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A Systems-Neuroscience Model of Phasic Dopamine

Jessica A. Mollick, Thomas E. Hazy, Kai A. Krueger, Ananta Nair, Prescott Mackie, Seth A. Herd,
and Randall C. O’Reilly

University of Colorado Boulder

We describe a neurobiologically informed computational model of phasic dopamine signaling to account
for a wide range of findings, including many considered inconsistent with the simple reward prediction
error (RPE) formalism. The central feature of this PVLV framework is a distinction between a primary
value (PV) system for anticipating primary rewards (Unconditioned Stimuli [USs]), and a learned value
(LV) system for learning about stimuli associated with such rewards (CSs). The LV system represents
the amygdala, which drives phasic bursting in midbrain dopamine areas, while the PV system represents
the ventral striatum, which drives shunting inhibition of dopamine for expected USs (via direct inhibitory
projections) and phasic pausing for expected USs (via the lateral habenula). Our model accounts for data
supporting the separability of these systems, including individual differences in CS-based (sign-tracking)
versus US-based learning (goal-tracking). Both systems use competing opponent-processing pathways
representing evidence for and against specific USs, which can explain data dissociating the processes
involved in acquisition versus extinction conditioning. Further, opponent processing proved critical in
accounting for the full range of conditioned inhibition phenomena, and the closely related paradigm of
second-order conditioning. Finally, we show how additional separable pathways representing aversive
USs, largely mirroring those for appetitive USs, also have important differences from the positive valence
case, allowing the model to account for several important phenomena in aversive conditioning. Overall,
accounting for all of these phenomena strongly constrains the model, thus providing a well-validated
framework for understanding phasic dopamine signaling.

Keywords: dopamine, reinforcement learning, basal ganglia, Pavlovian conditioning, computational
model

Phasic dopamine signaling plays a well-documented role in
many forms of learning (e.g., Wise, 2004) and understanding the
mechanisms involved in generating these signals is of fundamental
importance. The temporal differences (TD) framework (Sutton &

Barto, 1981, 1990, 1998), building on the reward prediction error
(RPE) theory of Rescorla and Wagner (1972), provided a major
advance by formalizing phasic dopamine signals in terms of con-
tinuously computed RPEs (Montague, Dayan, & Sejnowski, 1996;
Schultz, Dayan, & Montague, 1997). To summarize this dopamine
reward prediction error hypothesis (DA-RPE; Glimcher, 2011),
the occurrence of better than expected reward outcomes produces
brief, short-latency increases in dopamine cell firing (phasic
bursts), while worse than expected outcomes produce correspond-
ing phasic decreases (pauses/dips) relative to a tonic firing base-
line. These punctate error signals have been shown to function as
temporally precise teaching signals for Pavlovian and instrumental
learning, and are widely believed to play an important role in the
acquisition and performance of many higher cognitive functions
including: action selection (Frank, 2006), sequence production
(Suri & Schultz, 1998), goal-directed behavior (Goto & Grace,
2005), decision making (Doll & Frank, 2009; St. Onge & Floresco,
2009; Takahashi et al., 2010), and working memory manipulation
(O’Reilly & Frank, 2006; Rieckmann, Karlsson, Fischer, & Back-
man, 2011).

Despite the well-documented explanatory power of this simple
idea, it has become increasingly clear that a more nuanced under-
standing is needed, as there are many aspects of dopamine cell
firing that are hard to reconcile within a simple RPE formalism.
For example, dopamine cell bursting has long been known to occur
robustly at both CS- and US-onset for a period of time early in
training (Ljungberg, Apicella, & Schultz, 1992). Moreover, recent
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work suggests that as the delay between CS-onset and US-onset
increase beyond a few seconds, dopamine cell bursting at the time
of the US diminishes progressively less until it is statistically
indistinguishable from the response to randomly delivered reward,
even after a task has been thoroughly learned (Fiorillo, Newsome,
& Schultz, 2008; Kobayashi & Schultz, 2008). In contrast, condi-
tional stimulus (CS) firing is acquired relatively robustly across
these same delays, albeit less so as a function of increasing delay
(i.e., flatter decay slope; Fiorillo et al., 2008; Kobayashi & Schultz,
2008).

More subtle anomalies include the asymmetrical pattern seen for
earlier than expected versus later than expected rewards (Holler-
man & Schultz, 1998); and certain aspects of the conditioned
inhibition paradigm, including the lack of a RPE-like dopamine
response at the time of omitted reward when a conditioned inhib-
itor is presented alone at test (Tobler, Dickinson, & Schultz, 2003).
Further, extinction learning and related reacquisition phenomena
have been shown to involve additional learning mechanisms be-
yond those involved in initial acquisition, suggesting the likelihood
of additional wrinkles in the pattern of dopamine signaling in-
volved. Finally, the pattern of phasic dopamine signaling seen
under aversive conditioning paradigms is not a simple mirror-
image of the appetitive case, with evidence for heterogeneous
subpopulations of dopamine neurons that respond to primary aver-
sive outcomes in opposite ways (Brischoux, Chakraborty, Brierley,
& Ungless, 2009; Bromberg-Martin, Matsumoto, & Hikosaka,
2010b; Fiorillo, 2013; Lammel, Lim, & Malenka, 2014; Lammel et
al., 2012; Matsumoto & Hikosaka, 2009a). In addition, a long-
standing controversy has surrounded the phasic bursting often seen
for aversive and/or high intensity stimulation (e.g., Comoli et al.,
2003; Dommett et al., 2005; Fiorillo, 2013; Horvitz, 2000;
Humphries, Stewart, & Gurney, 2006; Mirenowicz & Schultz,
1996; Schultz, 2016), which has been interpreted as a component
of salience or novelty-coding in addition to simple RPE-coding
(Kakade & Dayan, 2002).

Such departures from the simple RPE formalism should not be
surprising, however, because it is an abstract, mathematical for-
malism corresponding to David Marr’s (1982) algorithmic, or even
computational, level of analysis. Thus, the present work can be
seen as an attempt to bridge between the biological mechanisms at
Marr’s implementational level and the higher-level RPE formal-
ism, providing specific testable hypotheses about how the critical
elements of that formalism arise from interactions among distrib-
uted brain systems, and the ways in which these neural systems
diverge from the simpler high-level formalism. There is an impor-
tant need for this bridging between levels of analysis, because the
neuroscience literature has implicated a large and complex net-
work of brain areas as involved in dopamine signaling, but under-
standing the precise functional contributions of these diverse areas,
and their interrelationships, is difficult without being able to see
the interacting system function as a whole. The computational
modeling approach provides this ability, and the ability to more
systematically test and manipulate areas to determine their precise
contributions to a range of different behavioral phenomena. Fur-
thermore, the considerable divergences between appetitive
(reward-defined) and aversive (punishment-defined) processing
are particularly challenging and informative, because the same
networks of brain areas are involved in both to a large extent, and
the abstract RPE formalism makes no principled distinction be-

tween them. Thus, our biologically based model can help provide
new principles that make sense of these discrepancies, in ways that
could be of interest to those working at the higher abstract levels.

There have been various attempts to develop more detailed
neurobiological frameworks for understanding phasic dopamine
function (e.g., Brown, Bullock, & Grossberg, 1999; Carrere &
Alexandre, 2015; Hazy, Frank, & O’Reilly, 2010; Houk, Adams,
& Barto, 1995; O’Reilly, Frank, Hazy, & Watz, 2007; Redish,
Jensen, Johnson, & Kurth-Nelson, 2007; Suri & Schultz, 1999,
2001; Tan & Bullock, 2008; Vitay & Hamker, 2014), which we
build upon here to provide a comprehensive framework that ac-
counts for the above-mentioned empirical anomalies to the simple
RPE formalism while also incorporating most of the major bio-
logical elements identified to date. This framework builds on our
earlier PVLV model (primary value, learned value; pronounced
“Pavlov”; Hazy et al., 2010; O’Reilly et al., 2007), and includes
mechanistically explicit models of the following major brain sys-
tems: the basolateral amygdalar complex (BLA); central amygdala
(lateral and medial segments: CEl and CEm); pedunculopontine
tegmentum (PPTg); ventral striatum (VS; including the nucleus
accumbens [NAc]); lateral habenula (LHb); and of course the
midbrain dopaminergic nuclei themselves (ventral tegmental area
[VTA]; and substantia nigra, pars compacta [SNc]). These areas
are driven by simplified inputs representing the brain systems
encoding appetitive and aversive USs, CSs, variable contexts, and
temporally evolving working memory-like representations of US-
defined goal-states mapped to ventral-medial frontal cortical areas,
primarily the orbital frontal cortex (OFC).

Our overall goal is to provide a single comprehensive frame-
work for understanding the full scope of phasic dopamine firing
across the biological, behavioral, and computational levels. Al-
though the model is considerably more complex than the single
equation at the heart of the RPE framework, it nevertheless is
based on two core computational principles that together deter-
mine much of its overall function—many more details are required
to account for critical biological data, but these are all built upon
the foundation established by these core computational principles.
The basic learning equations are consistent with the classic Re-
scorla-Wagner/delta rule framework (Rescorla & Wagner, 1972),
but the first core computational principle is that two separate
systems are needed to enable this form of learning to account for
both the anticipatory nature of dopamine firing (at the time of a
CS, which occurs in the LV or learned-value system, associated
with the amygdala), and the discounting of expected outcomes at
the time of the US (in the PV or primary-value system, associated
with the ventral striatum). These two systems give the PVLV
model its name, and have remained the central feature of the
framework since its inception (Hazy et al., 2010; O’Reilly et al.,
2007). The recent discovery of strong individual differences in
behavioral phenotypes, termed sign-tracking (CS-focused learning
and behavior) versus goal-tracking (US-focused learning and be-
havior) is suggestive of this kind of anatomical dissociation (Flagel
et al., 2011; Flagel et al., 2010).

The second core computational principle, which cuts across both
the LV and PV systems in our model, is the use of opponent-
processing pathways based on the reciprocal functioning of dopa-
mine D1 versus D2 receptors (Collins & Frank, 2014; Frank, 2005;
Frank, Loughry, & O’Reilly, 2001; Mink, 1996). The value of
opponent-processing has long been recognized, in terms of en-
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abling fundamentally relative (instead of absolute) comparisons
(e.g., in color vision), and allowing more flexible forms of learn-
ing, for example learning a broad positive association with specific
negative exceptions. Furthermore, the dopamine modulation of
these pathways supports both the opposite valence-orientation of
appetitive versus aversive conditioning, as well as acquisition
versus extinction learning, across both systems. The importance of
this opponent-processing framework is particularly evident in the
extinction learning case, where the context-specificity of extinc-
tion can be understood as the learning of context-specific excep-
tions in the opponent pathway relative to the retained initial
association.

Thus, it is important to appreciate that we did not just add
biological mechanisms in an ad hoc manner to account for specific
data—our goal was to simplify and exploit essential computational
mechanisms, while remaining true to the known biological and
behavioral data. As the famous saying attributed to Einstein goes:
“Everything should be made as simple as possible, but not sim-
pler”—here we weigh heavier on the “but not simpler” part of
things relative to the abstract RPE framework and associated
models, in order to account for relevant biological data. Neverthe-
less, neuroscientists may still regard our models as overly abstract
and computational—it is precisely this middle ground that we seek
to provide, so that we can build bridges between these levels, even
though it may not fully satisfy many on either side. As such, this
model represents a suitable platform for generating numerous
novel, testable predictions across the spectrum from biology to
behavior, and for understanding the nature of various complex
disorders that can arise within the dynamics of these brain systems,
which have been implicated in a number of major mental disor-
ders.

As noted earlier, PVLV builds upon various neural-level imple-
mentational models that have been proposed for the phasic dopa-
mine system, integrating proposed neural mechanisms that explain
the effects of both timing (Houk et al., 1995; Vitay & Hamker,
2014) and reward magnitude and probability on phasic dopamine
responses (Montague et al., 1996; Tan & Bullock, 2008), as well
as the neural mechanisms underlying inhibitory learning that con-
tribute to extinction of responses to reward (Pan, Schmidt, Wick-
ens, & Hyland, 2005; Redish et al., 2007). Several models also
integrate timing and magnitude and probability signals, proposing
that separate neural pathways may be involved in each type of
computation (Brown et al., 1999; Contreras-Vidal & Schultz,
1999).

Also relevant, although not explicitly about the phasic dopamine
signaling system, are recent neural models of fear conditioning in
the amygdala. These models have highlighted the circuitry that
contributes to the learning and extinction of responses to negative
valence stimuli, including neural circuits implementing the effects
of context on learning and extinction (Carrere & Alexandre, 2015;
Krasne, Fanselow, & Zelikowsky, 2011; Moustafa et al., 2013).
Despite this wealth of neural modeling work, the PVLV model
provides additional explanatory power beyond these prior models
by incorporating both the positive and negative valence pathways,
along with excitatory and inhibitory learning in both systems. and
their effects on the phasic dopamine system, grounded in a wide
range of neural data supporting the computations made by each
part of the model and their effects on phasic dopamine firing.

Motivating Phenomena

Several empirical phenomena—and related neurocomputational
considerations—have especially guided our thinking about phasic
dopamine signaling as a functioning neurobiological system.
These are briefly summarized here, with additional details pro-
vided later in the relevant sections.

1. The acquisition of phasic dopamine bursting for CSs, and
reduction for expected USs, are dissociable phenomena.
The dissociation between these two aspects of phasic do-
pamine function is central to the PVLV model, as noted
above, and reviewed extensively in our earlier articles
(Hazy et al., 2010; O’Reilly et al., 2007). The evidence for
this dissociation includes: (a) phasic bursting at both CS
and US onset coexist for a period of time before the latter
is lost (e.g., Ljungberg et al., 1992); (b) at interstimulus
intervals greater than about four seconds, very little loss of
US-triggered bursting is observed in spite of extensive
overtraining—even though substantial bursting to CS-onset
is acquired (Fiorillo et al., 2008; Kobayashi & Schultz,
2008); and (c) under probabilistic reward schedules the
acquired CS signals come to reflect the expected value of
the outcomes, but US-time signals adjust to reflect the
range or variance of outcomes that occur (Tobler, Fiorillo,
& Schultz, 2005). Thus, CS- and US-triggered bursting are
neither mutually exclusive nor conserved, in contradistinc-
tion to simple TD models that predict a fixed-sum
backward-chaining of phasic signals. There now seems to
be a consensus among biologically oriented modelers that
there are two distinct (though interdependent) subsystems
with multiple sites of plasticity (e.g., Hazy et al., 2010; Tan
& Bullock, 2008; Vitay & Hamker, 2014). Under the PVLV
framework, the acquisition of phasic dopamine cell bursting
at CS-onset (i.e., LV learning) is mapped to the amygdala,
while the loss of phasic bursting at US-onset (PV learning)
is mapped to the ventral striatum (VS, including the nucleus
accumbens [NAc]). In the present version of the model, we
also include an explicit lateral habenula (LHb) component
that is driven by the VS to cause phasic pauses in dopamine
cell firing, for example, for omissions of expected rewards.

2. Rewards that occur earlier than expected produce phasic
dopamine cell bursting, but no pausing at the usual time of
reward, whereas rewards that occur late produce both
signals. While a simple RPE formalism predicts that both
early and late rewards should exhibit both bursts and
pauses, the empirically observed result (Hollerman &
Schultz, 1998; Suri & Schultz, 1999) actually makes better
sense ecologically: Once an expected reward is obtained an
agent should not continue to expect it. We interpret this
within a larger theoretical framework in which a temporally
precise goal-state representation for a particular US devel-
ops in the OFC as each CS–US association is acquired. The
occurrence of a CS activates this OFC representation,
which is then maintained via robust frontal active-
maintenance mechanisms, and it is cleared when the US
actually occurs (i.e., when the goal outcome is achieved). It
is the clearing of this expectation representation that pre-
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vents the pause from occurring after early rewards. This
role of OFC active maintenance in bridging between the
two systems in PVLV (LV/CS and PV/US) replaces the
temporal chaining dynamic in the TD model, and provides
an important additional functional and anatomical basis for
the specialization of these systems: The PV (VS) system
depends critically on OFC input for learning when to expect
US outcomes, while the LV (amygdala) system is more
strongly driven by sensory inputs that then acquire CS
status through learning. In other words, the LV/amygdala
system is critical for sign tracking while the PV/VS system
is critical for goal tracking (Flagel et al., 2010; see General
Discussion). In the present model, we do not explicitly
simulate the active maintenance dynamics of the OFC sys-
tem, but other models have done so (Frank & Claus, 2006;
Pauli, Atallah, & O’Reilly, 2010; Pauli, Hazy, & O’Reilly,
2012).

3. Extinction is not simply the unlearning of acquisition. Ex-
tinction and the related phenomena of reacquisition, spon-
taneous recovery, renewal, and reinstatement exhibit clear
idiosyncrasies in comparison with initial acquisition. For
example, reacquisition generally proceeds faster after ex-
tinction than does original acquisition (rapid reacquisition;
Pavlov, 1927; Rescorla, 2003; Ricker & Bouton, 1996), and
a single unpredicted presentation of a US after extinction
can reinstate Conditioned Responses (CRs) to near preex-
tinction levels (reinstatement; Bouton, 2004; Pavlov, 1927).
In addition, extinction learning has a significantly stronger
dependency on context than does initial acquisition as dem-
onstrated in the renewal paradigm (Bouton, 2004; Corc-
oran, Desmond, Frey, & Maren, 2005; Krasne et al., 2011).
The clear implication is that extinction learning is not the
symmetrical weakening of weights previously strengthened
during acquisition, which a simple RPE formalism typically
assumes, but instead involves the strengthening of a differ-
ent set of weights that serve to counteract the effects of the
acquisition weights. In support of this inference, much
empirical evidence implicates extinction-related plasticity
in different neurobiological substrates from those impli-
cated in initial acquisition (e.g., Bouton, 2004; Bouton,
2011; Herry et al., 2008; Quirk & Mueller, 2008). These
phenomena support the use of opposing pathways—one for
acquisition and another for extinction—within both the
LV-learning amygdala subsystem and the PV-learning VS
subsystem.

4. Although logically related, the loss of bursting at the time of
an expected reward and pausing when rewards are omitted
are dissociable phenomena. There is evidence that the
mechanisms involved in the former are relatively tempo-
rally imprecise, compared with the latter, which are neces-
sarily more punctate since they cannot begin until it has
been determined that a reward has, in fact, been omitted.
Rewards delivered early show progressively more bursting
the earlier they are, implying the mechanisms involved in
blocking expected rewards are ramping up before the ex-
pected time of reward (Fiorillo et al., 2008; Kobayashi &
Schultz, 2008). Further, there is a slight, but statistically

significant, ramping decrease in tonic firing rate prior to
expected rewards (Bromberg-Martin, Matsumoto, & Hiko-
saka, 2010a). On the other hand, the mechanisms impli-
cated in producing pauses for omitted rewards are more
temporally precise, with an abrupt, discretized onset (Ma-
tsumoto & Hikosaka, 2009b), and no apparent sign of early
increases in firing in the lateral habenula (LHb; Matsumoto
& Hikosaka, 2009b). This dissociation, along with congru-
ent anatomical data, motivates a distinction between the
inhibitory shunting of phasic bursts (hypothesized to be
accomplished by known VS inhibitory projections directly
onto dopamine neurons; Joel & Weiner, 2000), and a sec-
ond, probably collateral pathway through the LHb (and
RMTg) that is responsible for pausing tonic firing. This
latter pathway enables the system to make the determina-
tion that a specific expected event has not in fact occurred
(Brown et al., 1999; Hazy et al., 2010; O’Reilly et al., 2007;
Tan & Bullock, 2008; and see Vitay & Hamker, 2014, for
an excellent review and discussion of this important prob-
lem space).

5. Conditioned inhibitors acquire the ability to generate pha-
sic pauses in dopamine cell firing when presented alone.
When a novel stimulus (conditioned inhibitor, CI, denoted
X) is presented along with a previously trained CS (denoted
A), and trained with the nonoccurrence of an expected
appetitive outcome (i.e., AX-), the CI takes on a negative
valence association and produces a phasic pause in dopa-
mine firing (Tobler et al., 2003). This represents an impor-
tant point of overlap between appetitive and aversive con-
ditioning, because a CI stimulus (X-) behaves very much
like a CS directly paired with an aversive US as reported by
for example, Mirenowicz and Schultz (1996). However, in
the CI case, there is no overt negative US involved—only
the absence of a positive US. Thus, the conditioned inhibi-
tion paradigm helps inform ideas about the role of USs in
driving CS learning. In our framework, aversive CSs come
to excite the LHb via the striatum (and pallidum), to pro-
duce dopamine cell pauses. Biologically, there is a pathway
through the striatum to the LHb, in addition to well-
documented direct US inputs to LHb, and electrophysio-
logical results consistent with the role of the striatal path-
way in driving pauses in dopamine firing via the LHb
(Hong & Hikosaka, 2013). Preliminary direct evidence for
a role of the LHb in conditioned inhibition has recently
been reported (Laurent, Wong, & Balleine, 2017).

6. In Rescorla’s (1969) summation test of conditioned inhibi-
tion, conditioned inhibitors tested with a different condi-
tioned stimulus can immediately prevent both the expres-
sion of acquired conditioned responses as well as phasic
dopamine pauses. Specifically, this paradigm involves first
training A� and separately B�; then training AX- (i.e.,
conditioned inhibition training), but not BX-; and then,
finally, testing BX-. At the otherwise expected time of the
B� US, there is no dopamine pause for the BX- case
(Tobler et al., 2003), indicating that the X has acquired a
generalized ability to negate the expectation of the US and
is not just specific to the AX compound. Furthermore,
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presentation of the BX compound at test also prevents the
expression of acquired B� CRs (e.g., salivation, food-cup
approach; Tobler et al., 2003), implying that the acquired X
inhibitory representation has reached deep subcortical be-
havioral pathways.

7. Conditioned inhibitors do not produce bursting at the ex-
pected time of the US when presented alone. According to
a simple RPE formalism of conditioned inhibition, the X
stimulus should acquire negative value itself and also serve
to drive learning that predicts its occurrence, all trained by
the dopamine pauses. Subsequently, when the X is pre-
sented by itself (without A-driven expectation of getting a
reward), an unopposed expectation of the negative (reward
omission) outcome should trigger a positive dopamine burst
at the time when the US would have otherwise occurred.
This is analogous to the modest relief bursting reported
when a trained CS is presented but the aversive US is
omitted at test (Matsumoto, Tian, Uchida, & Watabe-
Uchida, 2016; Matsumoto & Hikosaka, 2009a), or when a
sustained aversive US is terminated (Brischoux et al.,
2009). In fact, however, no such X- relief burst was de-
tected by Tobler, Dickinson, and Schultz (2003)—even
though they explicitly looked for one.

8. Phasic dopamine responses to aversive outcomes include
both pauses and bursts, with distinct subpopulations iden-
tifiable. The nature of phasic dopamine responses to pri-
mary aversive outcomes has been a topic of long-standing
controversy with multiple studies reporting either pauses
(e.g., Mirenowicz & Schultz, 1996), bursts (Horvitz, 2000;
Horvitz, Stewart, & Jacobs, 1997), or a mixture of both
including cells exhibiting a biphasic response pattern (Ma-
tsumoto & Hikosaka, 2009a). Although there is now a clear
consensus that bursting responses for aversive events do
occur, the interpretation remains controversial (e.g., Fior-
illo, 2013; Schultz, 2016). All things considered, the most
parsimonious interpretation may be that different popula-
tions of dopamine neurons may have different response
profiles, with a majority (generally more laterally located)
displaying a predominantly valence-congruent (RPE-
consistent) response profile (i.e., pausing for aversive out-
comes), while a smaller (more medial) subpopulation re-
sponds with bursting for aversive outcomes. Functionally, it
may be that both forms of response make sense: for instru-
mental learning based on reinforcing actions that produce
“good” outcomes and punishing those leading to “bad” ones
(e.g., Frank, 2005; Thorndike, 1898, 1911), valence-
congruent dopamine signaling would seem essential to pre-
vent confusion across both appetitive and aversive contexts;
on the other hand, one or more smaller specialized sub-
population(s) displaying bursting responses for aversive
outcomes may be important for learning to suppress freez-
ing and enable behavioral exploration for active avoidance
learning. In line with this latter idea, it now appears there
may be at least two small subpopulations of dopamine cells
that respond with unequivocal bursting to aversive events:
(a) a small subpopulation of posteromedial VTA neurons
exhibiting unequivocal bursting to aversive events project

narrowly to subareas of the accumbens shell and to certain
ventromedial prefrontal areas that may play a role in the
suppression of freezing (Lammel et al., 2012; Maier &
Watkins, 2010; Moscarello & LeDoux, 2013); and (b) even
more recently, a second subpopulation of aversive-bursting
dopamine cells has been described in the posterolateral
aspect of the SNc, with this population projecting only to
the caudal tail of the dorsal striatum and seemingly in-
volved in simple avoidance learning (Menegas, Akiti,
Uchida, & Watabe-Uchida, 2018; Menegas, Babayan,
Uchida, & Watabe-Uchida, 2017; Menegas et al., 2015).
Aversive-bursting dopamine cells are included in the PVLV
framework as a second, distinct dopamine unit as discussed
in Neurobiological Substrates and Mechanisms.

9. Dopamine pauses to aversive outcomes appear not to be
fully discounted through learned expectations. For the sub-
set of dopamine neurons that exhibit valence-congruent
pauses to aversive outcomes and CSs, these pauses seem
not to be fully predicted away (Fiorillo, 2013; Matsumoto
& Hikosaka, 2009a). Behaviorally, it makes sense not to
fully suppress aversive outcome signals since these out-
comes remain undesirable, even potentially life-
threatening, and an agent should continue to be biased to
learn to avoid them. In contrast, the discounting of expected
appetitive outcomes would seem to serve the beneficial
purpose of biasing the animal toward exploring for even
better opportunities. Thus, there are several fundamental
asymmetries between the appetitive and aversive cases that
sensibly ought to be incorporated into functional models.

10. Both appetitive and aversive processing involve many of the
same neurobiological substrates—in particular the
amygdala and the lateral habenula. Overwhelming empir-
ical evidence shows that the amygdala, ventral striatum, and
lateral habenula all participate in both appetitive and aver-
sive processing (Belova, Paton, Morrison, & Salzman,
2007; Cole, Powell, & Petrovich, 2013; Donaire et al.,
2019; Lee, Groshek, Petrovich, Cantalini, Gallagher, &
Holland, 2005; Matsumoto & Hikosaka, 2009b; Paton, Be-
lova, Morrison, & Salzman, 2006; Roitman, Wheeler, &
Carelli, 2005; Setlow, Schoenbaum, & Gallagher, 2003;
Shabel & Janak, 2009; Stopper & Floresco, 2013). This
implies that the processing of primary aversive events must
coexist without disrupting the processing of appetitive
events in these substrates, despite all the important differ-
ences between these basic situations as noted above. Prop-
erly integrating yet differentiating these two different va-
lence contexts within a coherent overall framework presents
an important challenge for any comprehensive model of the
phasic dopamine signaling system. We find that an oppo-
nent processing framework—based on the opposite effects
of D1 and D2 dopamine receptors on cells in the striatum
and amygdala—can go a long way toward meeting this
challenge, combined with an architecture that specifically
segregates the processing of individual USs.

11. Pavlovian conditioning generally requires a minimum 50-
to 100-ms interval between CS-onset and US. Our original
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PVLV model emphasized the problem that a phasic dopa-
mine signal generated by CS onset could create a positive
feedback loop of further learning to that CS, leading to
saturated synaptic weights (Hazy et al., 2010; O’Reilly et
al., 2007). We now account for data indicating CSs must
precede USs by a minimum of 50–100 ms to drive condi-
tioned learning (Mackintosh, 1974; Schmajuk, 1997; Sch-
neiderman, 1966; Smith, 1968; Smith, Coleman, & Gor-
mezano, 1969). With this constraint in place, it is not
possible for CS-driven dopamine to reinforce itself, pre-
venting the positive feedback problem. Incorporating this
change now allows our model to include the effects of
phasic dopamine on CS learning in the amygdala (in addi-
tion to the important role that US inputs play in driving
learning there, as captured in the prior models), supporting
phenomena such as second-order conditioning in the BLA
(Hatfield, Han, Conley, & Holland, 1996).

Conceptual Overview of the PVLV Model

In this section we provide a high-level, conceptual overview of
the PVLV model and how all the different parts fit together. Figure
1 shows how the fundamental LV versus PV distinction cuts
through a standard hierarchical organization of brain areas at three
different levels: cortex, basal ganglia (BG), and brain stem. Cortex

is generally thought to represent higher-level, more abstract, dy-
namic encodings of sensory and other information, which provides
a basis for learning about the US-laden value of different states of
the world (in standard reinforcement learning terminology). The
basolateral amygdala (BLA) is described as having a cortex-like
histology in its neural structure (e.g., Pape & Pare, 2010), but it
also receives direct US inputs from various brain stem areas. Thus,
it serves nicely as a critical hub/connector area that learns to
associate these cortical state representations with US outcomes,
which is the core of the LV function in the PVLV framework. In
contrast, the central amygdala (CEA) has cell types and connec-
tivity characteristic of the striatum of the basal ganglia (Cassell,
Freedman, & Shi, 1999), and according to classic BG models (e.g.,
Collins & Frank, 2014; Frank, 2005; Frank et al., 2001; Mink,
1996), it should be specialized for selecting the best overall inter-
pretation of the situation by separately weighing evidence-for (Go,
direct pathway, CElON) versus evidence-against (NoGo, indirect
pathway, CElOFF) in a competitive, opponent-process dynamic
(Ciocchi et al., 2010; Li et al., 2013).

Thus, the CEA in our model takes the higher-dimensional,
distributed, contextualized representations from BLA and boils
them down to a simpler, quantitative evaluation of how likely a
particular US outcome is given the current cortical state represen-
tations. When this evaluation results in an increased expectation of
positive outcomes, it drives phasic bursting in the VTA/SNc do-
pamine nuclei. This occurs via direct connections, and via the
pedunculopontine tegmental nucleus (PPTg), which may help in
driving bursting as a function of changes in expectations, as
sustained activity in BLA does not appear to drive further phasic
dopamine bursting (e.g., Ono, Nishijo, & Uwano, 1995). In sum-
mary, through these steps, this stack of LV areas is responsible for
driving phasic dopamine bursting in response to CS inputs.

The opponent organization scheme in the amygdala also serves
to address the subtly challenging problem of learning about the
absence of an expected US outcome as occurs during extinction
training. This is challenging from a learning perspective because
the absence of a US is a “nonevent,” and thus cannot drive learning
in the traditional activation-based manner, and further, the issue
remains of which of the indeterminate number of nonoccurring
events should direct learning. The explicit representation of ab-
sence in the opponent-processing scheme solves this problem by
using selective modulatory, permissive connections from
acquisition-coding to extinction-coding units so that only USs with
some expectation of occurrence can accumulate evidence about
nonoccurrence. Thus, only at the last step in the pathway is the
US-specific nature of the representations abstracted away to the
pure value-coding nature of the effectively scalar phasic dopamine
signal, in contrast to many other computational models that only
deal with this abstract value signal (e.g., standard TD models). In
addition, learning constrained to separate representations for dif-
ferent types of rewards (punishments) can directly account for
phenomena such as unblocking by reward type, something that is
otherwise challenging for value-only models like TD (e.g., Taka-
hashi et al., 2017), and depends on activity of dopamine neurons
(Chang, Gardner, Di Tillio, & Schoenbaum, 2017).

Bridging the CS-driven US expectations into the PV side of the
system, the BLA also drives areas in the orbital (OFC) and
ventromedial prefrontal cortex (vmPFC), particularly the OFC (see
Figure 1). Projections from this cortical level to ventral striatum

Cortex

Basal
Ganglia

BLA

CS

hctapSV xirtamSVAEC

Brain
Stem VTA/

SNc
LH

(US)
LHb

vmPFC

(distributed,
 abstract,
 attentional)

(opponent,
 selection)

US, CR

LV PV
(CS driven) (US expectations)

Figure 1. Overview of PVLV: The main division into LV (learned value)
and PV (primary value) cuts across a hierarchy of function in cortical, basal
ganglia, and brain stem areas. The cortex provides high-level, abstract,
dynamic state representations, and the basolateral amygdala (BLA), which
has a cortex-like histology, links these with specific US outcomes. The
basal-ganglia-like central amygdala (CEA) quantitatively evaluates the
overall evidence for the occurrence of reward or punishment using
opponent-processing pathways, and drives phasic dopamine bursts in the
midbrain dopamine areas (VTA, SNc) if this evaluation is in favor of
expected rewards. BLA also triggers updating of US expectations in
ventral/medial prefrontal cortex (vmPFC), especially the OFC (orbitofron-
tal cortex), which then drives another opponent-process evaluation process,
in the ventral striatum patch-like areas (VSpatch), the results of which can
shunt dopamine bursts for expected US’s, and drive pauses in dopamine
firing when an expected US fails to arrive, via projections to the lateral
habenula (LHb). Various brain stem areas (e.g., the lateral hypothalamus,
LH) drive US inputs into the system, and are also driven to activate CRs.
See the online article for the color version of this figure.
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drive a BG-like evaluation of evidence for and against the immi-
nent occurrence of specific USs at particular points in time. Cells
in the patch-like compartment of the VS send direct inhibitory
projections to the midbrain dopamine cells so as to produce a
shunt-like inhibition that blocks dopamine bursts that would oth-
erwise arise from an appetitive US. Furthermore, via a pallidal
pathway, the VSpatch also drives a more temporally precise acti-
vation (disinhibition) of the LHb that causes pausing (dips) of
tonic dopamine firing if not offset by excitatory drive from an
actual US occurrence. In summary, this PV stack of areas works
together to anticipate and cancel expected US outcomes.

There is another pathway through the VS that does not fit as
cleanly within the simple LV/PV distinction, which we hypothe-
size is mediated by the matrix-like compartments within the VS
(VSmatrix). This pathway is necessary for supporting the ability of
CS inputs to drive phasic dipping/pausing of dopamine firing,
which appears to be exclusively driven by the LHb in response to
VS inputs (Christoph, Leonzio, & Wilcox, 1986; Hikosaka, 2010;
Hikosaka, Sesack, Lecourtier, & Shepard, 2008; Ji & Shepard,
2007; Matsumoto & Hikosaka, 2007; Matsumoto & Hikosaka,
2009b). We are not aware of any evidence supporting a direct
projection from the amygdala to the LHb (Herkenham & Nauta,
1977), which would otherwise be a more natural pathway for CS
activation of phasic dipping according to the overall PVLV frame-
work. An important further motivation for this VSmatrix pathway
is that, by hypothesis, it is also responsible for gating information
through the thalamus so as to produce robust maintenance of US
outcome/goal state representations in OFC (Frank & Claus, 2006;
Pauli et al., 2010; Pauli et al., 2012). Such working memory-like
goal state representations are hypothesized to be important for
supporting goal-directed (vs. habitual) instrumental behavior, be-
havior known to depend on intact OFC (e.g., Gallagher, McMahan,
& Schoenbaum, 1999). Thus, the very same plasticity events
occurring at corticostriatal synapses onto VSMatrix cells could be
responsible for learning to gate US information into OFC working
memory in response to a particular CS, while acquiring an ability
to drive phasic dopamine signals (via LHb) in response to those
same CS events.

Appetitive/Aversive and Acquisition/Extinction
Pathways

The above overview is framed in terms of appetitive condition-
ing, as that is the simplest and most well-established case. How-
ever, a critical feature of the current model is that it incorporates
pathways within the LV and PV systems for processing aversive
USs as well, leveraging the same opponent-process dynamics, with
an appropriate sign-flip, as described above. Figure 2 shows the
full set of pathways and areas in the PVLV model. As in the BG,
each pathway is characterized by having a preponderance of do-
pamine D1 versus D2 receptors, which then drives learning from
phasic bursts (D1) or dips (D2; e.g., Frank, 2005; Frank et al.,
2001; Gerfen & Surmeier, 2011; Mink, 1996). Thus, assuming the
standard RPE form of dopamine firing, D1-dominated pathways
are strengthened by unexpected appetitive outcomes, while D2-
dominated ones are strengthened by unexpected aversive out-
comes. Thus, this differential dopamine receptor expression can
account for the differential responses of appetitive- versus
aversive-coding neurons in the amygdala (LV), as shown in Figure

2. Although the BLA is not strongly topographically organized, we
assume a similar opponency between subsets of neurons, as is
more clearly demonstrated in the central amygdala CElON versus
CElOFF cells (Ciocchi et al., 2010; Li et al., 2013). In addition to
these lateral pathway neurons, we include a final medial output
pathway (CEm) that computes the net balance between on versus
off for each valence pathway (appetitive and aversive).

The VS (PV) system is likewise organized according to standard
D1 versus D2 pathways, within the US-coding patch areas and the
CS-coding matrix areas, again with separate pathways for appeti-
tive versus aversive, with the sign of D1 versus D2 effects flipped
as appropriate. For example, VSpatch aversive-pathway D2 neu-
rons learn from unexpected aversive outcomes, and thereby learn
to anticipate such outcomes. The complementary D1 pathway
there learns from any dopamine bursts associated with the nonoc-
currence of these aversive outcomes, such that the balance between
these pathways reflects the net expectation of the aversive out-
come. Figure 2 shows how each VS pathway sends a correspond-
ing net excitation or inhibition to the LHb (via a pallidal pathway),
with excitation of the LHb causing inhibition of VTA/SNc tonic
firing via the RMTg (rostromedial tegmental nucleus—in our
model, we combine the LHb and RMTg into a single functional
unit).

In addition, the VSpatch D1 appetitive pathway sends direct
shunting inhibition to these midbrain dopamine areas, to block
excitatory firing from expected US’s. Although this pathway may
seem redundant with the LHb inhibition, the differential timing of
these two functions motivates the need for separate mechanisms.
On the one hand, a complete inhibition of bursting requires an
input arriving at least slightly prior to the time of reward, or else
at least a little activity will necessarily occur on the front end. On
the other hand, an omission-signaling input (for pausing) can only
arrive at least slightly after the expected time of the reward
because an agent can determine that an expected event did not
occur only after the time it was expected, reflecting at least some
finite amount of time to compute and transmit the omission signal.
Indeed, omission pauses are empirically seen to have greater
latency than corresponding bursts.

Finally, apropos of the asymmetries between appetitive versus
aversive conditioning discussed above, there are a number of
aspects where these two differ in the model. For example, appet-
itive, but not aversive, pathways in the amygdala can directly drive
dopamine burst firing, consistent with our overall hypothesis (and
extant data) that the LHb is exclusively responsible for driving all
phasic pausing in dopamine cell firing. This has some important
functional implications, by allowing the amygdala dopamine path-
way to be positively rectified—that is, it only reports when the
amygdala estimates the current situation to be better than the
preceding one. Furthermore, the extent to which VSpatch expec-
tancy representations can block dopamine pauses associated with
expected aversive outcomes is significantly less than its ability to
block bursts for expected appetitive outcomes as suggested by the
available empirical data (Matsumoto & Hikosaka, 2009a).

Differences From Previous Versions of PVLV

The present model represents a significant elaboration and re-
finement of the PVLV framework since our prior publication
(Hazy et al., 2010), as briefly summarized here:
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• Earlier versions of PVLV included only a central nucleus
amygdalar component (CEA; formerly CNA). In the cur-
rent version we have added a basolateral amygdalar com-
plex (BLA), which serves as a primary site for CS-US
pairing during acquisition (acquisition-coding cells) and,
critically, for the pairing of CSs with the nonoccurrence of
expected USs (extinction-coding cells). This is especially
important in accounting for extinction-related phenomena
reflecting the idea that extinction is an additional layer of
learning and not just the unlearning (weakening) of acqui-
sition learning and, importantly, underlies the ability of the
current version to account for the differential sensitivity of
extinction to context (see Simulation 2b).

• Earlier versions of PVLV treated the inhibitory PV com-
ponent as unitary with no distinction between a shunting
effect onto dopamine cells that prevents bursting at the

time of expected rewards and the pausing effect that
occurs when expected rewards are omitted. Since that time
it has been established that the LHb plays a critical role in
the latter phenomenon and may serve as the sole substrate
responsible for producing pauses on dopamine cell firing
of any cause. Accordingly, the new version adds a LHb
component which receives disynaptic collaterals from the
same VSpatch cells that provide direct shunting inhibition
onto dopamine cells. These collaterals result in net excit-
atory inputs onto LHb cells. Critically, the LHb also
receives direct (excitatory) inputs for aversive USs, as
well as net inhibitory inputs associated with both reward-
ing outcomes and expectations of reward. The LHb com-
ponent is important for producing the dissociation between
shunting inhibition and overt pauses, it also enables the
new model to produce (modest) disinhibitory positive

Figure 2. Detailed components of PVLV, showing the opponent processing pathways within the PV and LV
systems, which separately encode the strength of support for and against each US, and with opposite dynamics for
appetitive versus aversive valence. BLA has pathways for appetitive and aversive USs, along with distinctions
between acquisition and extinction learning, all of which engage in broad inhibitory competition. The BLA projects
to central amygdala (CEl, CEm) neurons that integrate the evidence for-and-against a given US, and communicate this
net value to the VTA (and SNc, not shown). The ventral striatum (VS) has matrix and patch subsystems, where matrix
(VSm) receives modulatory inputs from corresponding BLA neurons and represents CSs in a phasic manner, and
patch (VSp) anticipates and cancels USs. Both have a full complement of opposing D1- and D2-dominant pathways,
which have opposing effects for appetitive versus aversive USs. LV � learned value; PV � primary value; BLA �
basolateral amygdala; OFC � orbitofrontal cortex; LHb � lateral habenula; CS � conditional stimulus; VTA �
ventral tegmental area ; PBN � parabrachial nucleus. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

8 MOLLICK ET AL.



dopamine signals at the time of expected-but-omitted pun-
ishment (see Simulation 4b).

• Like TD, and RPE generally, earlier versions of PVLV
really only contemplated appetitive context, that is, the
occurrence and omission of positively valenced reward; it
largely ignored learning under aversive context (e.g., fear
conditioning). In the current version, additional comple-
mentary channels for appetitive versus aversive processing
(and associated learning) have been incorporated through-
out the model, with their convergence occurring only at
two distinct sites where population coding is largely, but
not exclusively, unitary: (a) the LHb (which projects to the
VTA/SNc); and (b) the dopamine cells themselves in the
VTA/SNc. Incorporating aversive processing channels
alongside appetitive ones is important for demonstrating
that the core idea underlying the DA-RPE theory can
survive the integration of all these parallel processing
pathways and their significant convergence onto most
dopamine cells. This extension enabled the current PVLV
version to simulate basic aspects of aversive conditioning
(see Simulation 4a, b), and provides a richer more accurate
account of conditioned inhibition.

• Also like TD and RPE, earlier versions of PVLV treated
reward as a single scalar value throughout the model
without distinguishing between different kinds of reward
(or punishment), for example, food versus water, or shock
versus nausea. By representing different kinds of reward
separately in both the amygdala and ventral striatum,
learning in the current version of PVLV can also produce
separate expectancy representations about different re-
wards. This provides a direct mechanism that can help
account for the phenomenon of unblocking-by-identity
(e.g., see Simulation 3a).

Overview of Remainder of the Article

The next two sections examine first the neurobiology that con-
strains various aspects of the PVLV framework, and then the
actual computational implementation of the model. After that, the
Results section describes and discusses 12 simulations covering
several well-established Pavlovian conditioning phenomena and,
especially, serve to highlight the most important features of the
overall framework. The article concludes with a General Discus-
sion in which we highlight the main contributions of the PVLV
framework, compare our approach with others in the literature, and
identify several unresolved questions for future research.

Neurobiological Substrates and Mechanisms

In this section, we provide a neurobiological-level account of
the computational model outlined above, followed in the subse-
quent section by a computationally focused description. To that
end, we provide a selective review of salient biological and be-
havioral data most influential in informing the overall framework,
and we focus specifically on data that go beyond the foundations
covered in earlier articles (Hazy et al., 2010; O’Reilly et al., 2007).

The Amygdala: Anatomy, Connectivity, and
Organization

The amygdala is composed of a dozen or so distinct nuclei and/or
subareas (Amaral, Price, Pitkanen, & Carmichael, 1992), each of
which can exhibit several subdivisions (McDonald, 1992). Despite
such anatomical complexity, however, the literature has largely con-
ceptualized amygdalar function in terms of two main components: a
deeper/inferior basolateral amygdalar complex (BLA) more involved
in the processing of inputs; and a more superficial/superior central
amygdalar nucleus (CEA) that has long been implicated in driving
many of the more primitive manifestations of emotional expression
(changes in heart rate, breathing, blood pressure; freezing, and so on;
Figure 3a). Both BLA and CEA contain both glutamatergic and
GABAergic cells (both local interneurons and projecting), with con-
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Figure 3. Basic organization, information flow, and opponent-processing
in the amygdala. (a) Schematic diagram of a coronal section of unilateral
amygdala with most prominent nuclei outlined according to one common
scheme. The BLA is composed of: lateral (LA), basal (BA), and accessory
basal (AB) nuclei. The central nucleus is composed of a lateral (CEl) and
medial (CEm) segments. Three collections of GABAergic cells make up
the intercalated cell masses (ITCs): the lateral paracapsular (lITC); dorsal
(ITCd); and ventral (ITCv). (b) Basic information flow through the
amygdala: sensory information enters via the LA predominantly flowing
from dorsolateral (LAdl) to ventrolateral (LAvl) and medial (LAm) divi-
sions. From there two parallel pathways reach the central amygdala: (1)
directly from LA to CEA (via CEl; red dotted arrows); and (2) via the basal
(BA) and accessory basal (AB) nuclei (blue dash arrows). (c) Opponent
processing in the BLA following the scheme of Herry et al., 2008:
acquisition-coding cells (ACQ) receive context inputs from the ventral
hippocampus (vHC) and project to the ventromedial PFC, which connects
reciprocally with extinction-coding cells (EXT) in the BLA, with the
vmPFC providing additional context information relevant for extinction.
(d) Opponent processing in the CEl following the scheme of Pare and
Duvarci (2012), with CElON � acquisition and CElOFF � extinction. See
the online article for the color version of this figure.
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siderable topographic patchiness in their relative proportions; for
example, the lateral segment of the CEA (CEl) seems to be almost
exclusively GABAergic. Importantly, the amygdala is richly inner-
vated by all four neuromodulatory systems including a dense, heter-
ogeneously distributed dopaminergic projection (Amaral et al., 1992;
Fallon & Ciofi, 1992). Both main classes of dopamine receptors
(D1-like, D2-like) are richly expressed, although not homogeneously
(Bernal et al., 2009; de la Mora, Gallegos-Cari, Arizmendi-García,
Marcellino, & Fuxe, 2010; de la Mora et al., 2012; Lee, Kim, Kwon,
Lee, & Kim, 2013).

Figure 3 shows the major areas and connectivity. The BLA
receives dense afferents from much of the cerebral cortex, includ-
ing the higher areas in all sensory modalities, as well as associative
and affective cortex, and from corresponding thalamic nuclei and
subcortical areas (Doyère, Schafe, Sigurdsson, & LeDoux, 2003;
LeDoux, 2003; Pitkanen, 2000; Uwano, Nishijo, Ono, & Tamura,
1995). The lateral nucleus (LA) receives the preponderance of
sensory input, preferentially into its dorsolateral division (Pit-
kanen, 2000) and projects to CEA both directly, and indirectly via
the basal and accessary basal nuclei (Pitkanen, 2000). The basal
and accessory basal nuclei exhibit extensive local and contralateral
interconnectivity, and also send feedback projections to two of the
divisions of the LA (Pitkanen, 2000), whereas the LA has rela-
tively little local or contralateral interconnectivity. The BLA also
projects heavily to the ventral striatum and to much of the cortical
mantle (Amaral et al., 1992; Pitkanen, 2000), including a strong
reciprocal interconnection with the orbital frontal cortex (OFC;
Ongür & Price, 2000; Schoenbaum, Chiba, & Gallagher, 1999)
and parts of ventromedial prefrontal cortex including the anterior
cingulate cortex (ACC; Ongür & Price, 2000). Based on neural
recording studies, there seems to be little discernible local topo-
graphical organization of different cell responses in the BLA (i.e.,
a salt-and-pepper distribution; Herry et al., 2008; Maren, 2016),
with one notable exception of a recently described positive-
negative valence gradient in a posterior-to-anterior direction (Kim,
Pignatelli, Xu, Itohara, & Tonegawa, 2016).

The CEA can be functionally divided into medial (CEm) and lateral
(CEl) segments (Figure 3a), with the CEl exerting a tonic inhibitory
influence on the CEm that, when released, performs a kind of gating
function for CEm outputs analogous to that seen in the basal ganglia.
Both CEl and, especially, CEm send efferents to subcortical viscero-
motor areas (autonomic processing) as well as to certain primitive
motor effector sites involved in such affective behaviors as freezing
(Koo, Han, & Kim, 2004; Li et al., 2013; Veening, Swanson, &
Sawchenko, 1984). Importantly, among the subcortical efferents from
CEm are projections to the VTA/SNc, both directly, and via the
pedunculopontine tegmental nucleus (PPTg; Everitt, Cardinal, Hall,
Parkinson, & Robbins, 2000; Fudge & Haber, 2000), and stimulation
of the CEm has been shown to drive phasic dopamine cell bursting
and/or dopamine release in downstream terminal fields (Ahn & Phil-
lips, 2003; Fudge & Haber, 2000; Rouillard & Freeman, 1995; Stal-
naker & Berridge, 2003; see Hazy et al. (2010) for detailed discus-
sion). The CEA also receives broad cortical and thalamic afferents
directly (Amaral et al., 1992; Pitkanen, 2000); these direct inputs are
presumably responsible for the result that the CEA can support
first-order Pavlovian conditioning independent of the BLA (Everitt et
al., 2000).

Division-of-Labor Between BLA and CEA: Analogy
With the Cortical–Basal Ganglia System

In addition to the long-held view of basic amygdalar organiza-
tion that posits the BLA as the input side and the CEA as the
output side, we also embrace emerging ideas (e.g., Duvarci & Pare,
2014; Holland & Schiffino, 2016) that posit that the two areas may
have distinct functional roles analogous to the distinction between
those of the cortex (i.e., BLA) and the basal ganglia (CEA; Figure
1). The BLA has long been described as cortex-like (McDonald,
1992), while the CEA is more basal-ganglia like, particularly its
lateral segment (CEl) whose principal cells bear a strong resem-
blance with the medium spiny neurons (MSNs) of the neostriatum,
with which it is contiguous laterally (Cassell et al., 1999; McDon-
ald, 1992). Thus, one can think about the BLA computing com-
plex, high-dimensional representations of current states of the
world (including both external and internal components) that are
anchored by expectations about the imminent occurrence of spe-
cific USs; in contrast, the CEA involves simpler, low-dimensional
representations about particular primitive actions to be taken based
on those US-anchored anticipatory states (e.g., fear, food antici-
pation). Both BLA and CEA subserve both input and output roles
and function partially in parallel as well as serially, with a major
distinction between their output projections. The BLA projects to
neocortex and basal-ganglia (especially ventral striatum) and ex-
erts a more modulatory effect, while CEA projects almost exclu-
sively to subcortical areas (excluding the basal ganglia), and is a
strong driver of subcortical visceromotor and primitive motor
effectors.

Electrophysiological recording shows that BLA neurons exhibit
a wide range of selectivity to different CSs, USs, and contexts
(Beyeler et al., 2016; Herry et al., 2008; Johansen, Hamanaka, et
al., 2010; Johansen, Tarpley, LeDoux, & Blair, 2010; Muramoto,
Ono, Nishijo, & Fukuda, 1993; Ono et al., 1995; Repa et al., 2001;
Roesch, Calu, Esber, & Schoenbaum, 2010; Toyomitsu, Nishijo,
Uwano, Kuratsu, & Ono, 2002). By adulthood, a significant pro-
portion of the principal cells in both BLA and CEA appear to
stably represent specific kinds of primary rewards and punish-
ments and not undergo significant change thereafter. For example,
discriminative- and reversal-learning experiments have shown that
CS–US associative pairings can undergo rapid remapping when
environmental contingencies change, leaving the underlying US-
specific representational scheme intact (Schoenbaum et al., 1999).
A simple model for Pavlovian conditioning is that previously
neutral CSs acquire the ability to activate these US-coding cells by
strengthening synapses they send to them (Muramoto et al., 1993;
Ono et al., 1995; Toyomitsu et al., 2002). More recent studies
examining larger population-level samples suggests that learning
in the BLA is complex, high-dimensional, and distributed—con-
sistent with a cortex-like system (Beyeler et al., 2016; Grewe et al.,
2017). Nevertheless, the essential function of BLA in linking CSs
and USs remains a useful overarching model.

In addition to a strong US-anchored organization for amygdala
representations, there are also cells in both BLA and CEA that
reflect evidence against the imminent occurrence of particular US
outcomes. For example, Herry et al. (2008) showed that a distinct
set of BLA neurons progressively increased in activity in response
to CS-onset over multiple US omission trials (extinction training),
in contrast with those (acquisition-coding) neurons that had ac-
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quired activity in response to CS-onset during fear acquisition.
Similarly, Ciocchi et al. (2010) showed opponent coding of aver-
sive US presence versus absence in separate populations of CElON

versus CElOFF neurons. These CEl neurons are exclusively
GABAergic and have mutually inhibitory connections, producing
a direct opponent-processing dynamic. This pattern of opponent
organization, which is one of two core computational principles in
our model, is essential for supporting extinction learning from the
absence of expected USs, and also for probabilistic learning par-
adigms (Esber & Haselgrove, 2011; Fiorillo, Tobler, & Schultz,
2003).

Extinction Learning and the Role of Context

Considerable behavioral data strongly supports the idea that
extinction learning is particularly sensitive to changes in both
external and internal context, and that areas in the vmPFC play an
important role in contextualizing extinction learning (Laurent &
Westbrook, 2010; Quirk, Likhtik, Pelletier, & Paré, 2003). Further,
Herry et al. (2008) looked specifically at the connectivity of
extinction-coding versus acquisition-coding cells in the BLA and
found that only the former receive connections from vmPFC. This
has been incorporated into the PVLV framework in the form of
contextual inputs to the model that connect exclusively to the
extinction coding layers of the BLA. Somewhat surprisingly,
Herry et al. (2008) also reported that hippocampal inputs to the
BLA (long implicated in conditioned place preference and aver-
sion) connected only with acquisition-coding cells; this rather
paradoxical situation is discussed in a section on the role and
nature of context representations in the General Discussion sec-
tion. In essence, it is hard to avoid the conclusion that the hip-
pocampus and vmPFC must convey distinctly different forms of
context information to the amygdala. Simulation 2b in the Results
section explores the differential context-sensitivity of extinction
versus acquisition learning.

There are likely differential contributions of the BLA versus
CEA to extinction learning, in part due to the greater innervation
of BLA by contextual inputs. For example, limited evidence sug-
gests that the CEA may not be able to support extinction learning
by itself and instead depends on learning in the BLA (Falls,
Miserendino, & Davis, 1992; Lin, Yeh, Lu, & Gean, 2003; Lu,
Walker, & Davis, 2001; Quirk & Mueller, 2008; Zimmerman &
Maren, 2010). However, muscimol inactivation of BLA at differ-
ent stages of extinction learning demonstrates that extinction can
persist in the absence of BLA activation (Herry et al., 2008).
Although not currently implemented in PVLV, this can potentially
be explained in terms of BLA driving learning in vmPFC which
can in turn drive extinction via direct projections into CEA (e.g.,
Anglada-Figueroa & Quirk, 2005). Finally, the intercalated cells
(ITCs) have been widely discussed as suppressing fear expression
under various circumstances (Ehrlich, Humeau, Grenier, Ciocchi,
Herry, & Luthi, 2009; Likhtik, Popa, Apergis-Schoute, Fidacaro,
& Paré, 2008; Maier & Watkins, 2010; Marowsky, Yanagawa,
Obata, & Vogt, 2005; Pare & Duvarci, 2012; Royer, Martina, &
Paré, 1999). However, some conflicting data has emerged in this
regard (Adhikari et al., 2015). Nonetheless, it seems likely that
ITCs participate somehow in the opponent-processing scheme for
acquisition versus extinction coding in the amygdala. Their role is

currently subsumed within the basic extinction-coding function in
PVLV and not explicitly modeled.

Dopamine Modulation of Acquisition Versus
Extinction Learning

Dopamine has been shown to be important for plasticity-
induction in the amygdala (Andrzejewski, Spencer, & Kelley,
2005; Bissière, Humeau, & Lüthi, 2003). While the other three
neuromodulatory systems (ACH, NE, 5-HT) are undoubtedly im-
portant (e.g., Carrere & Alexandre, 2015), they are not currently
included in the PVLV framework. There are both D1-like and
D2-like receptors in in the BLA (de la Mora et al., 2010), and
blocking of D2s in the BLA impaired acquisition of fear learning,
reducing conditioned responses such as freezing (Guarraci, Fro-
hardt, Falls, & Kapp, 2000; LaLumiere, Nguyen, & McGaugh,
2004) and fear-potentiated startle (de Oliveira et al., 2011; Nader
& LeDoux, 1999) to a CS. Similarly, Chang et al. (2016) reported
that optogenetically driven pauses in DA firing produce expected
effects consistent with aversive conditioning, while antagonism of
D1s blocked fear extinction (Hikind & Maroun, 2008). In the
positive valence domain, antagonism of D1s in the amygdala
attenuated the ability of a cue paired with cocaine to reinstate
conditioned responding (Berglind, Case, Parker, Fuchs, & See,
2006). Similarly consistent D1 and D2 receptor effects have been
documented in CEl as well (De Bundel et al., 2016).

Extending the results and model of Herry et al. (2008), the
PVLV framework accounts for the differential learning of acqui-
sition versus extinction cells in the BLA (and acquisition only in
CEl) in terms of a 2 � 2 matrix of valence X dopamine receptor
dominance. For example, acquisition for appetitive Pavlovian con-
ditioning is trained by (appetitive) US occurrence and modulated
by phasic dopamine bursting effects on D1-expressing positive
US-coding cells, while extinction learning is mediated by phasic
dopamine pausing effects on corresponding D2-expressing cells.
Conversely, aversive acquisition is trained by (aversive) US oc-
currence and phasic dopamine pausing at D2-expressing, negative
US-coding cells, and so on. Considerable circumstantial, but not
yet direct, evidence supports something like this basic 2 � 2
framework.

As noted earlier, the relative timing of phasic dopamine effects
is critical for our model, to prevent CS-driven bursts from rein-
forcing themselves. Behaviorally, it has long been recognized that
excitatory Pavlovian conditioning does not generally occur at
CS-US interstimulus (ISIs) intervals less than approximately 50
ms (Mackintosh, 1974; Schmajuk, 1997; Schneiderman, 1966;
Smith, 1968; Smith et al., 1969), and becomes progressively
weaker and more difficult at ISIs exceeding 500 ms or so, although
there is a great deal of variability across different CRs in the
optimal ISI, which can extend to several seconds for some CRs
(Mackintosh, 1974). Importantly, virtually all of the evidence
bearing on optimal ISIs appears to involve the delay conditioning
paradigm in which the CS remains on until the time of US onset,
which fosters stronger and/or more reliable conditioning relative to
trace paradigms in which there is gap between CS-offset and
US-onset. Although not in the amygdala, recent optogenetic stud-
ies have documented a temporal window of 50–2,000 ms or so
after striatal MSN activity during which phasic dopamine activity
can be effective in inducing synaptic plasticity, which serves as a
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kind of proof of concept (Fisher et al., 2017; Yagishita et al.,
2014).

Amygdala-Driven Phasic Dopamine and the PPTg

The medial segment of the central amygdalar nucleus (CEm)
has been shown to project to the midbrain dopamine nuclei both
directly (Fudge & Haber, 2000; Wallace, Magnuson, & Gray,
1992) and indirectly via the pedunculopontine tegmental nucleus
(PPTg; Fudge & Haber, 2000; Takayama & Miura, 1991; Wallace
et al., 1992), and stimulation of the CEm has been shown to
produce bursting of dopamine cells (Ahn & Phillips, 2003; Fudge
& Haber, 2000; Rouillard & Freeman, 1995). It seems likely that
the PPTg pathway (along with its functionally related neighbor the
laterodorsal tegmental nucleus, LDTg) plays a particularly impor-
tant role in bursting behavior (e.g., Floresco, West, Ash, Moore, &
Grace, 2003; Grace, Floresco, Goto, & Lodge, 2007; Lodge &
Grace, 2006; Omelchenko & Sesack, 2005; Pan & Hyland, 2005),
via direct efferents to the VTA and SNc (Watabe-Uchida, Zhu,
Ogawa, Vamanrao, & Uchida, 2012). The PPTg and LDTg are
located in the brainstem near the substantia nigra and both have
additionally been implicated in a disparate set of functions includ-
ing arousal, attention, and aspects of motor output (Redila, Kinzel,
Jo, Puryear, & Mizumori, 2015). The PPTg projects preferentially
to the SNc while the LDTg projects more to the VTA (Watabe-
Uchida et al., 2012).

Both the PPTg and LDTg contain glutamatergic, GABAergic,
and cholinergic cells (Wang & Morales, 2009) and all appear to be
involved in the projection to the dopamine nuclei, although spe-
cific functions assignable to each remain poorly characterized
(Lodge & Grace, 2006). Recently, subpopulations of cells in PPTg
have been shown to code separately for primary rewards and their
predictors and it has been suggested that the PPTg may play the
key role in calculating RPEs (Hazy et al., 2010; Kobayashi &
Okada, 2007; Okada & Kobayashi, 2013; Okada, Nakamura, &
Kobayashi, 2011). The current PVLV framework implements a
nonlearning version of this basic idea by having the PPTg compute
the positive-rectified derivative of its ongoing excitatory inputs
from the amygdala (where the learning occurs), the positive rec-
tification serving to restrict the effects of all amygdala-PPTg input
onto dopamine cells to positive-only signaling (i.e., bursting).

Homogeneity and Heterogeneity in Phasic
Dopamine Signaling

The midbrain dopamine system is constituted by a continuous
population of dopamine cells generally divided into three groups
based on location and connectivity: retrorubral area (RRA; A8;
most caudal and dorsal), substantia nigra, pars compacta (SNc;
A9), and ventral tegmental area (VTA; A10; most ventromedial;
Joel & Weiner, 2000). Early electrophysiological studies empha-
sized the relative homogeneity of responding to reward-related
events, with roughly 75% of identified dopamine cells displaying
the now-iconic pattern of burst firing for unexpected rewards and
reward-predicting stimuli (e.g., Schultz, 1998). However, it is now
clear that there is considerable heterogeneity in response patterns
existing within this basic homogeneity (e.g., Brischoux et al.,
2009; Bromberg-Martin et al., 2010b; Lammel et al., 2014; Lam-
mel et al., 2012; Menegas et al., 2018; Menegas et al., 2017;

Menegas et al., 2015). For example, it appears that a greater
proportion of the more laterally situated dopamine cells of the SNc
may exhibit a reliable, early salience-driven excitatory response
irrespective of the valence of the US. In the case of aversive USs,
this results in a distinct, biphasic burst-then-pause response pattern
(Matsumoto & Hikosaka, 2009a).

Furthermore, Brischoux, Chakraborty, Brierley, and Ungless
(2009) has described a small subpopulation of putative dopamine
cells clustered in the ventrocaudal VTA in and near the paranigral
nucleus, likely not recorded from previously, that respond with
robust bursting to primary aversive events as reported by
Brischoux et al. (2009). Those authors speculated that those cells
might participate in a specialized subnetwork distinct from the
preponderance of dopamine cells, based on some older studies
reporting that cells in the paranigral nucleus project densely and
selectively to the vmPFC and NAc shell (Abercrombie, Keefe,
DiFrischia & Zigmond, 1989; Brischoux et al., 2009; Kalivas &
Duffy, 1995). However, some caution is warranted before con-
cluding that these cells are actually dopaminergic as several stud-
ies have now characterized a heterogeneous population of gluta-
matergic projecting cells intermingled throughout the dopamine
cell population, including the VTA where they are particularly
concentrated near the midline (see Morales & Root, 2014, for
review). Some of these cells project to the vmPFC and NAc shell
and some respond with excitation to aversive stimuli (Morales &
Root, 2014; Root, Estrin, & Morales, 2018; Root, Mejias-Aponte,
Qi, & Morales, 2014). Thus, further studies are needed to confirm
that the cells described by Brischoux et al. (2009) are indeed
dopaminergic. In any case these aversively bursting cells are
largely out of scope for the current framework, but are included in
the model largely for illustrative purposes; their efferents are not
used by any downstream components for learning or otherwise
(see Simulation 4a and related discussion). A possible role for such
an aversive-specific subnetwork in the learning of safety signals is
discussed in the General Discussion.

The Ventral Striatum

The ventral striatum (VS) is a theoretical construct based on
functional considerations. As usually defined the VS is composed
of the entirety of the nucleus accumbens (NAc) as well as ventro-
medial aspects of the neostriatum (caudate and putamen). The NAc
is further subdivided into a core which is histologically indistin-
guishable from, and continuous with, ventromedial aspects of the
neostriatum (Heimer et al., 1997), and a shell which is histologi-
cally distinct from the core. The shell is itself internally heteroge-
neous, composed of multiple subareas participating in many dis-
tinct subnetworks involving primitive processing pathways
(Reynolds & Berridge, 2002). For the purposes of the current
framework, we focus only on the nonshell aspects of the ventral
striatum.

The principal and projecting cells of the striatum are known as
MSNs. By hypothesis, VS MSNs can be partitioned into eight
phenotypes according to a 2 � 2 � 2 cubic matrix: The first two
axes are identical to those used to partition the principal cells of the
amygdala, namely the valence of the US defining the current
situation (positive/negative) and the dominant dopamine receptor
expressed for the MSN (D1/D2). To these are added a third
orthogonal axis reflecting the compartment of the striatum in
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which an MSN resides—patch (striosomes) versus matrix (matri-
somes). The definitive work identifying this latter compartmental
partitioning has been done in the neostriatum (e.g., Fujiyama et al.,
2011; Gerfen, 1989), but these same subdivisions have been es-
tablished histologically for the NAc core as well (e.g., Berendse,
Groenewegen, & Lohman, 1992; Joel & Weiner, 2000)—although
the patch and matrix compartments are more closely intermixed in
the ventral as compared with the dorsal striatum. Both D1- and
D2-expressing MSNs have been shown to reside in both compart-
ments of the neostriatum (Rao, Molinoff, & Joyce, 1991), and
individual cells have been found in the VS that code selectively for
appetitive or aversive USs (Roitman et al., 2005). Nonetheless,
despite the considerable circumstantial evidence, our proposal for
partitioning VS MSNs into eight functional phenotypes remains
speculative.

The positive/negative valence and D1/D2 distinctions work es-
sentially the same in VS as described for the amygdala. As noted
in the above model overview, we hypothesize that the patch MSNs
learn to represent temporally specific expectations for when spe-
cific USs should occur (based largely on external cortical inputs,
not through timing mechanisms intrinsic to striatum as hypothe-
sized by Brown et al., 1999). By contrast, matrix MSNs are
hypothesized to learn to respond immediately based on CS inputs
that indicate the possibility of imminent specific USs, producing a
gating-like updating signal to OFC and vmPFC areas while simul-
taneously modulating phasic dopamine via projections to the LHb.
The following sections provide some key empirical data that
motivates this basic division-of-labor.

VS Patch MSNs Learn Temporally-Specific
US Expectations

A strong constraint distinguishing the function of patch versus
matrix subtypes comes from studies showing that at least some
MSNs in the patch compartment, but not the matrix, synapse
directly onto dopamine cells of the VTA and SNc, and this is
particularly the case for VS patch cells (Bocklisch et al., 2013;
Fujiyama et al., 2011; Joel & Weiner, 2000). Further, it appears
that the MSNs that synapse directly onto dopamine cells express
D1 receptors (Bocklisch et al., 2013; Fujiyama et al., 2011). Thus,
as described in our earlier article (Hazy et al., 2010) and elsewhere
(Brown et al., 1999; Houk et al., 1995; Vitay & Hamker, 2014),
D1-expressing MSNs of the VS patch compartment that synapse
onto dopamine cells are in a position to prevent bursting of
dopamine cells for primary appetitive events (i.e., USs) as these
become predictable. This produces a negative feedback loop where
phasic dopamine bursts drive learning on these D1-patch neurons,
causing them to inhibit further bursting for expected rewards. This
corresponds directly to the classic Rescorla-Wagner learning
mechanism, and the PV system in PVLV.

We extend this core model by suggesting that these same
D1-expressing VS patch MSNs also send US expectations to the
lateral habenula (LHb), enabling the latter to drive pauses in
dopamine cell firing when expected rewards have been omitted.
Complementarily, some D2-expressing VSPatch MSNs serve as an
extinction-coding or evidence-against counterweight to this D1-
anchored pathway, mitigating the strength of the expectation, for
example in the case of probabilistic reward schedules (see Simu-

lation 2c in Results), and conditioned inhibition training (Simula-
tion 3c).

In essential symmetry with the appetitive case, a second sub-
population of D2-expressing patch MSNs are hypothesized to
provide the key substate responsible for learning a temporally
explicit expectation of aversive outcomes. Again, dopamine cell
pauses provide the appropriate plasticity-inducing signals so as to
strengthen thalamo- and corticostriatal synapses at these D2-
expressing MSNs. In this case, however, there is no direct shunting
of dopamine cells involved and instead it is in the LHb where the
critical cancelling out of expected punishment occurs. The inte-
gration of these signals with other inputs is discussed in the section
on the lateral habenula below.

VS Matrix MSNs Immediately Report CSs

We hypothesize that VS matrix MSNs learn to respond imme-
diately to events that predict upcoming USs (i.e., CSs), with two
separate but synergistic effects, one on phasic dopamine firing, and
the other on updating active representations in vmPFC that can
encode information about potential USs with sustained firing
(Frank & Claus, 2006; Pauli et al., 2012). This latter function is
based on the working memory gating model of dorsal striatum
(Frank et al., 2001; Hazy, Frank, & O’Reilly, 2006, 2007; Mink,
1996; O’Reilly, 2006; O’Reilly & Frank, 2006), where the direct
or Go pathway disinhibits corticothalamic loops, and the indirect
or NoGo pathway is an inhibitory opponent to this process. These
gating functions involve projections through the globus pallidus
and SNr (Alexander, DeLong, & Strick, 1986; Mink, 1996), and in
the case of ventral striatum, also the ventral pallidum (VP; Kup-
chik et al., 2015). One key difference from the dorsal case is that
the D2-dominant pathway in ventral striatum would need to drive
a direct-pathway-like disinhibition for aversive USs, as it serves as
the acquisition side of that pathway. Supporting this possibility,
the Kupchik et al. (2015) study reported that the VS output
pathways through the VP do not seem to be as strictly segregated
as in the dorsal striatum and, more specifically, those authors also
reported that some D2-MSNs in the NAc appear to be in a position
to disinhibit thalamic relay cells in the mediodorsal nucleus, a
function believed to be restricted to D1-MSNs in the dorsal stria-
tum. Overall, this gating-like function could be much more directly
tested in these VS pathways, and remains somewhat speculative. It
is also not directly included in the models reported here, although
its effects are simulated via a controlled updating of OFC inputs to
the model.

The dopaminergic effects of VS matrix signals are hypothesized
based on the need for VS to LHb pathways to drive phasic pauses
or dips in dopamine firing—these same pathways originating in
the VS matrix could then drive pauses for aversive CSs, and we are
not aware of any other pathway for supporting this function (e.g.,
there does not appear to be a direct projection from the amygdala;
Herkenham & Nauta, 1977). This would require a D2-dominant
pathway to produce net excitation (disinhibition) at the LHb and,
according to this scheme, D1-dominant pathways would produce
net inhibition in LHb. The latter could then be in a position to
produce disinhibitory bursting from dopamine cells, or at least be
permissive of such bursting. We review the relevant data on LHb
next.
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The Lateral Habenula and RMTg

A growing body of empirical data implicates the LHb as the
critical substrate responsible for causing tonically active (at �5
Hz) dopamine cells to pause firing in response to negative out-
comes (Christoph et al., 1986; Hikosaka, 2010; Hikosaka et al.,
2008; Ji & Shepard, 2007; Matsumoto & Hikosaka, 2007; Matsu-
moto & Hikosaka, 2009b). The LHb is composed of a largely
homogeneous population of glutamatergic cells (Díaz, Bravo, Ro-
jas, & Concha, 2011; Gonçalves, Sego, & Metzger, 2012; Zahm &
Root, 2017) that have a baseline firing rate in the range of �20–30
Hz (Matsumoto & Hikosaka, 2007, 2009b). Firing rates above
baseline consistently signal negative outcomes irrespective of ap-
petitive or aversive context, while rates below baseline signal
positive outcomes. Thus, primary aversive outcomes (e.g., the pain
of a footshock) phasically increase LHb activity via direct excit-
atory inputs from the spinal cord and related structures (Coizet,
Dommett, Klop, Redgrave, & Overton, 2010; Shelton, Becerra, &
Borsook, 2012), and this increased LHb activity in turn produces
pauses in dopamine cell activity (Bromberg-Martin, Matsumoto,
Hong, & Hikosaka, 2010; Christoph et al., 1986). Conversely,
primary appetitive outcomes (e.g., food) produce corresponding
decreases in LHb cell activity, potentially via direct projections
from the lateral hypothalamic area (Herkenham & Nauta, 1977).
Unlike the other substrates described thus far, the LHb does not
appear to distinguish between appetitive and aversive sources of
excitation or inhibition, and thus represents a final common path-
way where these different threads converge. Consistent with this
idea, Bernard Balleine and colleagues have recently reported that
the LHb seems to play a critical role in conditioned inhibition
(Laurent et al., 2017).

Anatomically, the primary afferents that are in a position to
convey CS and US-expectation signals to the lateral habenula
(LHb) originate from a distinct set of atypical cells in the pallidum,
which have been shown to convey signals from the striatum to the
LHb (DeLong, 1971; Hong & Hikosaka, 2008; Parent, Lévesque,
& Parent, 2001; Richardson & DeLong, 1991; Tremblay, Filion, &
Be’dard, 1989; see Figure 4). These atypical, LHb-projecting cells
appear to reside in two narrow slivers of tissue at the border
between the GPe and GPi and between the GPi and VP (Hong &
Hikosaka, 2008). Further, there appear to be LHb-projecting cells
interspersed within the parenchyma of the VP proper as well
(Hong & Hikosaka, 2013; Jhou, Fields, Baxter, Saper, & Holland,
2009). As partially characterized by Hong and Hikosaka (2008),
the LHb-projecting cells of the pallidum appear to be tonically
active in the range of 50–70 Hz and to exert a net excitatory effect
on LHb cell activity, in contrast to the predominant projection cells
of the pallidum which are uniformly net inhibitory at their down-
stream targets (e.g., Mink, 1996). Also relevant is the recent
demonstration that pallido-habenular axons consistently corelease
both glutamate and GABA (Root, Zhang, et al., 2018), which is
likely important in maintaining an excitatory-inhibitory balance in
the LHb because the latter appears to have little or no local
GABAergic interneurons of its own. Finally, directly stimulating
diverse, heterogeneous regions of the striatum led to excitations,
inhibitions, or neither in the lateral habenula in an indeterminate,
patchy pattern (Hong & Hikosaka, 2013), although it remains to be
determined whether those striatal cells project onto the same GPb
cells that project to lateral habenula (Hong & Hikosaka, 2013), nor

has it been determined the degree to which the striatal afferents to
these cells represent collaterals of typical striatopallidal projec-
tions, or arise from a distinct subpopulation.

For the various D1 versus D2 MSNs to have the appropriate
effects on the LHb, the GABA inhibitory output from the MSNs
must either be conveyed directly or the sign must be reversed, as
shown in Figure 2. For example, for the appetitive VS patch D1
MSNs proposed to shunt dopamine bursts, they need to have a net
excitatory effect on the LHb so that they can drive phasic pausing
of dopamine firing when an anticipated reward is otherwise omit-
ted. To the extent that opposing D2 VS patch MSNs act to inhibit
the LHb, they can counteract this effect, when the US expectation
is reduced or extinguished. Similar logic can be carried through for
all the other cases of VS MSNs.

Because the LHb neurons are predominately glutamatergic,
there must be an intervening inhibitory node between those cells
and the dopamine cells in order to generate pauses. While LHb

Figure 4. Four channels may convey acquired signals from the striatum
to the lateral habenula, with direct path inhibiting GPi (globus pallidus
internal segment) while indirect path via GPe (external segment) has a
disinhibitory effect. The effect of GPi on LHb (lateral habenula) appears to
be net excitatory, while LHb is net inhibitory on DA (VTA, SNc) via the
RMTg (rostromedial tegmental nucleus). As shown, immediate firing from
the matrix pathway can drive appropriate phasic DA signaling (direct �
positive valence; indirect � negative), while patch has more delayed
timing, with the timing becoming more precise via GP dynamics, such that
the effect on LHb opposes the direct effect of USs (dotted lines, negative
valence for the direct pathway, positive for indirect)—if the US does not
occur, then DA responds as shown in the solid lines. See the online article
for the color version of this figure.
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