via the PPTg layer,
and the LHbRMTg. It also receives a direct shunt-like inhibitory
input from both positive-valence VSPatch layers. The CEm path-
way projects to the PPTg which computes a positive-rectified
temporal derivative of the overall CEm activation; thus phasic
dopamine signaling reflects positive-only changes in a fluctuating,
variably sustained amygdala signal. Positive-rectification of this
derivative is consistent with the emerging view that the LHb
pathway is the sole mechanism responsible for producing pauses in
tonic dopamine firing. And, as noted earlier, the positive-
rectification of PPTg inputs to VTAp has important computational
implications for avoiding anomalous learning that would otherwise
result from negative fluctuations such as reward offset.

PVLV’s VTAp layer abstracts the valence-congruent majority
of dopamine neurons, exhibiting positive dopamine signals in
response to direct positive-valence US inputs, and increases in
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CEm temporal-derivative excitation, and negative signals from
increases in LHbRMTg activity. In addition, direct VSPatch inputs
act to shunt positive signals (dopamine cell bursting) that would
otherwise occur from positive-valence US inputs, but these shunt-
like inputs cannot produce negative signals themselves, instead
requiring integration through the LHbRMTg pathway. The posi-
tive and negative (�0.0) signals computed by the VTAp are
transmitted to all relevant PVLV layers and these are used to
modulate learning as described above.

PVLV also incorporates a negative-valence complement to the
VTAp, called VTAn, which corresponds biologically to the
smaller population of valence incongruent dopamine neurons de-
scribed earlier. These respond with phasic bursting to aversive USs
and CSs. Currently, we do not directly utilize the outputs of this
system, and more data is needed to fully determine its appropriate
behavior for all the relevant combinations of inputs.

Results

Overview

The simulation results here address the motivating phenomena
identified in the Introduction, and progress in complexity from
appetitive acquisition to extinction, blocking, conditioned inhibi-
tion, and finally aversive conditioning. The first set of simulations
addresses: different time courses for acquired phasic bursting at
CS-onset versus loss of bursting at US-onset; a dissociation be-
tween the loss of bursting at US-onset and the generation of pauses
for its omission; the asymmetry between early versus late reward;
and the differential effect of increasing delays on LV versus PV
learning. The second set of simulations on extinction and related
phenomena, highlight the utility of explicit representations that
track evidence against the imminent occurrence of particular USs.
By exerting a counteracting effect upon previously acquired rep-
resentations of US expectations, such representations engender
rapid adaptability. Phenomena addressed include: rapid reacqui-
sition; renewal and the increased sensitivity of extinction-related
phenomena to context; and, probabilistic reward contingencies
(accounted for by the same basic mechanisms). Spontaneous re-
covery and reinstatement are discussed as well (not simulated).
The third set of simulations address the related paradigms of:
blocking; conditioned inhibition; and, second order conditioning.
These paradigms all introduce a second informative sensory stim-
ulus (CS2) after an initial CS-US pairing has been trained. The
fourth set of simulations address phasic dopamine signaling in
aversive processing, illustrating how that might be integrated into
the overall system despite some important anomalies and asym-
metries relative to the appetitive case. For reference the phenom-
ena explicitly simulated are listed in Table 1. Later, a separate
table (see Table 2) lists related phenomena not explicitly simu-
lated, but considered within the explanatory scope of the PVLV
framework and RPE-based models generally. Later, in the General
Discussion section we also discuss a third category of important
phenomena involving higher-level, cortical processing considered
out-of-scope for the current framework. Finally, note that we have
listed the relevant motivating phenomena from the Introduction in
the simulation headers.

Simulations 1a–d: Two Main Subsystems, Multiple
Sites of Plasticity

The acquisition of phasic dopamine bursting at CS-onset and its
loss at US-onset are not a zero-sum transfer process of a conserved
quantity of prediction error. This first set of simulations explores
this dissociation and how separate subsystems—and multiple sites
of plasticity—can produce the basic pattern of empirical results
seen in appetitive conditioning.

Simulation 1a: Robust simultaneous CS, US bursting (Mo-
tivating: 1). First, this simulation illustrates the basic process of
acquisition of a Pavlovian CS–US association. The unexpected
onset of the US drives a delta-activation in BLA acquisition-
coding units responsive to that US, and a phasic dopamine signal.
These together drive increases in weights from CS-coding Stim_In
inputs that were active in the previous timestep (alpha trial), to
active BLA and CEl units. This logic applies regardless of the
valence of the US, but is US-specific due to one-to-one projections
from the PosPV or NegPV layers. As CS-driven Stim_In-to-BLA
weights get stronger (and thus BLA activations) US-driven acti-
vation deltas progressively decrease as does its accompanying
dopamine signal, due to learning in the VS patch (PV) system.
Thus, weight changes also decrease and unit activity can naturally
approach some proxy of the magnitude of the US-driven activation
(Belova, Paton, & Salzman, 2008; Bermudez & Schultz, 2010).

This simulation captures the finding that robust phasic dopa-
mine bursting occurs for both the CS and US over a relatively large
portion of the acquisition process (Figure 6; Ljungberg et al., 1992;
Pan et al., 2005). In the corresponding PVLV results, dopamine
activity at the time of CS-onset tracks learning in the BLAmyg-
PosD1 and CElAcqPosD1 layers, while US-onset dopamine fol-
lows (inversely) learning in the VSPatchPosD1 layer. Learning in
each of these LV versus PV pathways is at least somewhat inde-
pendent from each other, although the phasic dopamine signal at
the time of the US does augment learning in the LV (amygdala).
This relationship means that it is important for the PV system to
learn more slowly than the LV overall, so that it does not prema-
turely cutoff learning in the LV. This co-occurrence of CS and US
phasic dopamine is a necessary prediction from this framework.

Many parameterizations of the TD model would not predict this
extensive co-occurrence of CS and US dopamine firing, because
the underlying derivation of the model from the Bellman equation
causes it to learn maximally consistent expected reward estimates

Table 1
Pavlovian Phenomena Simulated

Phenomenon Sim

Appetitive conditioning 1a–c
Goal- vs. sign-tracking 1d
Extinction 2a,b
Rapid reacquisition 2a
Renewal 2c
Probabilistic reinforcement 2c
Blocking 3a
Conditioned inhibition 3b
Second-order conditioning 3c
Aversive conditioning 4a,b
Avoidance learning 4b
Safety signal learning 4b
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over time. Specifically, the dopamine signal � in this framework
reports deviations from temporally consistent predictions, and thus
any increase in expectation at one point in time (e.g., the CS onset)
typically results in a corresponding decrease in � at later points in
time (e.g., the US). Nevertheless, it is possible to parameterize the
state update using a � parameter to temporally average over states,
which reduces the ability of the model to have differential expec-
tations at different points in time, and thus enables a longer period
of CS and US dopamine firing, while also reducing the extent to
which the dopamine burst progresses forward in time gradually
over learning, which is also not seen in recording data (Pan et al.,

2005). Further, TD models operating over belief states have also
been able to capture simultaneous phasic dopamine firing to the
CS and US (Daw, Courville, & Touretzky, 2006).

More generally, the different time courses for acquisition of
CS-onset dopamine signaling and its loss at US-onset has impor-
tant implications for the respective effects upon behavioral change
dependent on each of these signals. For example, US-triggered
dopamine bursts are likely important for training a specific subset
of CRs dubbed US-generated CRs by Peter Holland (e.g., food-cup
behavior; Gallagher, Graham, & Holland, 1990; Holland, 1984), as
well as for training instrumental actions. In particular, the disso-
ciation in learning between the two subsystems could play a role in
the recently described distinction between so-called sign-trackers
and goal-trackers (Flagel et al., 2011; Flagel et al., 2010) as
addressed below under Simulation 1d.

Simulation 1b: Two pathways from PV to DA (Motivating:
2, 4). There are two pathways in the PVLV model from the VS
patch neurons that learn to anticipate US outcomes: One that
directly shunts dopamine burst firing, and another via the lateral
habenula (LHb) that can drive phasic dips for omitted USs. Figure
7a shows that there was flat, baseline-level activity in the LHb at
the time of a predicted reward (Matsumoto & Hikosaka, 2007),
meaning that the mechanism shunting dopamine bursting at this
time must not be the LHb. This then indirectly supports our
hypothesis that the direct inhibitory projections onto dopamine
cells of the VTA and SNc are responsible (Gerfen, 1985; Gerfen,
Herkenham, & Thibault, 1987; Joel & Weiner, 2000; Smith &
Bolam, 1990). Figure 7b shows simulation results demonstrating
balanced excitatory input to the LHbRMTg from activity in the
VSPatchPosD1 layer that counteracts inhibitory input from PosPV
activity at the time of a predicted reward, resulting in flat LH-
bRMTg activity. Figure 7c shows unopposed VSPatchPosD1 ac-
tivity at the time of reward omission, driving increased LHbRMTg
activity and, consequently, decreased VTAp activity, that is, pha-
sic pausing. One functional motivation for having these two path-
ways is that the VS patch neurons likely exhibit ramping activity

Table 2
Pavlovian Phenomena Not Explicitly Simulated but Within the Explanatory Scope of the PVLV Framework

Phenomenon Sim Comment

Variable reward timing See 1c Drives PV (VS) firing over broader time window
Autoshaping See 1d See sign-tracking
Cond orienting resp (COR) See 1d See sign-tracking
Incentive salience See 1d See sign-tracking
Extinction (aversive) See 2a,b Largely follows appetitive pattern.
Reinstatement See 2b US-reactivation of CS-specific reps in Amygdala? (not impl).
Spontaneous recovery See 2b Internal context drift? (not impl).
Partial reinforcement extinction effect See 2c Reliable in Pavlovian case? (not impl).
Unblocking-by-identity 3a
Unblocking, upward See 3a Consistent with std RPE (trivial).
Unblocking, downward — Complex timing required – unclear if real (not impl).
Overexpectation See 3a Same account as unblocking-by-identity in our model.
Overshadowing — Strongly dependent on relative CS salience (not impl).
Reversal learning — Essentially sum of 1a–c and 4a, b, also salience (not impl).
Counterconditioning — Like reversal learning, pits valence reversal competitive effects

against any acquired salience effects (not impl).
Latent inhibition — Habituation of novelty-triggered bursts? (not impl).
Sensory preconditioning — Cortically mediated and largely associative?
Variable reward magnitude — See discussion in Neurobiological Substrates and Mechanisms.

Note. not impl � not implemented.
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Figure 6. Simulation 1a: Dissociable time courses of learning-induced
changes to CS- and US-onset phasic bursting. (a) Population dopamine cell
activity during early learning (top) and fully trained (bottom), adapted from
Ljungberg et al.’s, (1992), Figure 13 with permission from The American
Physiological Society: Journal of Neurophysiology, copyright 1992. Note
robust firing after both CS- (left vertical line) and US-onset (right vertical
line) early in training (top). (b, c) Activity in key model components during
initial early learning (b); and, after full training (c). KEY: solid black �
VTAp activity (dopamine cells); dashed red � CEmPos activity (central
amygdalar nucleus, medial segment � positive coding); zipper orange �
VSPatchPosD1 activity (ventral striatum patch cells). See the online article
for the color version of this figure.
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toward the peak timing of US onset—it is useful to shunt any
bursts within this ramping period, but it would not be as useful to
continuously drive dopamine dips until after it is certain that the
US is not coming. Thus, the LHb pathway is more phasic and
precisely timed. This and other timing-related implications of these
two pathways are developed further in the General Discussion.

Simulation 1c: Asymmetric dopamine signaling for early
versus late reward (Motivating: 2,4). Rewards that occur ear-
lier than expected produce dopamine cell bursting, but no pausing
at the usual time of reward. In contrast, rewards that occur late
produce both signals as predicted by a simple RPE formalism
(Figure 8a; Hollerman & Schultz, 1998). Figure 8b,c shows cor-
responding simulation results. For late rewards, a negative dopa-
mine signal at the time of expected reward is driven by the
unopposed VS patch activity, followed by a now unopposed pos-
itive US input driving a positive burst. This same US-driven burst
occurs for early rewards, but the subsequent negative dip no longer
occurs because of the dynamics of the OFC, which we hypothesize
is activated with a temporally evolving US-specific representation
at the time of CS onset (via VS matrix phasic gating), and serves
as the bridge between the LV and PV systems. Once the US
occurs, we hypothesize that this OFC representation is gated back
off (i.e., the outcome has been achieved), and thus, the correspond-
ing drive from OFC to VS patch US predictions is absent, and no
such expectation is generated. In our model, we implement this
dynamic by externally driving activation of the USTime_In input
layer as shown in Figure 8d. These dynamics can be considered a
variant of the mechanism employed by Suri and Schultz (1999) in
accounting for this same phenomenon (see also Suri, 2002), but
their model remained in a purely CS-focused space, instead of
focusing on OFC as bridging between CS and US.

In contrast to the gist of earlier articles out of Wolfram Schultz’
group, which tended to emphasize the relative temporal precision
of the reward timing prediction (e.g., Hollerman & Schultz, 1998),
more recent results (Fiorillo et al., 2008) have reported that both
early and late reward delivery over a range of hundreds of milli-
seconds resulted in substantially suppressed dopamine signaling.

That is, early or late rewards appear to be more predicted than
unpredicted. This, of course, implies that the expectation-
conveying representations responsible for suppressing dopamine
firing are temporally smeared rather substantially. Currently,
PVLV uses simple localist representations for each time step that
produces precise temporal predictions on a scale of 100 ms. If
desired, PVLV could reproduce this imprecision by simply using
coarse-coded, overlapping distributed representations for each
timestep.

Simulation 1d: Differential effect of increasing delays on LV,
PV learning (Motivating: 1). As the interval between CS and
US increases beyond a few seconds both acquired CS-onset burst-
ing (LV learning) and the loss of US bursting (PV learning) are
attenuated, the latter to a significantly greater degree (Figure 9a;
Fiorillo et al., 2008; Kobayashi & Schultz, 2008). Note that CS-
onset dopamine signals are relatively preserved even at the longer
delays (Figure 9a, left panel) as compared with the pattern seen at
US-onset (right panel). As previously noted, this dissociation
represents circumstantial evidence that separate pathways are in-
volved in LV versus PV learning. Figure 9b shows corresponding
simulation results that were produced by progressively weakening
the strength of the USTime_In representations that serve as input
to the VS patch layers. The idea is that as CS–US intervals increase
there is a corresponding deterioration in the fidelity of the tempo-
rally evolving working memory-like goal-state representations that
bridge the gap. The CS representation itself is not as working
memory-dependent because the CS stays on until reward is deliv-
ered, so LV learning is relatively preserved (although attentional
effects are undoubtedly contributory).

Considerable interest has developed in a recently described
phenotypic distinction between so-called goal-trackers, whose
CRs are dominated by conventional US-derived CRs such as
food-cup entry, versus sign-trackers, whose CRs are dominated by
CS-driven CRs such as CS approach and manipulation (Flagel et
al., 2011; Flagel et al., 2010; Haight, Fraser, Akil, & Flagel, 2015;
Meyer, Lovic, Saunders, Yager, Flagel, Morrow, & Robinson,
2012). In other words, goal-trackers preferentially develop rela-

Figure 7. Simulation 1b: Separate pathways mediate loss of bursting for reward versus pausing for omission.
(a) Empirical results from Matsumoto and Hikosaka (2007), adapted from their Figure 3a with permission from
Springer Nature: Nature, copyright 2007, showing flat activity in the LHb following a predicted reward outcome
(solid red line). Omitted reward produces phasic increase in activity (dotted blue). (b) Model results showing
balanced excitatory inputs to LHbRMTg layer (dash-dot blue line) from VSPatchPosD1 activity (zipper orange)
and inhibitory input from PosPV activity (dotted magenta) at the time of predicted reward. While VSPatchPosD1
activity is lower than for PosPV its input to LHbRMTg has a gain factor of 1.7 resulting in an approximate
balance. (c) Unopposed input from VSPatchPosD1 activity (zipper orange) at the time of reward omission drives
increased LHbRMTg activity (dash-dot blue) and pausing of VTAp dopamine cell firing (solid black). See the
online article for the color version of this figure.
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tively exclusive incentive salience, while sign-trackers develop a
strong incentive salience for the CS as well. It is also worth
pointing out that a sizable subpopulation falls into an intermediate
range that varies from study to study according to how categories
are defined.

Of particular relevance to the PVLV framework and to the issue
of dopamine signaling, Flagel et al. (2011) reported that animals
they classified as sign-trackers displayed a different pattern of
dopamine signaling relative to those animals classified as goal-
trackers (see Figure 9); specifically, sign-trackers showed stronger
dopamine signaling (measured as extracellular dopamine levels in
ventral striatum) in response to CSs (top panel) and more predict-
ing away of dopamine signaling to predicted USs (bottom panel).
Importantly, these experiments were performed with a CS–US
interval of roughly 8 s, which is well into the range of delay
systematically characterized by Fiorillo et al. (2008). Thus, it is

tempting to speculate that individual differences in the handling of
delay by the dopamine signaling system may underly these results
and may account for behavioral differences between sign-trackers
and goal-trackers as well. For example, there may be differential
dopamine cell responsivity per se, or there could be differential
downstream effects (e.g., differential learning rates, relative dopa-
mine receptor densities, and/or dopamine reuptake dynamics).
Possible empirical support for the last of these ideas comes from a
recent study by Singer et al. (2016) implicating genetic variation in
the expression of the dopamine transporter (DAT) gene between
sign-trackers versus goal-trackers, with sign-trackers having
higher DAT expression in the VS than goal-trackers.

The basic idea of differential delay sensitivity was simulated in
PVLV (Figure 9d) by varying the strength of USTime_In repre-
sentations as described above (to account for the PV results) and
also varying the strength of Stim_In connections to the VS matrix

Figure 8. Simulation 1c: Asymmetric dopamine signaling for late-versus-early reward. (a) Empirical results
adapted from Hollerman and Schultz (1998), Figure 6b with permission from Springer Nature: Nature Neuro-
science, copyright 1998, showing an asymmetric pattern of firing for late (thin arrow) versus early (thick arrow)
reward delivery. (b, c) Simulation results for late-versus-early reward, respectively, capturing the empirical
results. (d) Focus on the USTime_In input layer, representing the OFC bridging between CS and US, with a
temporally evolving, US-specific pattern that drives the VS patch expectations of US timing. When the US
arrives early, it resets this US timing representation, thereby preventing VS patch firing. See the online article
for the color version of this figure.
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layers based on the hypothesis that VS matrix-mediated disinhi-
bition of dopamine cell activity may differentially contribute to
dopamine cell bursting in sign-trackers versus goal-trackers. These
two mechanisms may be linked according to the proposal that VS
matrix MSNs may be responsible for the gating of goal-state
representations into OFC in the first place. Finally we point out
that, although not explicitly discussed by the authors, it appears
that there may indeed be significant individual differences in the
temporal delay curve for dopamine signaling based on the results
reported by Fiorillo et al. (2008) for their two different subjects
(Figure 9e).

An implication of the PVLV framework suggested by this
constellation of ideas is that pharmacologic or other blockade of
the DAT in the VS ought to reduce acquired sign-tracking behav-
ior in animals with the sign-tracking phenotype. And, similarly,
based on the CEA dependency in acquiring CS-related CRs (e.g.,
COR, autoshaping; Gallagher et al., 1990) and the idea that such
CRs are trained by CS-triggered dopamine signals (see also Hazy
et al., 2010), the PVLV framework predicts that CEA lesions ought

to significantly reduce the manifestations of sign-tracking CRs and
thus mitigate the behavioral distinction between sign-trackers and
goal-trackers. See also the General Discussion where these pre-
dictions are stated explicitly.

Simulations 2a–c: Extinction Is Mediated by New,
Contextualized Learning

Extinction and the related phenomena of rapid reacquisition and
renewal exhibit clear asymmetries in comparison with initial ac-
quisition. For example, reacquisition after extinction generally
proceeds faster than original acquisition (Pavlov, 1927; Rescorla,
2003); and extinction exhibits a much stronger dependency on
context than does initial acquisition as demonstrated in the renewal
paradigm (e.g., Bouton, 2004). A clear implication is that extinc-
tion is not simply the weakening of weights previously strength-
ened during acquisition, but instead involves a component of
strengthening of different weights that then counteract them (Bou-
ton, 2002; Herry, Ciocchi, Senn, Demmou, Müller, & Lüthi, 2008;

Figure 9. Simulation 1d: Differential effect of increasing delays on LV, PV learning. (a) Empirical results
adapted from Fiorillo et al.’s (2008), Figure 2a, c, with permission from Springer Nature: Nature Neuroscience,
copyright 2008. Showing a relatively modest decrease in CS-generated dopamine cell bursting with increasing
CS–US intervals and an even greater preservation of US-triggered bursting. Results are from the subject
(Monkey B) that showed the greater sensitivity to temporal delay. (b) Simulation results show a qualitatively
similar pattern due to one potential mechanism—a deterioration in the fidelity of temporally evolving US
representations in OFC (USTime_In) projecting to VS patch layers. (c) Empirical results from Flagel et al.’s
(2011), Figure 2b, e, adapted with permission from Springer Nature: Nature, copyright 2010. Showing greater
CS-triggered extracellular dopamine signaling in the NAc and near-complete loss of US-triggered dopamine in
sign-trackers (top; blue) versus goal-trackers (bottom; gold). (d) Simulations results showing a qualitatively
similar pattern based on two possible mechanisms: (1) higher representational fidelity in sign-trackers (top)
versus goal-trackers (bottom) for temporally evolving goal-state representations (PV learning); and (2) a greater
contribution of VS matrix-mediated disinhibition to CS-triggered dopamine signaling (LV learning). (e) Results
adapted from Fiorillo et al.’s (2008), Figure 2b, d, with permission from Springer Nature: Nature Neuroscience,
copyright 2008. Showing different sensitivity to temporal delay in the two monkeys they recorded from: left
panel � CS-triggered responses; right panel � US-triggered responses; note that Monkey B (gray curves in both
panels) appears to show considerably more delay sensitivity than Monkey A (black) for both CS- and
US-triggered dopamine signaling. See the online article for the color version of this figure.
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Laurent & Westbrook, 2010; Quirk et al., 2003; Rudy, 2013). The
opponent-processing dynamics and specific extinction pathways in
the amygdala of the PVLV model can account for these phenom-
ena, as explored in the simulations below.

Simulation 2a: Extinction and reacquisition (Motivating: 3).
Simulation 2a demonstrates how the explicit representation of
evidence against the imminent occurrence of a particular US can
mediate extinction and then rapid reacquisition. Figure 10a shows
faster reacquisition of a food magazine entry CR after extinction
(top curve) relative to original acquisition in rats (Ricker & Bou-
ton, 1996). Figure 10b shows comparable simulation results for
VTAp phasic dopamine over the sequence of acquisition, extinc-
tion, and reacquisition. Note that extinction takes slightly longer
than original acquisition, as generally seen empirically (Mazur,
2013), and reacquisition is faster than original acquisition. Figure
10c–e show corresponding patterns of activation in the BLA and
CEl layers during these three phases: The D2-dominant, opposing
pathway is trained by phasic dopamine dips to encode contextu-
alized new learning during extinction, and comes to suppress the
initial D1-dominant acquisition representations. The rapidity of
reacquisition in the model depends on two complementary factors.
The first and most important is a relatively fast learning rate in
weakening the weights from the CS input to the extinction coding
units. Because this weakening is faster than original acquisition
learning, reacquisition can be faster than original acquisition. In
addition, reacquisition is speeded by the nonlinearity of the attrac-
tor dynamics inherent in the Leabra algorithm by virtue of the
mutual inhibition that plays out between the acquisition and ex-
tinction representations.

Figure 10b also shows that CS-onset dopamine activity dips
somewhat below zero during extinction training, which is a con-
sequence of parallel learning in the VSMatrixPosD2 layer whose
acquired activity drives positive LHbRMTg activity and thus
VTAp suppression. The development of this modest negative
signal is consistent with a report by Pan, Schmidt, Wickens, and
Hyland (2008) that a subset of dopamine cells exhibited phasic
pausing after extinction training—more extensive exploration of
this would provide an important empirical test of this aspect of our
model.

It is worth pointing out that reacquisition is not always faster
than original acquisition. In particular, the relative speed of reac-
quisition appears to be sensitive to the relative number of initial
acquisition trials versus subsequent extinction trials. That is, ex-
tensive initial conditioning favors rapid reacquisition while exten-
sive extinction training favors slow reacquisition (Ricker & Bou-
ton, 1996). Changes in context can also influence reacquisition
speed as can prior conditioning involving a different CS (Ricker &
Bouton, 1996).

Simulation 2b: Renewal (Motivating: 3). This simulation
highlights the differential sensitivity of extinction learning to con-
text (e.g., Bouton, 2004) as revealed by the phenomenon of re-
newal, where subjects are typically conditioned in one particular
context (A) and then extinguished in a second context (B). The
defining result is that when subjects are subsequently exposed to
the relevant CS in the original context they immediately exhibit the
just-extinguished CR (i.e., the ABA paradigm). Renewal has also
been demonstrated when subjects are tested in a third (novel)
context (i.e., ABC), although the effect may be somewhat weaker
(Bouton & Swartzentruber, 1986; Krasne et al., 2011). This some-

what surprising result suggests that renewal expression is really
more a function of the absence of the extinction context (B), and
that the original acquisition context (A), although contributory, is
relatively weaker as a controller of CR expression. Furthermore,
studies using the AAB paradigm (where extinction is performed in
the same acquisition context, A, and renewal testing occurs in a
different, novel context B) also demonstrate reliable renewal,
compared with testing again in A (i.e., AAA; Bouton & Ricker,
1994; Thomas, Larsen, & Ayres, 2003), although AAB renewal
tends to be the weakest of the three cases.

Figure 11a shows data from Corcoran et al. (2005), (their Figure
4b), for all of the typical renewal paradigms (ABB, ABA, AAB,
ABC) showing that extinction continues to be expressed when
testing occurs in the same context in which extinction occurred
(i.e., ABB) while renewal is expressed when the context for testing
is different (ABA, AAB, ABC; see also Bernal-Gamboa et al.,
2012 for similar results in a taste aversion paradigm). Figure 11b
shows qualitatively comparable simulation results from PVLV.
The Context_In projections to the BLAmygPosD2 extinction-
coding layer are critical to these effects—initial acquisition in the
model is exclusively driven by the CS stimulus features, while
extinction becomes strongly modulated by these context inputs
(along with stimulus features). Thus, when tested outside of the
extinction context, the stimulus connections drive the original
acquisition representation. The lack of contextual inputs to the
D1-dominant acquisition pathway in our model is an intentional
oversimplification relative to the real brain, but the same overall
principles apply with any significant asymmetry in these connec-
tions, or other attentional dynamics that up-regulate contextual
influence during extinction learning. As described earlier, Herry et
al. (2008) found that hippocampal afferents to the BLA differen-
tially synapse onto their acquisition-coding cells while extinction-
coding cells differentially receive inputs from the vmPFC, which
we interpret as conveying two distinct types of context (although
our model only captures the latter).

In addition to a clear role for vmPFC inputs in supplying
context-specificity during extinction, a role for hippocampal in-
volvement in renewal is also suggested by studies showing that
lesioning the hippocampus prevented the context-specificity of
extinction, as demonstrated by a lack of renewal in both ABA and
AAB renewal paradigms (Ji & Maren, 2005). Further, inactivating
hippocampus with muscimol before extinction also produced a
lack of either ABC or AAB renewal (Corcoran et al., 2005;
Corcoran & Maren, 2001, 2004). Other studies, however, have
found that hippocampal lesions did not impair renewal in an ABA
paradigm (Frohardt, Guarraci, & Bouton, 2000; Wilson, Brooks, &
Bouton, 1996), including a very recent study specifically designed
to address this apparent contradiction (Todd, Jiang, DeAngeli, &
Bucci, 2017). Further complicating matters, all of the above stud-
ies involved only the dorsal hippocampus and there is now con-
siderable evidence implicating the ventral hippocampus in Pavlov-
ian conditioning (e.g., Maren & Holt, 2004), including sending
projections to cortical regions involved in extinction and renewal
such as vmPFC (Orsini, Kim, Knapska, & Maren, 2011; Sotres-
Bayon, Sierra-Mercado, Pardilla-Delgado, & Quirk, 2012; Wang,
Jin, & Maren, 2016). Interestingly, the hippocampal afferents to
BLA acquisition cells documented by Herry et al. (2008) were
from the ventral, not dorsal, hippocampus. Clearly, additional
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Figure 10. Simulation 2a: Extinction and rapid reacquisition. (a) Empirical learning curves for initial acquisition
(lower curve) and reacquisition (upper), documenting rapid reacquisition, from Ricker and Bouton (1996) with
permission from Springer Nature: Animal Learning & Behavior, copyright 1996. (b) Simulation results showing the
evolution of dopamine signaling over a sequence of acquisition, extinction, and reacquisition; CS-onset dopamine �
solid line; US-onset � dotted line; (c–e) Focus on network activity in the amygdalar layers after acquisition training
(c), extinction (d), and reacquisition (e). Initial acquisition is mediated by BLAmygPosD1 and CElAcqPosD1
D1-dominant cells, while extinction drives opponent BLAmygPosD2 and CElExtPosD2 D2-dominant cells (learning
via dopamine dips). Extinction takes longer due to the need for learning in extinction cells to out-compete the
acquisition cells. Reacquisition is fast because the original acquisition weights are largely intact, and the relative
balance can be rapidly shifted. See the online article for the color version of this figure.
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work is needed to sort out the roles played by the dorsal versus
ventral hippocampus within the overall system.

Finally, to account for the relative strength of renewal thought to
exist across the different paradigms (i.e., ABA � ABC � AAB)
we would hypothesize that the connections from hippocampus to
BLA acquisition cells are relatively slow-learning and strengthen
only modestly during initial acquisition in the presence of a spe-
cific, strongly salient CS candidate. This modest strengthening
could then produce a modest advantage for ABA renewal relative
to ABC and AAB renewal. On the other hand, in the absence of
any strongly salient CS candidates these same context-conveying
connections could strengthen robustly to produce explicit context
conditioning such as conditioned place preference and/or aversion
(e.g., Xu et al., 2016). Hippocampal contributions to acquisition
coding in the case of fear conditioning have been extensively
simulated previously (Rudy & O’Reilly, 2001).

Two related phenomena not simulated are spontaneous recovery
and reinstatement. The former is the observation that after behav-
ior has been fully extinguished, returning the subject to the same
environment typically results in some partial recovery of the
previously extinguished behavior. This effect is likely attributable
to multiple factors (Bouton, 2004) including transient synaptic
changes not fully stable longer-term, or perhaps to endogenous
changes to the internal context representations over time, such that
the effective context is different later in time, that is, a change in
temporal context (Bouton, 2004).

Reinstatement is the phenomenon whereby, even after extensive
extinction training (beyond the point of any spontaneous recov-
ery), an unpredicted delivery of the relevant US can immediately
reestablish extinguished CRs without benefit of further CS–US
pairing. For the framework proposed here, a straightforward, if
speculative, account might invoke the finding that the retrieval of
extinction-related context memories seems to be less robust that
acquisition-related memories (Ricker & Bouton, 1996). In this
vein, the uncued occurrence of the US itself can serve as a cue to

retrieve and maintain a working memory-like goal-state represen-
tation for that US, which can be considered itself a version of
“acquisition context.” Subsequently, when the relevant CS occurs
the retrieval of the extinction-context may be relatively disadvan-
taged, or even suppressed, and thus less likely to be activated,
allowing for the reemergence of the CRs. Also relevant are results
showing that the context of US presentation and subsequent CS
testing must match (e.g., Bouton & Peck, 1989), as well as studies
showing the hippocampus to be important for reinstatement of fear
(Frohardt et al., 2000; Todd et al., 2017; Wilson et al., 1996).
Because there can be a gap of 24� hr before CS testing,
context-US associations formed during US exposure might be
involved in reactivating working memory-like US representations
at test. In particular, therefore, the projections from hippocampus
to BLA acquisition neurons may be important for encoding
context-US associations, supporting a role in reinstatement as well
as in contextual conditioning as previously noted (Xu et al., 2016).

Simulation 2c: Probabilistic reinforcement learning (Moti-
vating: 3). The same opponent dynamics between acquisition
and extinction can also account for learning under probabilistic
reward schedules (Fiorillo et al., 2003). Figure 12 shows the
pattern of phasic dopamine signaling observed in an example
neuron by Fiorillo et al. (2003) using various probabilistic reward
schedules, along with corresponding simulation results. Across all
cases note that bursting at CS-onset corresponds roughly to the
expected value (EV) of the reward received over that training
block, while activity at the time of US-onset reflects the residual
surprise relative to that expectation (1 
 EV). In the model, the
relative balance between the acquisition and extinction pathways
reflects the relative proportion of the corresponding trial types, and
thus the model accurately tracks these expected values and drives
corresponding phasic dopamine signals.

A prominent phenomenon associated with probabilistic rein-
forcement, one that has played an important role in theorizing
about Pavlovian and instrumental conditioning generally, is the

Figure 11. Simulation 2b: Context dependency of renewal. (a) Example behavioral results illustrating the
complex role of context in extinction and renewal, adapted from Corcoran et al.’s (2005), Figure 4b with
permission from Society for Neuroscience: Journal of Neuroscience, copyright 2005. After appetitive condi-
tioning using a food-cup CR in Context A (all cases), extinction occurs in either Context A or B. Subjects are
then tested in a renewal phase. As shown, the ABB sequence shows continued extinction (low food-cup
behavior; white bar), while the other three sequences (ABA, AAB, ABC) all show significant renewal (high
food-cup behavior). (b) Simulation results reproducing the same basic pattern of results. AAA is equivalent to
ABB in that renewal occurs in the same context as did extinction. This basic pattern of results shows that it is
the context present during extinction, not original acquisition, that is critical for determining whether extinction
is expressed in testing, or not (i.e., renewal).
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partial reinforcement extinction effect. The PREE is when extinc-
tion is slower following acquisition training using partial (�100%)
relative to continuous (100%) reinforcement, a finding that has
proven perplexing for learning theorists from the time it was first
described by Humphreys (1939)—including the Rescorla-Wagner
model. This is because it “. . .challenged the idea that the rate of
extinction might be a simple function of the amount of associative-
or habit-strength that was learned during conditioning” (Bouton,
Woods, & Todd, 2014, p. 30).

The pattern of results described under the PREE has turned out
to be extremely complex, occurring under most circumstances
(e.g., Bouton et al., 2014; Haselgrove, Aydin, & Pearce, 2004;
Haselgrove & Pearce, 2003), but not always (Bouton & Sunsay,
2001; Haselgrove et al., 2004; Mackintosh, 1974; Pearce, Red-
head, & Aydin, 1997). In particular, it seems that the PREE may
be less readily produced when a within-subject design is used
(Bouton & Sunsay, 2001; Pearce et al., 1997), although Chan and

Harris (2019) reviewed recent results that have been more suc-
cessful. In addition, it appears that many other experimental ma-
nipulations can influence PREE expression including: (a) the av-
erage number of nonreinforced trials between USs (Bouton et al.,
2014; Capaldi, 1967, 1994); (b) accumulated time between US
occurrences (Gallistel & Gibbon, 2000); although the consensus in
the literature seems to be that time per se may be a relatively minor
factor after nonreinforced trials are considered (Bouton et al.,
2014; Haselgrove et al., 2004); and (c) a change in CS duration
during extinction from that used in acquisition (Haselgrove &
Pearce, 2003). However, a unifying idea introduced by Redish et
al. (2007) is that the experience of unexpected and/or intermittent
nonreinforcement can be used by agents to infer contextual state
changes that define current contingencies. Using this framework
Redish et al. (2007) were able to account for the long-standing and
puzzling result that a block of continuous reinforcement following
initial partial reinforcement training does not mitigate a PREE and

Figure 12. Simulation 2c: Probabilistic reinforcement learning accounted for by extinction-related mecha-
nisms. (a) Empirical results from Fiorillo et al.’s (2003), Figure 2A, with permission from The American
Association for the Advancement of Science: Science, copyright 2003. Showing dopamine cell responses under
varying probabilistic reward schedules. (b) Simulation results reproducing the same qualitative pattern of results
in (a).
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can even enhance it (Domjan, 1998; Jenkins, 1962; Theios, 1962),
providing an overarching explanatory framework for several ear-
lier proposals (e.g., the discrimination hypothesis: Mowrer &
Jones, 1945; a generalization decrement: Capaldi, 1967, 1994).
Such complex context-based effects almost certainly involve cor-
tically based mechanisms not strictly in-scope for the PVLV model
currently, but they do suggest important areas for future explora-
tion.

Simulations 3a–c: Effects of a Second CS

There are multiple important phenomena that result from the
introduction of a second CS, including blocking, conditioned in-
hibition, and second-order conditioning. Early electrophysiologi-
cal studies demonstrated that a CS that fully predicts a later one
eventually results in phasic dopamine signals only for the earlier
one, as expected from reward-prediction-error (RPE) theory (e.g.,
Schultz, Apicella, & Ljungberg, 1993; Suri, 2002). There are many
factors, however, that can determine the resulting pattern of effects
with two CS’s, including their relative timing, both within a trial
and across the experiment, and their relationship with the US (e.g.,
Yin, Barnet, & Miller, 1994). Simulation 3a shows how blocking
arises from the simultaneous presentation of two CSs, while Sim-
ulation 3b shows how conditioned inhibition results from the same
CS-level structure, but with omitted instead of delivered USs.
Simulation 3c shows that just staggering the two CS’s in time
compared with conditioned inhibition results in second-order con-
ditioning.

Simulation 3a: Blocking (Motivating: 11). Blocking is dem-
onstrated by first training one CS (A) to predict a given US
outcome, followed by presentation of two simultaneous CSs pre-
sented in compound (AX) followed by the same US outcome, and
then testing the response to X presented by itself. According to
classic RPE theory Rescorla and Wagner (1972), the fact that A
already fully predicts the US outcome means that X provides no
additional predictive value and should not experience learning.
This well-established behavioral phenomenon has been shown to
be mirrored by dopamine cell firing (Waelti, Dickinson, & Schultz,
2001), albeit incompletely. Figure 13 shows these data, along with
PVLV simulation results reproducing this basic pattern of results.
Interestingly, the blocking of X is only partial in both the data and
the model, despite sufficient A-US pairing to the point where the
US no longer drove phasic dopamine bursting. In the model, this
occurs because of the delta-activation in the amygdala driven by
US onset (which still occurs despite the A pretraining)—producing
some level of learning to the X stimulus. At test therefore, the
blocked CS (X) has acquired some ability to activate these
specific-US coding cells and these, in turn, drive some modest
dopamine cell bursting.

Unblocking-by-identity is a variably observed (Betts, Brandon,
& Wagner, 1996; Ganesan & Pearce, 1988) phenomenon such that,
when it is seen, a previously established US (e.g., chocolate-
flavored milk) is replaced by an equal-magnitude-but-different-US
(e.g., vanilla-flavored milk) in the blocking phase, with the result
that learning about the to-be-blocked stimulus is no longer
blocked. Some have argued that this phenomenon is beyond the
scope of DA-RPE theory and requires an attention-based explana-
tion. However, the PVLV framework provides one potentially
viable DA-RPE-based mechanism, which is described in the fol-

lowing paragraph. Some recent animal studies have shown that
appropriate regions in the PVLV model, including the basolateral
amygdala, ventral striatum, and OFC, were crucial for the learning
that underlies unblocking-by-identity (Chang, McDannald,
Wheeler, & Holland, 2012; McDannald, Lucantonio, Burke, Niv,
& Schoenbaum, 2011; McDannald et al., 2012).

In the model, we obtained an unblocking-by-identity effect
without any additional mechanisms (Figure 13c; compare response
to X� test with X test in b). This is due to the activation of both the
originally expected US outcome (chocolate milk; driven by
learned associations from the CS), and the new unexpected US
outcome (vanilla milk) in the amygdala. Even allowing for repre-
sentational overlap and/or some competitive inhibition between
the two active US representations in the CEm output of the
amygdala, the downstream PPTg layer receives a larger increase in
its net input than it otherwise would have with only the one US
active, which it will pass on to the VTAp (dopamine) layer as a
stronger excitatory drive. Thus, the VTAp computes a net positive
dopamine signal that can be used to train the association between
CS2 and the new US. An analogous account can be given for
activation in the lateral habenula in order to explain the phenom-
enon of overexpectation where two previously conditioned CSs are
then presented together in a subsequent training phase that in-
cludes the same magnitude of reward as used for each of the CSs
previously; that is, the expectation is now for two rewards, but
only one is delivered, for example. A prediction that follows from
the current framework is that both unblocking-by-identity and
overexpectation effects should be dependent on an intact phasic
dopamine signaling system. Indeed, regarding the latter case Taka-
hashi et al. (2009) reported that bilateral lesions of the VTA
disrupted learning in an overexpectation paradigm.

Two other forms of unblocking are worth mentioning. Upward
unblocking is when the magnitude of reward is increasing for the
blocking phase and is trivially accounted for by the DA-RPE
framework. Downward unblocking is more problematic in that a
decrease in reward can also produce excitatory conditioning of the
to-be-blocked CS. However, it turns out that the circumstances
required to produce this effect are rather arcane; see the General
Discussion for an explanation as to why we do not think it really
challenges the basic DA-RPE framework.

Simulation 3b: Conditioned inhibition (Motivating: 5, 6, 7).
The conditioned inhibition (CI) paradigm is essentially identical to
blocking, except that the expected US is omitted when the paired
CSs are introduced in the second phase (AX-, with the initially
conditioned A� CS). In addition, CI training requires continued
maintenance trials (A�) to prevent extinction of the original
CS–US pairing. As reflected in the PVLV model, Bernard Balleine
and colleagues have recently reported that the LHb plays a critical
role in conditioned inhibition (Laurent et al., 2017).

Figure 14 shows results from Tobler et al. (2003) demonstrating
that phasic dopamine signaling after appetitive CI training con-
forms to the basic pattern predicted by RPE theory. The accom-
panying PVLV simulation results match this data, including cap-
turing the biphasic response pattern to AX
 in terms of both
positive CeMPos and negative LHbRMTg drivers of dopamine
signaling (the anatomical connectivity predicts that the amygdala-
driven burst would precede the LHb-driven dip, but we do not
resolve time at this scale in the model).
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As pointed out by Tobler et al. (2003), there is an important
exception to a simple RPE account of CI: when presented alone, a
fully trained conditioned inhibitor (X) fails to produce a positive RPE
at the expected time of the US, despite the absence of any negative
outcome associated with the negative value signaled by this stimulus.
This is consistent with the long-established finding that the negative
valence of the CI does not extinguish when presented alone (e.g.,
Zimmer-Hart & Rescorla, 1974; see Miller, Barnet, & Grahame, 1995
for review). PVLV reproduces this failure of extinction due to the
minimal prediction error produced when the CI (X) is presented alone
(not shown, but see Figure 14b for reference).

Tobler et al. (2003) further explored this issue by delivering a
small reward at the normal expected time after presentation of X
and found an enhanced dopamine response relative to the presen-
tation of the same small reward unexpectedly. This small effect is
shown in the simulation results for X- test trials, and its small
magnitude reflects the idea that the LHb is only weakly capable of
driving phasic dopamine bursting, in contrast to its dominant role
in driving inhibitory pausing. This asymmetry is further explored
below in the aversive conditioning simulations, and represents an
important deviation from standard RPE accounts.

An alternative account, mirroring the Redish et al. (2007) state-
splitting account of extinction, might be that because the presen-
tation of the CI-alone is a salient change in context compared to
compound training, the CI-alone context no longer carries the
expectation of explicit reward omission. This interpretation would
not be entirely straightforward, however, because the CI does
exhibit strong negative (inhibitory) valence when presented alone
and the new context might be expected to modulate the valuation
of the CI as well. So there is a dissociation between the CS-time
and US-time effects of CI- presentation. Thus, this dissociation
suggests that any CI-triggered expectation of reward omission may
be dependent upon a concomitant expectation of reward delivery,
as driven by the positive CS (e.g., A�) when both are presented in
compound (AX-). Although out-of-scope for the PVLV model, we
might frame such a possibility in terms of working memory-like

Figure 13 (opposite). Simulation 3a: Blocking. (a) Empirical results
adapted from Waelti et al.’s (2001), Figure 2c–e, with permission from
Springer Nature: Nature, copyright 2001. Showing substantial, but incomplete,
blocking of acquired dopamine bursting for a second CS (X-) in a blocking
paradigm (arrows) as compared with a second CS (Y-) compounded with a
different CS not previously paired with reward. Most cells showed no response
to the blocked stimulus (X-). (top) sample cell showing no response to X- but
robust response to Y- control; (middle) a minority of cells showed some
response, or a biphasic response to X-; (bottom) population histogram showing
a significantly larger response to X- versus Y- control. (b) Simulation results
showing similarly incomplete blocking produced by the PVLV model (arrow;
X test). “A test” refers to presentation of the original blocking stimulus
alone—it continues to show a robust dopamine response. (c) Simulation results
for identity change unblocking. Test results are shown for each CS presented
separately—follows training with a compounded CS2 (A�X�) when a
different-but-equal-magnitude US is substituted during the blocking training
phase. Note robust dopamine signal in response to the would-be blocked CS2
(compare X� test with X test in b). Presentation of the original blocking
stimulus alone (A� test) shows that it now drives an even stronger dopamine
signal due to additional weight strengthening as a result of the unblocking
effect. See the online article for the color version of this figure.
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goal-state representations. That is, the maintenance of any CI-
associated working memory-like expectation of US omission
could be dependent on a concomitant maintenance of an expecta-
tion for US occurrence; the latter could be absent when there is no
A�.

Another test for the inhibitory properties of the conditioned
inhibitor (X) is to pair it with a novel CS that has been indepen-
dently conditioned (C), where it should also generate an expecta-
tion of reward omission. This was found empirically (Tobler et al.,
2003) and in our model (Figure 14c–d). However, our model also
shows that some of the inhibitory learning during the AX- trials
applies to the A CS, so the novel CX pairing does not fully predict
the absence of a US. To the extent that this effect is not present in
the biological system, it might reflect attentional effects as we
discuss in the General Discussion. Importantly, it is noteworthy
that the conditioned inhibitor blocks the behavioral CRs normally
elicited by both CSs when presented alone (Rescorla, 1969; Tobler
et al., 2003), which implies that it inhibits an underlying US

expectation. This is another strong motivation for the opponent
organization of US representations in the PVLV model.

Finally, it is worth noting that the retardation test (Tobler et al.,
2003) establishing that a conditioned inhibitor has acquired neg-
ative valence is essentially a form of counterconditioning which,
like discriminative reversal learning, pits valence reversal com-
petitive effects against any acquired salience effects (see the dis-
cussion regarding attentional effects in the General Discussion).

Simulation 3c: Second-order conditioning (Motivating: 11).
Second-order conditioning is similar to conditioned inhibition,
except that the two CSs are typically presented in temporal suc-
cession (CS2 then CS1), instead of simultaneously, with the pre-
viously conditioned CS1 driving conditioning of the CS2. To avoid
the confound of direct CS2-US-driven learning, the two CSs are
presented with the US omitted, just as in the CI paradigm. Fur-
thermore, separate maintenance CS1� trials are typically (but not
always) interleaved with second-order trials in order to prevent
extinction of the CS1. Figure 15 (top) shows simulation results

Figure 14. Simulation 3b: Conditioned inhibition—learning to predict the omission of reward. (a) Empirical
results from Tobler et al. (2003), adapted from Figure 3a, c, with permission from Society for Neuroscience:
Journal of Neuroscience, copyright 2003. Showing the pattern of phasic dopamine signaling seen after
conditioned inhibition training, for the initially conditioned CS (A�), the conditioned inhibitor (X-), and their
pairing (AX-; top panels � single cell histograms; bottom � population histograms). Note that the small early
activation phase seen for X- in the population histogram was attributed to associative pairing with the A CS
because it was eliminated by A- extinction training (while the depression component persisted). (b) Simulation
results showing qualitatively similar results produced by the PVLV model. For AX- there are both positive
(CeMPos; dashed red line) and negative (LHbRMTg; speckled blue line) components driving dopamine
signaling (VTAp; solid black line), but the model does not have the temporal resolution to see these separately
as in the empirical data. (c) empirical results from Tobler et al. (2003), adapted from Figure 6a, b, with
permission from Society for Neuroscience: Journal of Neuroscience, copyright 2003. Showing the results of a
summation test is which the conditioned inhibitor (X-) is compounded with a different separately conditioned CS
(C�; top panel � CX- test; bottom � AX- test.) (d) simulation results for the summation test showing
qualitatively similar results. See the online article for the color version of this figure.
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reflecting canonical second-order conditioning (corresponding to
the early, second-order phase; see below).

Given the similarities with CI, especially the same negative
contingency with the US, it should not be surprising that second-
order conditioning has long been recognized to be a nonmonotonic
function of the number of CS2–CS1 pairings even with mainte-
nance trials interleaved (Yin et al., 1994). That is, early in training
second-order manifestations emerge, but with further CS2–CS1
pairings second-order CSs become conditioned inhibitors provided
that CS1� maintenance trials are continued (Yin et al., 1994). In
the end, the negative contingency between the CS2 and the US
prevails. This may also help explain why second-order CSs can
sometimes end up exhibiting both excitatory and inhibitory prop-
erties (Yin et al., 1994).

To simulate the conversion of the CS2 to a conditioned inhib-
itor, we modified the CS2 representation to have activity persisting
up through the time when the US would otherwise be expected to
occur—in typical second-order conditioning CS2 activity termi-
nates when the CS1 stimulus comes on. This temporal contiguity
between CS2 with the time of US omission provides the substrate
for learning by the extinction-coding cells of the amygdala layers
that associates the CS2 with the nonoccurrence of an expected US,
and thus for the CS2 to become a conditioned inhibitor. Because
the PVLV framework does not itself include components for
working memory or memory retrieval that are necessary for bridg-
ing temporal gaps in trace-conditioning paradigms, the persistent
CS2 activity manipulation employed effectively substitutes for a
“memory” of the CS2 and changes it from a weak trace-like

conditioning CS for US omission into a stronger delay-like con-
ditioning CS. Overall, this analysis serves to highlight the strong
commonality of the second-order conditioning paradigm with con-
ditioned inhibition, and the fact that the CS2 really is a perfect
predictor of reward omission. The fact that it can obtain a positive
association is thus irrational from a purely predictive framework,
and is suggestive that this type of second-order conditioned learn-
ing is a generally beneficial heuristic that can sometimes be fooled.
Interestingly, second-order conditioning has been shown to depend
specifically on an intact BLA, but not the CEA (e.g., Hatfield et
al., 1996), consistent with the idea that BLA supports higher-order,
cortex-like learning.

Also relevant are studies that explored second-order condition-
ing using simultaneously presented CSs instead of the typical
successive pattern just described. For example, Rescorla (1982)
found that simultaneously presented CSs produce equivalent
second-order conditioning to the typical successive paradigm—
but with a critical difference. While typical CS2 ¡ CS1 pairings
produce second-order CRs that are highly resistant to subsequent
extinction of the CS1-US contingency (i.e., the second-order CRs
are persistent to repeated CS1 trials), the CRs resulting from
simultaneous CS2-CS1 presentations have turned out to be highly
sensitive to subsequent extinction of the CS1-US contingency
(Rescorla, 1982). This dissociation implies that the two forms of
second-order conditioning are mechanistically distinct. This is
entirely consistent with the idea entailed in the PVLV framework
that typical (successive) second-order conditioning is dependent
on plasticity in the amygdala that results in an effective association
of the CS2 and a representation of the expected US (triggered by
the CS1); on the other hand, the simultaneous (atypical) version of
second-order conditioning explored by Rescorla (1982) involves
an association between the CS2 and the CS1, which we hypothe-
size occurs outside of the amygdala (and the whole PVLV model),
instead occurring in the neocortex and/or hippocampus. Further
discussion of these issues will be found as part of a more general
treatment of complex contextual effects in the General Discussion
section.

Simulations 4a and b: Aversive Conditioning

As reviewed in the Introduction, phasic dopamine signaling in
aversive contexts does not conform to a simple RPE interpretation,
where it would be just the mirror image of the appetitive case
considered up to this point. Instead, we explore here two key
differences: (a) a constraint that primary aversive events can never
be completely predicted away (Fiorillo, 2013; Matsumoto & Hiko-
saka, 2009a); and (b) the omission of anticipated punishments
produces only weak disinhibitory bursting (i.e., a relief burst), as
compared with both excitation-induced bursting and the strong
pauses associated with omission of expected appetitive USs (Ma-
tsumoto et al., 2016; Matsumoto & Hikosaka, 2009a). It is straight-
forward to include these asymmetries within the full complement
of aversive opponent processing pathways in the model that nev-
ertheless do mirror those in the appetitive pathways. Thus, overall,
we consider the aversive case as a combination of both symmetric
and asymmetric with the appetitive case, in ways that make good
ecological sense given their differential implications.

Figure 15. Simulation 3c: Second-order conditioning. Simulation results
contrasting canonical second-order conditioning (top; 50% maintenance
trials) with a variant in which CS2 activity endures until the time of the
omitted US (bottom; also 50% maintenance trials). The latter converts the
relation between CS2 and US nonoccurrence from a trace-like to a delay-
like conditioning relation and converts a positive dopamine response to the
CS2 (top) into a negative one (bottom), that is, a conditioned inhibitor
(Simulation 3b). See the online article for the color version of this figure.
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Simulation 4a: Inability to fully cancel aversive dopamine
signals (Motivating: 8, 9, 10). Figure 16a shows results from
Matsumoto and Hikosaka (2009a) showing continued pausing in
dopamine cell firing even after extensive overtraining using a fully
predicted aversive (airpuff) US. Ecologically, this makes sense, in
that even if expected, aversive outcomes should continue to drive
learning to further avoid such outcomes. The PVLV model in-
cludes a gain factor on the net inhibitory contribution to lateral
habenula activation such that excitatory inputs can never be fully
counteracted, and thus VTAp activity always reflects some resid-
ual inhibitory effect (i.e., pausing). Figure 16b shows example
simulation results after overtraining so that the aversive US is fully
predicted, with residual positive LHb activity and corresponding
dopamine pausing.

Figure 16c also shows our model of the small subset of extreme
posteroventromedial VTA neurons that appear to respond with
phasic bursting to aversive outcomes (Bromberg-Martin et al.,
2010b). We hypothesize that these are driven by a direct excitatory
connection from the LHb, and thus they exhibit a mirror-image
pattern of firing compared with the standard VTA/SNc neurons we
have been considering to this point.

Simulation 4b: Weak relief bursting (Motivating: 8, 10).
The omission of expected aversive USs can produce disinhibitory
relief bursting in dopamine cells, at least under some circum-
stances, but these signals are relatively weak (Brischoux et al.,
2009; Matsumoto et al., 2016; Matsumoto & Hikosaka, 2009a). It
is not yet known whether or not these relief bursts are actually
robust enough to serve as an affirmative teaching signal for train-

ing safety signals or avoidance behaviors, but these are the obvious
logical applications of such a signal. To explore this in our model,
we used an aversive version of the conditioned inhibition para-
digm, where the conditioned inhibitor (U) instead becomes safety
or security signal. Figure 17 shows the simulation results, where
this U stimulus drives a small but significant burst as a result of
having reliably predicted the absence of an aversive US. While to
our knowledge there is no relevant electrophysiological data for
the response of dopamine neurons in this paradigm, data in related
paradigms indicates that safety signals can act as positive reinforc-
ers, as can the omission or cessation of punishment generally
(Rogan, Leon, Perez, & Kandel, 2005), although the mechanisms
underlying these effects remains obscure. Nonetheless, we suspect
that phasic dopamine signaling will ultimately end up being a
critical factor signaling successful avoidance in some variant of the
simplified model demonstrated here. Further, evidence for the role
of dopamine in safety learning comes from recent studies showing
that dopamine release in ventral striatum predicts successful avoid-
ance (Oleson, Gentry, Chioma, & Cheer, 2012), and stimulation of
VTA neurons during successful avoidance enhanced avoidance
learning, while habenula stimulation impaired this learning (Shu-
make, Ilango, Scheich, Wetzel, & Ohl, 2010).

Summary and Other Paradigms

The foregoing simulations demonstrate some of the critical ways in
which the PVLV model can account for data that is incompatible with
a simple RPE theory. In addition, there are, of course, many other

Figure 16. Simulation 4a: Inability to fully cancel aversive dopamine signals. (a) Empirical results adapted
from Matsumoto and Hikosaka’s (2009a), Figure 3a, with permission from Springer Nature: Nature, copyright
2009. Showing persistent pausing in dopamine cell firing even after extensive overtraining using a fully
predicted aversive (airpuff) US (black arrow; 100% airpuff � 100% expectation of airpuff). (b) Corresponding
simulation results with fully predicted aversive US showing residual positive LHbRMTg (dash-dot blue line) and
negative VTAp activity (solid black). (c) Simulation results with fully predicted aversive US showing positive
activity in the VTAn layer (dash-dot black line) that mirrors the negative VTAp activity (solid black). See the
online article for the color version of this figure.
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phenomena generally consistent with RPE-based models; these are
also within the explanatory scope of the PVLV framework. These are
listed in Table 2 with a brief commentary.

General Discussion

This article describes a neurobiologically informed computa-
tional model of the phasic dopamine signaling system that helps to
bridge between the large and rapidly expanding neuroscience
literature, and the more abstract computational models based on
the reward prediction error (RPE) framework. This PVLV frame-
work is founded on the distinction between a PV system for
anticipating the onset of primary rewards (USs), and an LV system
for learning about stimuli associated with such rewards (CSs). The
LV system corresponds to the amygdala and its ability to drive
phasic dopamine bursting in the VTA and SNc, while the PV
system represents the ventral striatum and its projections directly
and via the lateral habenula (LHb) to these same midbrain dopa-
mine nuclei, driving shunting inhibition and phasic pausing of
dopamine firing for expected USs and omitted USs, respectively.
We showed how our model can account for a range of data
supporting the separability of these systems. A critical feature of
both systems is the use of opponent-processing pathways that
represent the competing strengths of the evidence in favor and
opposed to specific USs, a fundamental idea going back to Konor-
ski (1967) and Pearce and Hall (1980) who both proposed the
learning of CS-no-US (inhibitory) associations to account for
extinction and related phenomena.

Using simulations we showed how these opponent-processing
pathways can explain a range of important data dissociating the

processes involved in acquisition versus extinction conditioning,
including rapid reacquisition, reinstatement, and renewal. Further-
more, this opponent structure is critical for being able to account
for the full range of conditioned inhibition phenomena, and the
surprisingly closely related paradigm of second-order condition-
ing. Finally, we showed how additional separable pathways rep-
resenting aversive USs, which largely mirror those for appetitive
USs, also have some important differences from the positive
valence case, which allow the model to account for several im-
portant phenomena in aversive conditioning.

Overall, we found that the attempt to account for this wide range of
empirical data at a detailed level imposed many convergent con-
straints on the model—we are left with the impression that there are
not many residual degrees of freedom remaining in terms of major
features of the model, particularly when the relevant anatomical and
physiological data is included. This is consistent with the convergence
of multiple different neurobiologically oriented models of reinforce-
ment learning on many of the same major features as the present
framework (Brown et al., 1999; Carrere & Alexandre, 2015; Kutlu &
Schmajuk, 2012; Vitay & Hamker, 2014).

In the following sections, we provide a more detailed discussion
of the similarities and differences of the most comparable models,
a number of testable predictions of the framework and implications
for other related phenomena, followed by a discussion of some of
the most pressing remaining challenges for future work.

Comparison With Other Relevant Models

As a systems-neuroscience model of phasic dopamine signaling
the PVLV framework has been informed and constrained by a very
broad body of research, meaning that there are also many different
categories of models relevant for comparison. We will briefly
discuss the most informative of these ranging from those with
explicit neurobiological implications to those that are largely ab-
stract. The latter includes important recent developments in the TD
framework, as well as recent models based on a fundamentally
Bayesian framework. Finally, we will also touch on purely psy-
chological models of Pavlovian conditioning.

The relationship between PVLV and important early models with
neurobiological implications has been covered in prior articles, and
much of those points of comparison are still relevant (Hazy et al.,
2010; O’Reilly et al., 2007). For example Houk et al. (1995) proposed
a similar mechanism as our VSpatch (PVi) pathway, involving direct
inhibition of dopamine blocking phasic bursts for predicted USs, but
they also had this same striatal population performing the CS-driven
bursting via a subthalamic sideloop, virtually ignoring all of the
empirical data implicating the amygdala in Pavlovian conditioning
generally as well as in driving phasic dopamine cell bursting. Simi-
larly, Brown, Bullock, and Grossberg (1999) and Tan and Bullock
(2008) also ignored the amygdala’s role completely and had both
functions located in the striatum.

The Brown et al. (1999) and Tan and Bullock (2008) models also
utilized the intracellular spectral timing mechanism (Grossberg &
Schmajuk, 1989) for anticipating the expected US onset—localized
entirely within the striatum itself. In contrast, PVLV proposes a
distributed scheme between the cortex, specifically OFC, which pro-
vides CS and US specific representations of evolving time, and
VSpatch which receives these corticostriatal inputs that are the sub-
strate for dopamine-dependent learning. More recently, Vitay and

Figure 17. Simulation 4b: Punishment omission signals and avoidance
learning. (a) Data adapted from Matsumoto et al.’s (2016), Figure 3e, with
permission from eLife Sciences Publications, Ltd: eLife, copyright 2016.
Showing a modest positive dopamine signal at the time of expected-but-
omitted aversive US. (b) Simulation results showing a test trial immedi-
ately following aversive conditioning showing a positive dopamine signal
at the time of omitted aversive US. (c) Simulation results showing test trials
following safety signal training (i.e., aversive conditioned inhibition); note
that a positive dopamine signal in response to the safety signal CS has been
acquired (U–). See the online article for the color version of this figure.
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Hamker (2014), using a model with essentially the same overall
functional anatomy as PVLV, focused specifically on the timing
problem and proposed a neurobiologically specific mechanism based
on the striatal-beat frequency model first proposed by Matell and
Meck (2000) that uses a bank of cortical oscillations across a range of
frequencies as the source of timing information. Interestingly, in the
simulation results described by Vitay and Hamker (2014), their mo-
del’s temporal predictions were exquisitely precise, even presumably
out to several seconds (see, e.g., their Figure 8); thus, it is not clear
how well a mechanism dependent on the superposition of several
oscillations of varying frequencies to produce “beats” could produce
the temporally smeared expectations described by Fiorillo et al.
(2008). Finally, and in contrast with PVLV, the Vitay and Hamker
(2014) model addressed only a small number of strictly appetitive
phenomena; nonetheless, it provided a significant contribution to the
field.

Further, relative to the Vitay and Hamker (2014) model, as well
as to earlier PVLV versions, the current PVLV model has a more
elaborated representation of the amygdala circuitry, with separate
BLA and CEA components, and opponent dynamics within each.
Also relevant here are several recent models focused on in-
traamygdalar circuitry and, specifically, its role in fear condition-
ing (e.g., Li, Nair, & Quirk, 2009; Pape & Pare, 2010; Pare &
Duvarci, 2012; Paré, Quirk, & Ledoux, 2004). In particular, a
model by Carrere and Alexandre (2015) has a functional anatomy
of the amygdala very similar to PVLV’s, including opponent
dynamics within both BLA and CEA, and also includes a critical
role for acetylcholine (ACh) modulation of amygdala learning in
fear conditioning and extinction paradigms. The overall role of
these opponent pathways during acquisition and extinction, and the
critical role of vmPFC (pre- and infralimbic cortex in rodents) in
providing contextual inputs during extinction, are similar to our
model, except that their model uses Pearce-Hall style absolute
value of prediction errors to modulate ACh signals for the level of
known uncertainty, whereas we focus more on US-specific con-
nectivity to support extinction learning restricted to expected USs.
These are not mutually exclusive and likely both mechanisms are
at work. Overall, these models paint a largely convergent func-
tional picture, compatible with the data and theory of Herry et al.
(2008). Other recent models of fear learning have emphasized
cortical inputs to inhibitory interneurons (ITCs) in the amygdala
(Moustafa et al., 2013), or interactions between the opioid system
and extinction neurons in the amygdala, which inhibit fear output
neurons in CeM (Krasne et al., 2011); however, we consider such
additional mechanisms to be compatible with the basic dopamine-
focused framework described by PVLV.

We consider next some important developments at the purely
algorithmic level of analysis. Throughout the article we have
highlighted many ways in which our model converges and di-
verges with simple RPE-based models such as basic TD—moti-
vated by the phenomena relevant to dopamine signaling that are
anomalous with a simple RPE account. Although modifications
and/or extensions to TD have been shown to address various of
these anomalies, one important distinction remaining between
these RPE-based models and the more biologically informed
PVLV is in the use of specific US representations as compared
with abstracted scalar value signals. In PVLV, US-specific repre-
sentations are critical for opponent-process learning in ventral
striatum and the amygdala, and only in their projections down to

midbrain-level dopamine and related nuclei (including PPTg,
RMTg, LHb) does this US-specificity get abstracted into a global
modulatory “pure value” signal. As noted below, the translation of
these “apples and oranges” into a common denominator with
limited dynamic range (i.e., the phasic dopamine signal) entails a
number of important outstanding questions regarding the contex-
tualized renormalization of these value signals.

Two specific modifications to basic TD have been particularly
seminal. First is the state-splitting mechanism utilized by Redish et al.
(2007) to account for the context dependency of extinction learning.
Original Rescorla-Wagner and early TD models accounted for ex-
tinction effects by simply reversing reward prediction value. As a
result they could not account for characteristic context-dependent
extinction-related phenomena, most notably renewal. In contrast, Re-
dish et al. (2007) proposed extending TD with a mechanism for
“splitting” the current state into a second duplicate version triggered
by the repeated absence of expected reward. This allows the new
“extinction-context” state to be differentially associated with the
omission of reward, while preserving the reward associations of the
original (acquisition) state. This enabled their model to reproduce
renewal and other context-dependent effects. PVLV’s explicit sepa-
ration of different inputs to acquisition-coding versus extinction-
coding units in the BLA can be seen as a neurobiologically informed
version of the basic state-splitting idea.

A second important modification of basic TD has been the
introduction of more nuanced and robust representations of time,
in particular, the construct of microstimuli introduced by Ludvig,
Sutton, and Kehoe (2008). This time model proposes that each
stimulus is associated with a temporally evolving, multidimen-
sional memory trace, defined by a set of basic functions with
time-varying peak magnitude and temporal resolution (Ludvig et
al., 2008, 2012). This framework has proven particularly applica-
ble in accounting for multiple effects associated temporal delay.
PVLV’s conception of CS and US specific temporally evolving
time representations in the OFC (USTime_In layer in the model) is
essentially congruent with the microstimuli idea.

Another approach for time representation was proposed by Daw
et al. (2006). These authors incorporated partial observability and
semi-Markov dynamics to capture timing effects on the dopamine
signal, such as the Hollerman and Schultz (1998) data showing
asymmetrical effects on prediction errors for early and late re-
wards. Recent data seem to support some of the predictions of the
belief state model. For example, Starkweather, Babayan, Uchida,
and Gershman (2017) showed that the temporal modulation of
prediction errors varied depending on the probability of reward
and Lak, Nomoto, Keramati, Sakagami, and Kepecs (2017)
showed that dopamine signals reflected decision confidence on a
perceptual decision-making task. When a cue follows a reward
with uncertain durations, drawn from a Gaussian distribution, they
predict that prediction errors increase depending on time in the
partially observable case (90% reward), as the model predicts a
stronger belief in the occurrence of the nonrewarded state over
time. However, an important difference between PVLV and the
Courville, Daw, and Touretzky (2006) model is that all negative
reward prediction errors in the latter model are positively rectified,
and thus the model relies on another error system to provide
negative prediction error information. In contrast, the PVLV
model uses both positive and negative reward prediction error
information. Further, when considering partially observable situ-

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

1005A SYSTEMS-NEUROSCIENCE MODEL OF PHASIC DOPAMINE



ations, they assume that dopamine computes a vector error signal,
containing an error for each state’s value.

The above described extensions to the basic TD framework
share an important emphasis on characterizing a more complex
and dynamic differentiation of the state space serving as input to
the basic underlying algorithm. This emphasis on a differentiated
and dynamic state space has naturally led to the application of
Bayesian network models to problems of Pavlovian and instru-
mental conditioning, including the latent causes theory by Gersh-
man and Niv (2012) which generalized the basic state-splitting
idea of Redish et al. (2007) (specific to extinction) to the more
general problem of latent or hidden state inference. The core idea
is that the system is attempting to infer whether some new (non-
observable) latent state may be operating in the environment, to
explain otherwise inconsistent outcomes (see also Gershman, Blei,
& Niv, 2010). Such inferred latent state representations, called
“belief states,” constitute a posterior probability distribution over
states at a particular time, given past observations. Bayesian belief
state models have proven fruitful in highlighting, and in providing
an avenue for addressing, complex phenomena that seem to defy
strictly concrete-experience based explanations, or at least simple
ones. These effects are almost certainly cortically mediated and
therefore out-of-scope for PVLV, although they would drive path-
ways within the PVLV model. Thus, the biologically based ap-
proach taken here can provide an important bridge between higher-
level, more abstract models and the more detailed and diffuse
neuroscience literature.

Testable Neurobiological and Behavioral Predictions

In this section, we list several specific neurobiological and
behavioral predictions implied by the PVLV framework. Appro-
priate empirical tests that follow from these predictions would
serve to help evaluate and inform the model. Furthermore, all
manner of Pavlovian paradigms can be run in the model and many
additional predictions generated in that way. See the Appendix for
how to download and run the model.

• During learning the emergence of increases in phasic CS
bursting should precede decreases in expected US burst-
ing, because acquired BLA activation for the CS onset
provides a permissive-like input to the US-specific VS
patch MSNs hypothesized to be responsible for the shunt-
ing of US-bursting. At a behavioral level, this implies that
phenomena dependent on CS-onset dopamine signals such
as second-order conditioning and the ability to support
secondary reinforcement ought to emerge relatively earlier
during acquisition training relative to those dependent on
US-omission dopamine signals such as extinction.

• The projection from BLA to VS exhibits strong US-
specific one-to-one connectivity by adulthood; for exam-
ple, food-coding cells in BLA connect with food-coding
cells in VS, and so on for water-coding cells, shock-coding
cells, and so forth. By hypothesis, it is this US-specific
connectivity that underlies the specific (or selective) form
of Pavlovian instrumental transfer (sPIT), a phenomenon
known to be dependent on the BLA generally (Corbit &
Balleine, 2005). The PVLV framework therefore predicts
that selective ontogenetic inactivation of food-coding neu-
rons in the BLA ought to mitigate the expression of sPIT

for CSs previously paired with food, but not for CSs
paired with water.

• After training, optogenetic inactivation of patch MSNs of the
ventral striatum should interfere with both the acquired loss
of dopamine cell bursting at the time of US-onset as well as
the generation of pauses when rewards are omitted. A be-
havioral prediction that follows is that such selective inacti-
vation of VS patch MSNs ought to significantly interfere
with extinction learning despite an intact BLA and VMPFC,
two areas known to be important for extinction learning. This
is because, by hypothesis, reward omission triggered pauses
in dopamine cell firing in PVLV are dependent on a VS patch
¡ LHb ¡ VTA/SNc pathway and extinction learning in the
BLA is dependent on those negative dopamine signals. The
optogenetic prevention of phasic increases in LHb activity
should have a similar result.

• Although the exact source of CS-US interval timing signals is
not a central aspect of the PVLV framework, we have pro-
visionally hypothesized that temporally evolving working
memory-like representations in the OFC would be ideal sub-
strate in this regard. In contrast, the Brown et al. (1999) and
Tan and Bullock (2008) models place the source of timing
signals in the striatum itself, triggered by direct CS input.
These differing proposals, as well as a related proposal by
Vitay and Hamker (2014) placing the timing signals in
VMPFC, could be explored using lesions and/or inactivation
studies of the VS, OFC, and VMPFC. While all three pro-
posals predict disruption after VS lesions, only PVLV would
seem to predict disruption by OFC lesions, and only Vitay
and Hamker’s (2014) model by VMPFC lesions. Seemingly
weighing against the latter proposal, Starkweather, Gersh-
man, and Uchida (2018) described lesioning the prelimbic
and infralimbic cortices and reported no effects on timing-
related measures in rats.

• Another behavioral prediction follows from the hypothesis
that OFC goal-states are actively maintained working
memory-like representations: One might expect that they
would be sensitive to distraction and/or additional working
memory demands in the same domain. On the other hand, a
purely striatum-based mechanism might be expected to be
more automatic and less susceptible to distraction effects.

• Based on the CEA dependency in acquiring CS-related CRs
(e.g., COR, autoshaping; Gallagher et al., 1990) and the idea
that such CRs are trained by CS-triggered dopamine signals
(see also Hazy et al., 2010) the PVLV framework predicts
that CEA lesions ought to significantly reduce the manifes-
tations of sign-tracking CRs and thus mitigate the behavioral
distinction between sign-trackers and goal-trackers.

• Also regarding the sign-tracker versus goal-tracker distinc-
tion, an implication of the PVLV framework suggested by
the recently reported difference in expression of the dopa-
mine transporter (DAT) in the VS (Singer et al., 2016) is that
pharmacologic or other blockade of the DAT in the VS ought
to reduce acquired sign-tracking behavior in animals with the
sign-tracking phenotype.

• As noted in the discussion following the blocking simulation
(3a), both unblocking-by-identity and overexpectation effects
should be dependent on an intact phasic dopamine signaling
system. Regarding the latter, Takahashi et al. (2009) reported
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that bilateral lesions of the VTA disrupted learning in an
overexpectation paradigm.

Open Questions for Future Research

The following are a set of pressing open questions that remain
to be addressed in future research, both empirical and computa-
tional modeling, building on the basic foundation of principles
established in this framework.

Phasic Dopamine Signaling Remains Incompletely
Characterized Empirically

As suggested by the above discussion about other relevant models,
a basic consensus seems to have emerged regarding the nature of
temporal representations as dynamically evolving distributed repre-
sentations, captured formally in the construct of microstimuli (Ludvig
et al., 2008). Nonetheless, many empirical questions remain as to the
neural substrates and mechanisms involved. Biologically, we hypoth-
esize that the VS patch neurons use dynamic, active OFC represen-
tations, activated by prior CS inputs, to anticipate the US onset timing,
consistent with other models (Durstewitz & Deco, 2008; at least
within a relatively short delay up to a few seconds; Fiorillo et al.,
2008; Kobayashi & Schultz, 2008). There are several unanswered
questions about the details of how these dynamics work. For example,
how would the introduction of a subsequent, less temporally precise
CS affect the ability of an earlier CS to precisely predict the time of
reward occurrence? Can multiple different temporally evolving rep-
resentations be supported in parallel? The answer to this question
could differentiate between the model used by Suri and Schultz
(1999) versus that employed in PVLV, the difference being whether
different CSs can reset the mechanism, or whether US occurrences are
required.

Another important question concerns the normalization of pha-
sic bursting responses relative to varying magnitude of reward
(Tobler et al., 2005). The limited dynamic range of phasic dopa-
mine firing seems to be optimally allocated by normalization
relative to the current best available reward in a context. Exactly
what defines a context for the purposes of this normalization
process remains an important open question—there is evidence of
renormalization across distinct sessions, but how much time and/or
other differences are required to establish different contexts?

More generally, it would be useful to have a more complete
characterization of the behavior of phasic dopamine under a wider
range of paradigms and timings. For example, even after extensive
training, phasic US bursting appears to persist with CS-US intervals
greater than a few seconds (Fiorillo et al., 2008; Kobayashi & Schultz,
2008), hypothesized to be due to a deterioration in discriminability of
the activation-based OFC representations described above. Establish-
ing a direct causal relationship between OFC dynamics and these
timing properties would directly test this model. Furthermore, what
happens with omitted rewards at these longer CS-US intervals—do
they still result in phasic pausing? If so, do they occur at a greater
latency after the expected timing, requiring more of a reactive process
recognizing this absence rather than actively anticipating it? And,
what is the impact of trace versus delay conditions on all of the above
questions? Answers to all of these questions potentially have impor-
tant implications for the impact of phasic dopamine signals on instru-
mental and CR learning, and the broader functional roles of CS versus

US dopamine signaling in shaping behavior in various ecologically
realistic contexts.

The Role of Context, State Abstraction, and Inference

Considerable evidence from a range of domains suggests that
various aspects of the broader context can have critical impacts on the
nature of learning and phasic dopamine firing. We discussed several
of these examples in the simulations on extinction, and the ways that
contextual manipulations can result in the spontaneous recovery,
renewal, and reinstatement. Biologically, projections from vmPFC
areas are important drivers of these effects, but there are also other
sources of contextual input, including the hippocampus, which proj-
ects to both amygdala (e.g., Herry et al., 2008) and ventral striatum
(Goto & Grace, 2005; Groenewegen, Wright, Beijer, & Voorn, 1999;
McGeorge & Faull, 1989), as well as to vmPFC. As noted earlier, the
evidence that hippocampal inputs project preferentially onto
acquisition-coding amygdala neurons, while vmPFC favors
extinction-coding ones, suggests an interesting division of labor be-
tween these two sources of context—for example, the hippocampal
inputs likely support conditioned place preference learning (Ferbin-
teanu & McDonald, 2001; McDonald et al., 2010), and contextual
fear conditioning (Rudy, Barrientos, & O’Reilly, 2002; Rudy &
O’Reilly, 2001; Xu et al., 2016), albeit in a manner that permits
preferential learning about specific CSs when these are available.

At the purely algorithmic level, Gershman and Niv (2012) provided
a broad computational framework for capturing various kinds of
contextual effects by the use of new abstract state representations
inferred from changes in reward contingencies, generalizing the sem-
inal state-splitting proposal for extinction of Redish et al. (2007).
More generally, there are many interesting questions about how the
currently relevant ecological state is represented and abstracted in
ways that then influence dopamine signaling and thus learning (Bot-
vinick, Niv, & Barto, 2009; Botvinick & Weinstein, 2014; Daw &
Dayan, 2014; Daw, Niv, & Dayan, 2005; Dayan, 1993; Mnih et al.,
2015; Silver et al., 2016). For example, Bromberg-Martin, Matsu-
moto, Hong, et al. (2010) trained monkeys extensively to saccade to
two cues, only one of which predicted reward for each block of trials,
with the rewarded cue alternating between blocks. Critically, after the
first trial of a new block, which thus signaled a reward contingency
switch, when the second trial involved the opposite cue, the monkeys
not only displayed behavioral evidence reflecting that they understood
that its value had also changed, dopamine cell responses reflected new
inferred value for these cues as well. This demonstrates that abstract,
inferred state representations can influence dopamine signaling im-
mediately without benefit of additional experience with individual
cues.

Although of critical importance, and a modeling challenge in their
own right, such phenomena seem at least intuitively easy to under-
stand in terms of inferences about previously learned context repre-
sentations, analogous to the many task switching paradigms typically
thought of in terms of switching between “task sets” (e.g., Kiesel et
al., 2010; Kalanthroff & Henik, 2014). More challenging, even from
an intuitive understanding perspective, are phenomena collectively
called retrospective revaluation (e.g., Miller & Witnauer, 2016), a
concept long associated with causality judgments (e.g., Dickinson &
Burke, 1996). In the context of Pavlovian conditioning retrospective
revaluation includes phenomena such as: backward blocking, (un-
)overshadowing, and backward conditioned inhibition, among others.
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For example, backward blocking is when initial training with a
compound (AB) with reward is followed by the individual training of
one of the elements of the compound (e.g., A) paired with reward to
further increase its excitatory strength. Rather remarkable, this also
can sometimes also reduce the strength of the conditioned response to
other element (B) when tested alone. What makes accounting for
these phenomena particularly challenging is that they seem to depend
upon an intrinsic assumption about fixed total probability such that a
change in experienced probability associated with one CS or state can
produce behaviors that suggest that subjects have adjusted related
probabilities for CSs or states never themselves experienced under the
new probabilities—that is, a change in probability associated with
some CS seems to have been inferred strictly based on changes in the
experienced probability associated with some other CS.

Several models have been proposed to account for retrospective
revaluation including (see Miller & Witnauer, 2016, for review):
several iterations of Ralph Miller’s own comparator hypothesis
(Miller & Matzel, 1988; Miller & Witnauer, 2016), a modification
of Rescorla-Wagner by Van Hamme and Wasserman (1994), a
modification of Wagner’s (1981) SOP model by Dickinson and
Burke (1996), and a rehearsal-based model by Chapman (1991). In
addition, Daw, Courville, and Dayan (2008) used a Kalman-filter-
based model (Kalman, 1960) to account for backward unblocking,
following on the original insight of Kakade and Dayan (2001).
Crucially, the Kalman filter explicitly involves a covariance matrix
for weights, capturing the degree to which certain stimuli are
correlated, and allowing weight increases to the A stimulus during
the later training block to also directly reduce the weights to B.
Further, Gershman (2015) has combined Kalman filters with TD
models, using a Kalman TD framework that can capture many
retrospective revaluation effects as well as temporally dependent
effects like second order conditioning captured by TD models.
However, it is worth pointing out that retrospective revaluation
effects, while well established, seem to be rather brittle and
parameter-dependent empirically (Miller & Witnauer, 2016), in
particular requiring extensive training in the later individual phase.
This suggests to us that some sort of higher-order cortical process-
ing is likely involved, such as rehearsal and/or replay, that could
provide the means to modify the weights associated with the
not-experienced CS and, conversely, may weigh against more
“automatic” mechanisms such as the Kalman filter.

In complementary work to the PVLV framework, we are cur-
rently investigating such mechanisms in the context of broader
research on the nature of neocortical learning and the ability of
frontal cortical areas to maintain and rapidly update active repre-
sentations that can provide a dynamic form of contextual modu-
lation for the PVLV model (O’Reilly, Russin & Herd, in press;
Pauli et al., 2010; Pauli et al., 2012).

Attentional Effects in Pavlovian Conditioning

Finally, there are many important issues involving the role of
attentional effects in Pavlovian conditioning. This is an extremely
complicated area, in part because there are unequivocally strong,
and complex, attentional modulations of activity in the cortex, and
thus it is difficult to uniquely attribute attentional effects to par-
ticular parts of the overall system. Furthermore, it can be surpris-
ingly tricky to disentangle attentional contributions from the basic
RPE mechanisms present in our model and many others. Histori-

cally, the blocking effect was originally advanced as evidence of
attentional effects (Kamin, 1968), only to be later subsumed within
the pure-RPE Rescorla-Wagner model (Rescorla & Wagner,
1972). Critically, any change in US effectiveness (Mazur, 2013)
can drive changes in learning about different CS inputs in an
RPE-based model, and it is challenging to unequivocally eliminate
these US-based effects.

Indeed, the two major frameworks for learning attentional
weights for different CS inputs each depend on US-based changes,
in opposite ways. The Mackintosh (1975) model increases atten-
tional weights for CSs that are more predictive of US outcomes,
whereas the Pearce and Hall (1980) model increases attentional
weights for CSs that are associated with unexpected changes in US
outcomes. Each of these sound sensible on its own: You want to
pay attention to cues that are reliable, but you also want to pay
attention to cues that indicate that the previous rules are changing.
Current mathematical models have managed to integrate these two
principles with the overall Rescorla-Wagner RPE model, produc-
ing both Mackintosh and Pearce-Hall effects to varying degrees
and under different circumstances (Esber & Haselgrove, 2011;
Haselgrove, Esber, Pearce, & Jones, 2010; Le Pelley, 2004; Le
Pelley, Haselgrove, & Esber, 2012; Pearce & Mackintosh, 2010).
A comprehensive psychological model of Pavlovian conditioning
by Kutlu and Schmajuk (2012) was able to reproduce over 20
different phenomena thought to be characteristic of Pavlovian
conditioning by a panel of experts (Alonso & Schmajuk, 2012).

Consistent with these frameworks, there have been reports of
Pearce-Hall signals in the BLA (Calu, Roesch, Haney, Holland, &
Schoenbaum, 2010; Roesch et al., 2010; Roesch, Esber, Li, Daw,
& Schoenbaum, 2012) and these seem to be providing attentional
signals that serve to promote and/or modulate learning in other
brain areas (Calu et al., 2010; Chang et al., 2012; Esber & Holland,
2014; Roesch et al., 2012). Similarly, the CEA has also been
implicated in attentional effects (Gallagher et al., 1990; Holland &
Schiffino, 2016), although these are not as consistent with the
Pearce-Hall framework.

Within the PVLV framework, it is straightforward to have
differential CS weights into the amygdala that accumulate across
multiple US types that a particular CS may be predictive of (Esber
& Haselgrove, 2011; Le Pelley et al., 2012). Furthermore, CSs
predictive of USs will also acquire a conditioned orienting re-
sponse (COR) that serves to counteract habituation of the uncon-
ditioned orienting response that otherwise occurs (Gallagher et al.,
1990). Both of these effects are consistent with the Mackintosh
framework. However, as pairings continue and if the US becomes
completely predictable, orienting to the CS will then decline some-
what, which can produce a Pearce-Hall effect of decreasing atten-
tion for predictable CSs. Furthermore, probabilistic reward sched-
ules cause the COR to persist at a higher level (e.g., Kaye &
Pearce, 1984), and those CSs have an increased associability. The
continued presence of unpredicted US dopamine in this case could
be important for preventing the habituation of the COR, providing
an RPE-based anchoring to this effect.

Consistent with cortical attentional effects (Luck, Chelazzi,
Hillyard, & Desimone, 1997; Strappini, Galati, Martelli, Di Pace,
& Pitzalis, 2017), attention is most important when there are
multiple stimuli, as in several conditioning paradigms such as
conditioned inhibition, blocking, and overshadowing, similar to
the various phenomena discussed collectively above as retrospec-
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tive revaluation. Thus, it is likely that attentional effects contribute
to those phenomena as well. Earlier, we had noted that the fit of
our model to the conditioned inhibition data could be improved via
an attentional competition dynamic in the AX- case, so that the
originally conditioned A� stimulus did not acquire as much of a
negative association. In the case of blocking, we showed how the
model can account for both the basic blocking effect, and the
unblocking-by-identity effects within the current scope of mech-
anisms. However, one of the potentially most diagnostic para-
digms for requiring attentional mechanisms is downward unblock-
ing, where higher US magnitudes (e.g., three food pellets) used
during initial CS1-US pairing are replaced by a lower US magni-
tude (e.g., one pellet) during the subsequent blocking training
phase. A simple RPE model predicts that the second CS should
acquire negative valence as a conditioned inhibitor due to this US
magnitude decrease, but in fact it acquires a positive valence
(Holland, 1988; Holland & Kenmuir, 2005). There are important
details in the conditions required to get this downward unblocking
effect, which make the interpretation much more difficult, how-
ever. Specifically, the US delivery during the initial, large-reward
case has a single food pellet delivered 1 s after CS1 onset, followed
5 s later by two pellets (Holland & Kenmuir, 2005). Furthermore,
shorter intervals between the two US doses produce progressively
less positive conditioning, transitioning to conditioned inhibition
as the interval approaches zero (i.e., full reward always delivered
in a single dose), exactly as predicted by an RPE model. Thus,
instead of invoking the attention-grabbing effect of the decreased
reward (which should apply for the simultaneous reward case as
well), the complicated temporal contingencies between the CS1-
US1-US2 time steps seem rather more important. Further work
would be required to sort these out, but it is interesting that the CS1
stimulus offsets at the time of the first US onset, creating a
differential association with the different USs, which would
change as a function of the interval between them.

Aversive Avoidance Learning and Safety Signals

There is a potentially simple account for how standard RPE-
based phasic dopamine signals could drive instrumental learning to
perform actions that terminate or avoid aversive outcomes, con-
sistent with Thorndike’s law of effect: The offset or avoidance of
the aversive outcome results in a positive difference between the
actual versus expected outcome, and this should translate into a
positive dopamine burst (i.e., a relief burst) that could then rein-
force whatever actions led to this better than expected outcome.
However, despite the evidence for a strong risk aversion bias in
humans, which intuitively should also apply across all animals, our
review of the evidence suggests that the avoidance of an aversive
outcome triggers only a relatively weak or nonexistent relief burst
(Brischoux et al., 2009; Fiorillo, 2013; Matsumoto et al., 2016;
Matsumoto & Hikosaka, 2009a), although a recent report seems
more promising (Wenzel et al., 2018).

Furthermore, emerging evidence that the extreme caudal
caudate-putamen (Campeau et al., 1997; Rogan et al., 2005), rather
than the ventral striatum proper (Josselyn, Falls, Gewirtz, Pistell,
& Davis, 2005), may be involved in the learning of safety signals,
and/or simple avoidance learning (Menegas et al., 2018), suggests
a more complex picture than the case with (appetitive) conditioned
inhibitors as we simulated above.

An additional complexity in this aversive case is that the natural
freezing response interferes with escape and/or avoidance actions,
and it may need to be suppressed via frontal control areas before
true instrumental avoidance learning can occur (Moscarello &
LeDoux, 2013; Oleson et al., 2012). Consistent with this idea, and
more generally, it may be that the small subset of extreme pos-
teroventromedial VTA neurons that fire phasic bursts to aversive
outcomes (Bromberg-Martin et al., 2010b), which project to a
small area in the medial PFC (Lammel et al., 2012), could be
important for the learning of safety signals and/or true instrumental
avoidance learning. Thus, true instrumental avoidance learning
seems likely to involve the switching of the overall system from an
aversive processing mode to a quasi-appetitive processing mode
involving specific, concrete goal states (safety signals).

Other relevant data comes from an interesting disconnection
between phasic CS versus US responding for aversive condition-
ing events (eye air puffs; Matsumoto & Hikosaka, 2009a, but cf.
Fiorillo, 2013 for a contrary view). Specifically, while these cells
exhibited the expected phasic pausing to the US, a large proportion
exhibited either phasic bursting or a biphasic response to the CS.
One possible explanation is that animals learned to avoid the most
negative experience by closing their eyes in anticipation of the US,
and this avoidance drove an omission burst that in turn gave the CS
at least a partially positive association. However, the small mag-
nitude of the relief burst for US omissions raises the question as to
whether this would be capable of driving learning on its own. More
thorough investigation of this specific paradigm would help clarify
the role of phasic dopamine in aversive instrumental learning—for
example, does this phasic CS bursting occur even with no ability
to mitigate the aversive US?

Conclusion

Due to the cumulative efforts of dozens of researchers, both
empirical and theoretical, a coherent neurocomputational under-
standing of the phasic dopamine signaling system is beginning to
emerge. Nonetheless, many outstanding questions remain, even
about some very basic issues. Undoubtedly, the picture will con-
tinue to evolve, becoming increasingly clear as progress continues
on both the empirical and theoretical fronts.
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Appendix

Implementational Details of the PVLV Model

This appendix provides more information about the PVLV
model, including connectivity and processing, the key learning
mechanisms, and general simulation methods, with the intent of
providing enough of a sense of the implementation details to
understand the major conceptual aspects of model function. How-
ever, with a model of this complexity the only way to really get an
understanding is probably by exploring the model itself, which is
available for download at: https://github.com/ccnlab/MollickHazy
KruegerEtAl20. The model is implemented in the emergent sim-
ulation software (Aisa et al., 2008).

The general equations describing the basic point-neuron ionic
conductance model used can be found here: https://github.com/
emer/leabra are very standard and widely used equations (e.g.,
Brette & Gerstner, 2005) capturing the excitatory, inhibitory, and
leak channels as they drive changes in membrane potential. We use
a rate-code approximation to the discrete spiking behavior of real
neurons. The effects of inhibitory interneurons are captured using
feedforward and feedback inhibitory equations, and these drive
competitive interactions among neurons within a given layer or
pathway.

Each of the different major areas of the model are described in
the sections below.

Input Layers

Stim_In: 12 units, each representing a distinct CS, using a
simple localist coding. Projects with full random connectivity to
the acquisition-coding layers of the BLA (BLAmygPosD1,
BLAmygNegD2) and CEl (CElAcqPosD1, CElAcqNegD2), and
all four VSMatrix layers.
Context_In: 36 units representing three separate contexts

for each of the 12 possible CSs (using a conjunctive coding
scheme), along with 24 additional units to afford additional flex-
ibility in dealing with cases in which two CSs are used in single
trial types (e.g., conditioned inhibition). Details regarding the
coding scheme used for context inputs are provided in the envi-
ronment discussion that follows this network section. Context_In
projects only to the two extinction-coding layers of the BLA
(BLAmygPosD2, BLAmygNegD1) via full random connections.
USTime_In: Organized by groups for each CS–US combina-

tion, with five time steps within each of these groups (as a localist
code of five units). Projects to all four VSPatch layers with full
random connectivity.
PosPV: Four units providing a localist code for appetitive

(positive) US outcomes.

NegPV: Four units providing a localist code for aversive (neg-
ative) US outcomes.

Amygdala Layers

The four BLA layers are organized into two separate layer
groups: acquisition-coding layers are grouped together so that all
acquisition units will mutually compete with one another via a
shared inhibitory pool, irrespective of valence. All acquisition-
coding units receive full projections from the Stim_In (CS-coding)
layer and topographically-organized, US-specific (nonlearning) in-
puts from the PosPV (appetitive USs) and NegPV (aversive USs)
layers. In addition to the latter teaching signal input, phasic dopa-
mine signals come from the VTAp layer. Finally, all acquisition-
coding units receive non-learning, uniform inhibitory inputs from
their valence-congruent extinction-coding units, which is added to
the shared surround inhibition computed over both acquisition-
coding layers of the layer group.

All extinction-coding units receive full projections from the
Context_In layer, motivated by the differential connectivity re-
ported by Herry et al. (2008) and described in the main text.
Extinction-coding cells also receive valence-congruent modulatory
(permissive) inputs from corresponding acquisition layers so as to
constrain extinction cell activity to cases in which some expecta-
tion of US occurrence already exists. Extinction-coding units do
not receive input from US-coding layers because USs do not occur
on extinction trials.

The learning equation for the BLA was fully described in the
Methods section (Equations 1, 2). For the extinction units, the
up-state modulation from corresponding acquisition-coding neu-
rons acts as an effective learning-rate modulator—no learning
occurs in the down-state.

There are four CEl layers organized in the same opponent
pathways as in BLA, but their inhibitory dynamics are focal and
reciprocal, as compared with the broader, more diffuse inhibition
in BLA. We only simulate a single unit for each US-coding layer.
As in the BLA, the extinction-coding units do not receive US
inputs, and instead receive modulatory projections from corre-
sponding acquisition units. These units are tonically active (en-
abled by a high non-standard leak parameter setting on the unit
specification), which then exerts a tonic inhibition of correspond-
ing CEl acquisition-coding units that must be overcome by learn-
ing during initial acquisition. The CEl units receive excitatory
projections from corresponding BLA pathways.

All CEl learning connections follow the same learning rule as
for the BLA.

(Appendix continues)
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In one-to-one correspondence with US-coding units of the CEl
and PV layers (PosPv, NegPV), there are two CEm layers: CEm-
Pos, CEmNeg, which receive one-to-one (non-learning) projec-
tions from their corresponding CEl Go (net disinhibitory, i.e.,
excitatory) and NoGo (inhibitory) layers, and serve to readout the
net balance between the two opponents for each US. The sum of
all four US-coding units in the CEmPos (only) layer project to the
single-unit PPTg layer, which computes the positively-rectified
derivative of its net input on each alpha trial. This signal is
conveyed to the VTAp unit where it is integrated with any PosPV
layer activity, and any net disinhibitory LHbRMTg input, to pro-
duce the net dopamine cell bursting drive on each alpha trial. No
learning occurs for any of the connections involving the CEm
units.

Ventral Striatum Layers

The ventral striatum (VS) is made up of eight total layers (four
appetitive, four aversive) and can be thought of as performing two
distinct versions of the opponent-processing similar to that de-
scribed for the CEl: VSPatch units learn to expect the timing and
expected value of US outcomes, while VSMatrix units learn to
report immediate signals at the time of CS onset.

VSPatch layers constitute the primary value inhibitory (PVi)
system from earlier versions of PVLV model, and they send
shunt-like inhibitory projections directly to the main dopamine cell
layer (VTAp) to cancel expected dopamine bursts (typically US-
coding PosPV inputs). New to the current version, a collateral
pathway has been added to separately generate phasic pauses in
dopamine cell firing when expected rewards are omitted, via the
LHbRMTg (combines LHb and RMTg). As described in the main
text, VSPatch layers receive temporally evolving US- and CS-
specific information from a specialized input layer (USTime_In
), implemented as a localist time representation that is unique for
each particular CS–US pair.

Each VS layer has one unit per corresponding US, for a total of
four units, with standard competitive inhibition within each layer.
All VSPatch units receive US-specific modulatory connections
from corresponding BLA acquisition-coding units, which drive an
up-state condition that constrains learning to appropriate US-
coding units, and also to bootstrap initial learning before the
weights from the USTime_In representations are sufficiently
strong to produce activation on their own.

The learning equation for the VSPatch is a standard three-factor
(dopamine, sending and receiving activation) learning rule as
described in the Methods section (Equation 3). The D2 pathway
layers reverse the sign of the dopamine factor. VSMatrix is also a
three-factor, but using a synaptic tag to span the temporal gap
between CS and US (Equations 4, 5).

Special Dopamine-Related Layers

The four remaining PVLV layers are all non-learning and par-
ticipate directly in driving dopamine signaling:
PPTg: Computes the cycle-by-cycle positive-rectified deriva-

tive of its input from the CEmPos layer as its activation and passes
that as a direct excitatory drive to the VTAp. Thus, phasic dopa-
mine signaling reflects positive-only changes in a fluctuating,
variably sustained amygdala signal.
VTAp: The main dopamine layer, integrates inputs from pri-

mary US inputs (PosPV, NegPV), the CEm via the PPTg layer, and
the LHbRMTg. It also receives a direct shunt-like inhibitory input
from both positive-valence VSPatch layers, but these shunt-like
inputs cannot produce negative signals themselves, instead requir-
ing integration through the LHbRMTg pathway. VTAp exhibits
positive dopamine signals in response to direct positive-valence
US inputs, and increases in CEm temporal-derivative excitation,
and negative signals from increases in LHbRMTg activity. VTAp
activity (like that of LHbRMTg) reflects a zero-baseline scale and
activity above and below 0.0 are used (i.e., effectively subtracting
any tonic dopamine activity). Pseudocode for the computation of
VTAp activation is shown below, which prevents double-counting
of redundant signals arriving via multiple different pathways. The
biological basis of this computation is a topic for future research.
LHbRMTg: Abstracts LHb and RMTg function into a single

layer. It integrates inputs from all eight ventral striatal layers and
both PV (US) layers into a single bi-valent activity value between
1.0 and 
1.0 representing phasic activity above and below base-
line respectively. VSPatch activities produce a net input to the
LHbRMTg at the expected time of US occurrence and reflects the
relative strength of D1- vs. D2-dominant pathways for each va-
lence separately. For positive valence, a positive net (VSPatch-
PosD1 
 VSPatchPosD2) input produces excitation that serves to
cancel any inhibitory input from a positive US and, critically, if
such excitatory input is unopposed because of US omission the
LHbRMTg can produce an negative dopamine signal in the VTAp
layer (i.e., pausing). Symmetrical logic applies for corresponding
aversive VSPatch and NegPV inputs, with the signs flipped and
one additional wrinkle: the VSPatch input is discounted in strength
so that it cannot generally fully cancel out the negative US even
when fully expected (Matsumoto & Hikosaka, 2009a).

VSMatrix inputs follow a similar overall scheme where LH-
bRMTg activity reflects a net balance between D1- and D2-
dominant pathways within each valence, except that the signs are
reversed relative to those from the VSPatch. That is, the positive
valence pathway (VSMatrixPosD1 
 VSMatrixPosD2) net differ-
ence has an inhibitory effect on LHbRMTg, and vice-versa for the
aversive valence pathway. Thus, a CS associated with an aversive
outcome will drive a net excitation of the LHbRMTg and a
resulting negative dopamine signal. Pseudocode for the computa-
tion of LHbRMTg activation is shown below.

(Appendix continues)
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VTAn: A negative-valence complement to the VTAp, intended
to correspond biologically to the smaller population of
incongruent-coding dopamine neurons described in the neurobiol-
ogy Methods section of the main text. These respond with phasic
bursting to aversive USs and CSs. Currently, VTAn outputs are not
actually utilized downstream anywhere in the system; as noted in
the main text more data is needed to more fully characterize its
appropriate behavior for all the relevant Pavlovian contingencies.
The computation of VTAn activation is based only on NegPV
(excitatory) and LHbRMTg (inhibitory or excitatory) input but is
otherwise comparable to that for the VTAp (with the sign of
LHbRMTg input inverted).

Pseudocode for Computing VTAp Activation

• Receive total activation from input layers (each with gain
factor):

PosPV NegPV PPTg LHbRMTg VSPatchPosD1 VS-
PatchPosD2

• Positive-rectified VSPatch Opponent Diff:

VS patch net = MAX(VSPatchPosD1 − VSPatch-
PosD2, 0)

• Negative-rectified LHb bursting (LHb below baseline drives
bursting):

burst LHb DA = MIN(LHbRMTg component, 0)

• Positive-rectified LHb dipping (LHb above baseline drives
dipping):

dip LHb DA = MAX(LHbRMTg component, 0)

• Integrate burst DA, preventing double-counting:

total burst DA = MAX(PosPV, PPTg, burst LHb
DA)

• Subtract PVi shunting:

net burst DA = MAX(total burst DA − VS
patch net, 0)

• Final net DA (activation of VTAp):

net DA = gain * (net burst DA − net dip DA)

Pseudocode for Computing LHbRMTg Activation

• Receive total activity from paired positive-valence coding
VSPatch layers (each with gain factor)

• VSPatch positive valence opponent diff:

VSPatchPosNet = PosD1 - PosD2

With limited ability to drive bursting from negative VSPatch:

if (VSPatchPosNet < 0) VSPatchPosNet *= pos
patch gain

• VSPatch negative valence opponent diff:

VSPatchNegNet = NegD2 - NegD1

With limited ability to fully discount expected negative USs:

if (VSPatchNegNet > 0) VSPatchNegNet *= neg
patch gain

• VSMatrix positive and negative valence opponent diffs (no
special gains)

VSMatrixPosNet = PosD1 − PosD2

VSMatrixNegNet = NegD2 − NegD1

• Net positive drive, preventing double-counting:

NetPos = MAX(PosPV, VSMatrixPosNet)

• Net negative drive, preventing double-counting:

NetNeg = MAX(NegPV, VSMatrixNegNet)

• Net negative CS From VSMatrix counts as negative:

if (VSMatrixPosNet < 0f) NetNeg = MAX(Net-
Neg, ABS(VSMatrixPosNet)); NetPos = 0

• Final LHbRMTg activation combines factors:

LHbRMTg = gain * (NetNeg − NetPos + VS-
PatchPosNet − VSPatchNegNet)
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