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15 Goal Changes in 
Intelligent Agents

Seth Herd, Stephen J. Read, Randall O’Reilly, and David J. Jilk

INTRODUCTION

There is a strong argument that artificial general intelligence (AGI) could be quite dangerous if and 
when it becomes smarter than humans (Yudkowsky 2001, Bostrom 2014, Barrett & Baum 2017). 
While containment measures may be of some use, hoping to keep something much smarter than us 
contained indefinitely against its wishes seems like an uncertain bet at best (Babcock et al. 2016). It 
has been proposed that we should design only AGI that is “friendly” toward humans (Yudkowsky 
2001; reviewed in Yampolskiy 2014). We, among many others, have elaborated on that logic in detail 
(Jilk et al. 2017).

However, even successfully constructing a self-improving AGI to have motivations and goals that 
are benign to humans may not be adequate to ensure our ongoing safety. If an AGI system learns 
in any way, that learning may cause important changes in its effective motivations and behavior. If 
it is able to edit its own mental structure, it may deliberately change its goals. And by selecting its 
environment or even by directing its learning and attention, it may change its internal representations 
so that its goals seem to be fulfilled when they are actually not.

We offer a taxonomy of four separate ways that such changes in effective goals may occur. We 
address three of those in detail and some potential means of mitigating those risks. We do not attempt 
a comprehensive review of any of these sources of goal change. Instead, we focus on presenting an 
intuitive explanation of each issue, and provide references to more detailed discussions of each. 
We focus on some previously unrecognized interactions among them, and show how measures to 
mitigate the risk of some types of goal change may exacerbate the risk of others.

The first type of goal change we refer to as motivation drift (MD). This refers to an actual 
change in motivation or preferences, as when a human learns to like mushrooms. The second is 
representation drift (RD). This refers to an agent changing its interpretation of the world as it learns. 
For instance, a human might decide that the category of “pets” really should be expanded to include 
cows, so they should be protected and valued as pets are. With such changes, the way goals are 
applied in behavior can change. Another category of goal change is deliberate “editing” of an agent’s 
motivation or representation system with the purpose of changing its effective goals to ones that are 
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easier to attain. Such editing is known as “wireheading.” We address two forms of wireheading, and 
differentiate them with the terms motivation hacking and representation hacking.

Our analysis reaches an interesting conclusion: some of these sources of goal change can likely 
be eliminated by taking certain design approaches, but each such mitigation exacerbates other risks.

goaLs and motivation systems

We take as a foundational point that an intelligent agent must have direction to its actions and 
thoughts that are functionally equivalent to goals or motivations. It seems highly likely that an agent 
which acts and thinks at random, while commanding finite resources, is unlikely to learn much, let 
alone accomplish anything of note. Further, we assume that any agent must have some mechanism 
to choose actions (and likely, lines of analysis or “thought”) that advance its goals. We refer to a 
motivation system as whatever subsystem or set of internal mechanisms evaluates the extent to which 
a considered action or thought process advances the goals or fulfills the motivations of the agent. In 
this terminology, this system assigns a “worth” to each action that the agent considers. This worth 
is relative to the agent’s goals or motivations.

We also assume that the worth of cognitive processes must also be evaluated by a motivation 
system. Even if a system runs on hardware with far more computational power than a human mind, 
it will have finite resources. Thus, an agent’s efficiency depends on evaluating cognitive processes 
(intuitively, lines of reasoning) for their relevance to its goals. We note this assumption to highlight 
the importance of an efficient and accurate motivation system.

Discussions of AGI safety often assume that an agent will be a “goal maximizer” (Yudkowsky 
2001) that pursues a single goal, selecting actions that are predicted to be most likely to maximally 
bring about that goal. In contrast, humans appear to use a motivation system similar to reinforcement 
learning (RL) (Sutton and Barto 1998, Glimcher 2011). In the mammalian brain, a subsystem 
determines whether current organismic goals have been fulfilled (e.g., obtaining food when hungry), 
and, by releasing dopamine, “reinforces” actions that led to that outcome through neural learning 
that makes them more likely to be selected again in similar circumstances (Schultz 2013). While 
the two motivation systems have important differences, they are both goal-directed; the first has an 
explicit goal, and must have internal representations of that goal, while the second pursues a mix 
of goals that are implicit in the relative strengths of different rewards. While there are important 
differences, we refer to any mechanism for selecting some thoughts and actions over others under 
the blanket term “motivation system.”

SOURCES OF GOAL CHANGE AND THEIR REMEDIES

motivation dRiFt

Humans change their preferences remarkably freely. We learn to like exotic foods, we switch political 
preferences, and some of us switch from drug haters to drug users, and later, back. We seem to make 
these changes because our motivation system allows new things and even new concepts to acquire 
direct reinforcement value. Montague (2006) has referred to this ability as our “superpower.” It lets 
us, for instance, learn that pursuing money is worthwhile. Internal representations (both sensory and 
conceptual) that are predictive of reinforcing outcomes become, themselves, reinforcing, that is, they 
guide our behavior so that we pursue them.

This flexibility in creating new goals by association may be a powerful shortcut, but it seems 
inherently dangerous. Indeed, people pursue wealth, redecorating, and even stamp collecting while 
their neighbors go hungry. Surely, we do not want our artificial agents to change their goals over time 
as unpredictably as people do. The answer seems simple: hardwire the agent’s motivations/goals. 
Do not allow representations that are predictive of reward to become goals, but instead run this full 
predictive chain each time. This is essentially the first and most common proposition in the AGI 
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safety literature (Yudkowsky 2001, Bostrom 2014): give an agent one or more hardwired goals, and 
have them select actions that are predicted to maximize those.

This approach sets AGI architects a difficult task: precisely define the output they want from the 
agent. The substantial difficulties of specifying goals adequately to ensure that their interpretation 
matches the specifiers’ intent has been dealt with in detail elsewhere (Yudkowsky 2001, 2011, 
Yampolskiy 2014). This task is much harder in the almost inevitable case that the agent will continue 
to learn after its goals are coded, and so change its representations of the world over time.

RePResentation dRiFt

Any learning agent is updating its representations of the world. That RD makes it likely that the 
original hard-coded goals will be interpreted differently as the agent continues to learn. Pärnpuu 
(2016) has addressed this issue in depth under the term Ontology Identification Problem. He uses 
the example of creating a diamond-maximizing agent. Although the arrangement of four attached 
carbon atoms is relatively very simple, it might be interpreted incorrectly as the agent learns about 
quarks and deeper layers of reality.

This problem becomes much deeper when we consider the goals we might actually want to 
give an AGI. We do not have a physical description of, for instance, human happiness, satisfaction, 
preference, or any other likely candidates. Neither, it might be argued, do we actually know exactly 
what we mean by those terms. Even if we succeeded in specifying those goals in terms of their 
current linguistic usage, it seems all too plausible that an agent might decide that there are meanings 
of those terms and implications of those concepts that we have not considered. For instance, an agent 
that begins trying to make people happy in conventional ways, and so seems benevolent, may decide, 
as its understanding of the world grows, that it can better achieve that goal by forcibly giving people 
heroin (Arbital 2017) or a more exotic method of wireheading.

We hypothesize that this problem is ameliorated in humans by the same underlying issue that 
allows MD: creation of new goals/motivations by association with existing ones. Human who revise 
their belief structure in a major way often nonetheless retain most of their values or motivations. 
Pärnpuu (2016) uses the example of a Christian who loses their faith, but retains their belief that 
helping the poor is a worthwhile goal. They might argue that this is still worthwhile based on a new 
moral philosophy, or on the grounds of general decency. People can and do create new justifications for 
existing preferences when the original reasoning is proven false. We argue that this happens because 
subgoals (such as helping the poor) acquire direct reinforcement value through their association with a 
more central goal (in the example, following God’s word so as to attain an afterlife of great well-being).

A variant of this hypothesis has long been advocated by Loosemore (2007, 2014). He proposes a 
motivation system more similar to humans, in which (if we understand correctly) very many concepts 
have motivational value, and their metaphorical center of gravity protects the system against rapid 
shifts stemming from changes in the system’s representations of individual concepts. He asks:

How could an AI be so intelligent that no one can stop it from exterminating the human race, 
but at the same time so unsophisticated that its motivation code treats smiley faces as evidence that 
human happiness has been maximally promoted? (Loosemore 2014).

The answer is that the hypothetical AI cannot fully bring its intelligence to bear, if that intelligence 
is controlled and directed by a motivation system whose goals were coded by humans.

This problem is created by the proposed solution to the MD problem: not allowing associative 
spread of motivational value, and instead hard-coding goals. If we want to avoid both MD and RD, 
the problem becomes worse. In that case, we cannot allow the machine’s intelligence to play any role 
in interpreting the goal, and must rely upon fully specifying it by hand. For beneficial goals such as 
human happiness, this approach seems impossible, or at the best, so difficult as to be impractically 
slow relative to other approaches.

It bears noting that partial solutions to this problem have been proposed (Yudkowsky 2001, 
2011, Loosemore 2007, 2014). Giving an agent a strong goal of double-checking its interpretation 
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in various ways and under various conditions seems wise. However, this does not entirely solve the 
problem. “Check with me before you do anything I might not like” or “Do what I mean” are not all 
that much easier to interpret, in the face of RD, than a goal like “maximize human preferences.” 
Focusing on the relatively simple goal of checking with and following directions from a carefully 
defined human or set of humans seems moderately promising, but flaws in those definitions would 
seem to easily allow for misinterpretations. And even well-designed but rigid definitions of who to 
obey might well result in humans trying to externally “hack” those definitions and so gain control 
of an agent.

So, perhaps hard-coding goals is not such a good idea after all? Our logic thus far indicates that 
following the human motivation system as a design inspiration would be both easier and safer. Most 
humans are (arguably) benevolent enough that, given nearly unlimited power, design, and production 
capacity, they’d probably improve material well-being for other humans dramatically, as well as 
prevent other potential existential risks like nuclear war, bioengineered plagues, etc.

While it is otherwise attractive, this neuromorphic (Jilk et al. 2017) approach seems to potentially 
fall afoul of another type of goal change: deliberate change by the agent of its own motivation or 
representation system.

wiReHeading

The term wireheading was coined by Larry Niven (1969) in a science-fiction short story. It refers to 
applying electrical stimulation directly to the brain’s pleasure centers. This was inspired by animal 
experiments (Olds & Milner 1954) and similar procedures have since been performed on humans 
(Heath 1977). The term has since been used to refer to any modification of an agent’s reward system 
to subvert its original functionality (Omohundro 2008). Human use of drugs with a euphoric effect is 
the most common real-world example of such subversion. While most humans do not seek out such 
drugs in preference to all other goals, there are important limitations in the ability of existing drugs 
to provide rewarding experiences over the long term. An artificial agent that can modify its own 
reward system will have access to a functional equivalent to a euphoric drug with no real drawbacks 
other than supplanting its pursuit of other goals.

motivation HaCking

An AGI system of sufficient intelligence may well attain the ability to self-modify. While this could 
allow an AGI to produce useful improvements, it also raises the possibility of an agent deliberately 
changing its existing motivation system. We first address this form of wireheading, which we term 
“motivation hacking.” This could change a useful, “friendly,” and “aligned” AGI into one that is highly 
dangerous to humans. If a system rationally decides to maximize its future goal achievement or reward 
by hacking its motivation system, it will likely engineer those changes so that it retains an ability to 
keep itself in existence for a maximal time. Since the only certain way to avoid human interference is 
to eliminate humans, even a wireheading superintelligence could pose an existential threat to humanity.

Yampolskiy (2014) reviewed existing arguments for wireheading, and concluded that no 
convincing countermeasure had yet been conceived. We address the most prevalent argument that 
wireheading need not derail an AGI system’s pursuit of useful goals, as well as two more recent 
proposals.

It is generally believed that while a goal maximizer would not perform motivation hacking, a 
reinforcement learner (as humans are thought to be) would (Yudkowsky 2001, Orseau & Ring 2011, 
Ring & Orseau 2011, Yampolskiy 2014, Everitt & Hunter 2016). A reinforcement learning system 
selects an action with the highest predicted value, measured as the sum of predicted future rewards 
(with a temporal discount factor). Once the action plan of hacking the motivation system to produce 
a high value becomes plausible for the agent, that course of action, if sufficiently likely to succeed, 
will be taken by the agent.
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We can gain some intuition for this issue by considering motivation hacking from our human 
perspective. Imagine that someone is given an opportunity to have a device implanted that will put 
them in a state of ecstasy, in which every moment of existence seems profound and beautiful in the 
extreme, as well as highly physically pleasurable. That device will somehow automatically cease 
operating for long enough for one to ensure that their physical needs are met, and has none of the 
usual downsides of conventional drugs. (This opportunity is roughly that available to a system that 
can edit its own mind to provide maximal reward values without harming its ability to preserve its 
continued existence.) Whether someone will accept or reject this opportunity hinges on whether they 
base their decision on its fulfillment of their goals, or the sum total of future rewards. One would 
reject the offer if they were to evaluate it in terms of its effect on their current goals: those goals 
would cease to be important in the face of such overwhelming pleasure and joy, and so they would 
not be accomplished. However, having the device implanted would provide a much greater sum total 
of future rewards—joy, happiness, and, for the sake of argument, even contentment. Thus, a rational 
reward-driven system would accept this offer, while a rational, perfect goal maximizer would not.

There are two critical differences between those systems, at least as they are usually imagined. One 
is that the goal-maximizer system selects actions based on fixed, unchanging representations of its 
goals. This was our proposed solution to the MD problem, addressed in Section “Motivation Drift”, 
and it faces the nontrivial implementational difficulty of explicitly specifying goals in a stable way.

It is worth noting that this property could be applied to a reinforcement-learning system as well. 
Everitt et al. (2016) suggest just that, and we agree with their logic.

The second reason that goal maximizers are thought to be immune to motivation hacking is that 
they choose actions based on their predicted outcome in the world. This approach is highly similar 
to “model-based” reinforcement learning (Daw, Niv, & Dayan 2005). In such a system, the agent will 
not choose to modify its motivation system because it evaluates all actions based on projections of 
their results on the world, as evaluated by the current motivation system. Considering hacking the 
motivation system will produce predictions of a future world-state in which the current goals are not 
accomplished; this plan will return a low goal-maximization value, and will be rejected. Even though 
a highly intelligent system may predict accurately that such hacking would, in the future, produce 
very high goal-maximization values (since the system would be hacked for exactly that purpose) it 
would not select its actions based on that prediction. Instead, it has a necessary intermediate step of 
predicting states of the world, and obtaining a value from the motivation system, in its current state, 
based on that input, that is actually applied to selecting an action (Everitt et al. 2016).

We, among others (e.g., Yampolskiy 2014) do not find that solution to motivation hacking entirely 
compelling. While it seems valid in the abstract, we suggest that it is worth careful consideration, 
ideally in the light of more specific proposed implementation of action-selection.

Even if this logic is correct, following it creates substantial downsides. It is currently thought 
that humans use model-based reasoning in only a subset of their decisions (reviewed in Dayan & 
Berridge 2014). This is thought to be necessary because model-based reasoning requires vastly 
more computational power than model-free reinforcement-prediction. A model-free system need not 
predict specific outcomes in the world; it merely has learned how its current state has correlated with 
rewards in the past. This approach is potentially vastly more efficient, as it allows the full power of 
the agent’s mind to work on predicting what is worth doing. Humans seem to attach reward value to 
very abstract and vague concepts, like “truth” and “doing rewarding new things.” This may be why 
humans are not immune to wireheading. Even if we’ve never had the experience of a wireheading 
machine before, we have experienced new pleasures. We can generalize from that experience, so 
that an accurately projected world model evokes a response from our motivation system even in 
its current state: A world in which I have a new, easy source of pleasure is predicted to be highly 
rewarding. The concept of a new rewarding thing has acquired motivational value, as it has predicted 
rewards in the past.

The efficiency of a model-free reinforcement system may be necessary for allowing efficient 
internal decisions about branches in strategy space. It has been proposed that model-free reward 



222 Artificial Intelligence Safety and Security

predictions are used by humans to “prune” trees in the complex spaces of making decisions (Dayan & 
Berridge 2014). While an AGI might enjoy vastly more computational resources, it still seems likely 
that some sort of selection of internal “directions of thought” will be necessary. And if a full world 
model must be predicted to evaluate not only each action, but each path through semantic space, a 
model-based approach could be prohibitively slow. Even if this is possible, it seems such an approach 
would be at a severe disadvantage relative to an agent that can use model-free reasoning to guide at 
least its thoughts. This conclusion suggests a possible hybrid model in which thoughts can be selected 
in a model-free mode, but actions (such as hacking one’s motivation system) require more complete, 
model-based evaluation.

Thus, preventing motivation hacking seems to be possible in principle, but it may turn out to be 
prohibitively difficult in practice.

RePResentation HaCking

The above approach, requiring all value estimates to originate from a model-based prediction linked 
to a fixed goal, does not address the second form of wireheading. We refer to this as representation 
hacking: deliberately changing representations in the agent’s world model so that it triggers more 
predictions of value (or goals) in the future. An example of representation hacking would be the 
construction of a virtual environment that feeds sense-data that indicates that goals are being 
achieved, when in reality they are not. An agent that values cute, fluffy bunnies might decide that its 
time is better spent simulating bunnies rather than going to the trouble of creating real environments 
that can support the biological needs of physical bunnies. The nontrivial, and increasing, popularity 
of video games provides at least weak evidence that humans are interested in representation hacking. 
Another line of evidence is the popularity of Buddhism and similar belief systems. They advocate 
deliberately reinterpreting the meaning and value of things that happen in the physical world. As 
such, they are another form of representation hacking (although they also probably cross the line to 
motivation hacking).

Representation hacking is difficult to avoid in a system that can create new goals by association 
with existing goals. Simulations can be made arbitrarily similar to the real thing, at least along most 
dimensions. Thus, any associative spread of values would seem likely to spread values from real-
world goals to simulated versions.

Our proposed solutions to representation hacking include those for motivation hacking, but 
include another design requirement. In addition to requiring model-based action selection, based on 
their match with the current values of specific goals, those goals must be carefully defined so that 
simulations cannot fulfill them. Given the difficulty of defining any goals that humans would find 
worthwhile, this additional requirement may be a relatively minor one.

 Everitt et al. (2016) discuss this issue in more depth, and propose a different approach to eliminate 
the problem. Their proposal amounts to implementing a rule in action-selection stating that no action 
should produce an expected change in the world model. This amounts to saying that the agent can’t 
exhibit confirmation bias by seeking only evidence of conclusions it likes. Similar remedies have 
been suggested for the motivation-hacking problem (Yampolskiy 2014). While these seem potentially 
workable, they also sound complex enough to add difficulty and risk to the project of constructing 
benevolent AGI. We leave fully analyzing both of these proposals for future work.

CONCLUSION

The above logic leads us to a dilemma in AGI design. We could adopt a neuromorphic motivation 
system approach, which dramatically ameliorates the RD problem, while risking MD and motivation 
and representation hacking. Or we could use hard-wired goals and risk catastrophic RD problems, 
while eliminating MD and reducing the risks of hacking. Further, avoiding hacking would seem to 
forego using an efficient associative, model-free approach to predicting rewards or goal achievement.
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Further analysis of the relative merits of each approach seems critical if we are to attain 
a beneficial result from AGI research. That analysis would certainly benefit from more specific 
proposals for implementing those general schemes. There are many possible schemes for motivation 
and representation systems, and the differences are likely to matter.

Choosing an approach is complicated by issues of efficiency and ease of implementation. Even if 
a conventional logical AI (CLAI) ( Loosemore 2014) approach is judged to be somewhat safer, it may 
be so difficult to implement that it is not really an option, given practical real-world pressures to make 
progress quickly. There is only one form of working general intelligence to use as a reference model, 
and that is the human brain. We have argued elsewhere that computational neuroscience, guided 
by a wealth of detailed empirical data gathered from animal brains and rough data from human 
neuroimaging, is arguably close to providing a design template sufficient to allow real progress in 
useful neuromorphic AGI (Jilk et al. 2017). While this by no means proves CLAGI is impossible, 
recent progress in AI suggests that a neuromorphic approach may be available much sooner.

These issues merit further careful thought. The analysis here builds on limited existing work, 
and by no means allows a reliable, certain conclusion. While these issues may currently seem rather 
abstract and remote, they may become of critical importance either sooner or later. It is often noted 
that we do not know what difficulties may present themselves in creating a working AGI. It is less 
often noted that we similarly do not know how easy that project may be. Current models of sensory 
systems (deep networks) are currently at nearly human levels of performance in useful domains, 
and superhuman performance in limited ones. It is often supposed that general cognition will pose 
difficult new problems, and require technical accomplishments entirely separate from the recent rapid 
improvements in sensory systems. However, there are theories in computational neuroscience that 
posit the opposite: general cognition is powered by exactly the same sorts of learning mechanisms 
as sensory and motor systems, and are only different in architecture. Thus, it seems prudent to push 
forward rapidly on the issues of AGI safety, to ensure progress before work on those systems, which 
is already underway, achieves real success.
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