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Abstract
We present a theory and neural network model of the neural mechanisms underlying human decision-making. We propose a
detailed model of the interaction between brain regions, under a proposer-predictor-actor-critic framework. This theory is based
on detailed animal data and theories of action-selection. Those theories are adapted to serial operation to bridge levels of analysis
and explain human decision-making. Task-relevant areas of cortex propose a candidate plan using fast, model-free, parallel
neural computations. Other areas of cortex and medial temporal lobe can then predict likely outcomes of that plan in this
situation. This optional prediction- (or model-) based computation can produce better accuracy and generalization, at the expense
of speed. Next, linked regions of basal ganglia act to accept or reject the proposed plan based on its reward history in similar
contexts. If that plan is rejected, the process repeats to consider a new option. The reward-prediction system acts as a critic to
determine the value of the outcome relative to expectations and produce dopamine as a training signal for cortex and basal
ganglia. By operating sequentially and hierarchically, the same mechanisms previously proposed for animal action-selection
could explain the most complex human plans and decisions.We discuss explanations of model-based decisions, habitization, and
risky behavior based on the computational model.
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Introduction

Decision-making is of critical importance. In personal life,
professional activities, and in government and military con-
texts, the quality of people’s decisions is among the most
important determinants of whether our outcomes are good,
bad, or disastrous. As such, a great deal of scientific work
has been directed at human decision-making, at multiple
levels of analysis. In this paper, we advance a theory and
neural network model of how specific brain networks give
rise to both the power and pitfalls of human-level decision
making. We build upon previous theories and models of spe-
cific brain systems and a wealth of existing functional and
anatomical data from animal decision-making. We attempt

to bridge from that level of detailed data to address human
behavior and human neuroimaging data.

We explore the implications of our theory by manipulat-
ing and testing a neural network model of the relevant brain
systems, implemented in the Leabra framework (O’Reilly
& Munakata, 2000). We use this model to address several
important issues in decision-making. We address the dis-
tinction between model-based and model-free decision-
making, in computational and anatomical terms; the use
of predictive models that match the structure of particular
tasks; a mechanism for habitization; and some individual
differences in biology and life experience that result in
making risky decisions.

There is now a broad consensus about the critical role of the
basal ganglia in helping to select actions. By learning over
time from dopamine neuromodulation, it selects (or “gates”)
those actions which maximize reward and minimize negative
outcomes (Barto, Sutton, & Anderson, 1983; Barto 1995;
Mink, 1996; Graybiel, Aosaki, Flaherty, & Kimura, 1994;
Joel, Niv, & Ruppin, 2002; Graybiel, 2005; Nelson &
Kreitzer, 2014; Gurney, Prescott, & Redgrave, 2001; Frank,
Loughry & O’Reilly, 2001; Brown, Bullock, & Grossberg,
2004; Frank, 2005; O’Reilly & Frank, 2006; see Collins and
Frank, 2014 and Dunovan & Verstynen, 2016 for recent re-
views). Computationally, this system is well-described by the
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Actor-Critic framework of Sutton and Barto (1981). In this
framework, the basal ganglia action-selection system is the
“actor,” and the set of brain areas that produce phasic changes
in dopamine are termed the “critic,” which trains the actor
according to its estimate of the value of actions.

More recently, there has been considerable interest in a
higher-level, model-based form of action selection thought
to depend on prefrontal cortical areas. This intuitively captures
one special aspect of human decision-making: we seem to
predict the outcomes of possible actions. This has been
contrasted to the model-free nature of the learned associa-
tions in the basal ganglia system (Daw, Niv, & Dayan,
2005; Dayan and Berridge, 2014). Many people tend to
think of this distinction in terms of separate, and perhaps
competing, systems that enact goal-directed versus
habitual behavior (Tolman, 1948; Balleine & Dickinson,
1998; Yin & Knowlton, 2006; Tricomi, Balleine &
O’Doherty, 2009), where the basal ganglia is the habit sys-
tem, and the prefrontal cortex is goal-directed. However, it
has increasingly become clear that the basal ganglia plays a
critical role in higher-level cognitive function (Pasupathy &
Miller, 2005; Balleine, Delgado, & Hikosaka, 2007) and in
goal-directed behavior (Yin, Ostlund, Knowlton, &
Balleine, 2005).

We present an alternative model in which the basal ganglia
and cortex are not separate, and do not compete, but interact to
produce a spectrum of computations. These range between
fully model-free (or prediction-free) to fully model-based (or
prediction-based). We use the terms prediction-based and
prediction-free to avoid a variety of accumulated terminolog-
ical baggage, and an imperfect mapping to our proposed neu-
ral mechanism (see Discussion section and O’Reilly, Nair,
Russin and Herd, 2020). This model is compatible with find-
ings that model-free computational strategies show relatively
more activity in basal ganglia, whereas model-based decisions
produce more activity in PFC. This mapping is further ad-
dressed in the Discussion section.

In the context of these existing ideas and issues, we offer a
specific theory of how brain systems computationally perform
complex human decision-making. In this biologically based
Proposer-Predictor-Actor-Critic framework, the prefrontal
cortex and basal ganglia work together as an integrated sys-
tem, and prediction-based computations are an optional addi-
tional step, rather than a separate system. We focus on the
neural mechanisms of relatively complex decision-making
(roughly, decisions that take a second, or more, and that are
novel combinations of previously experienced elements) in
distinction to much work that focuses on simpler perceptual
decisions (Gold & Shadlen, 2007) and uses drift-diffusion
mathematical models (O’Connell, Shadlen, Wong-Lin, &
Kelly, 2018). We think that those decisions use similar neural
systems but proceed using fully parallel neural computations.
In contrast, we think that complex decisions demand serial

consideration of each option, and we make that a central pre-
diction of this model.

This framework provides an explicit attempt to account
for the temporally extended, sequential nature of complex
human-level decision-making. All of the existing compu-
tational models of basal ganglia in action selection (of
which we are aware) process multiple options in parallel.
Other verbal theories of basal ganglia function seldom ex-
plicitly address the serial/parallel distinction but seem to
largely assume parallel competition. We think this charac-
terization is likely correct for well-practiced tasks, includ-
ing most animal laboratory tasks. However, we argue that
making important decisions in complex, novel situations
demands a slower, serial computational approach to max-
imize accuracy, flexibility, and transfer of prior learning.
Computationally, parallel computations introduce binding
problems in neural systems (Treisman, 1996) that can be
resolved with additional learning or with serial attentional
allocation. Intuitively, devoting all available brain systems
to each option in turn is optimal for addressing difficult,
new, and critical decisions.

Structure of Proposer-Predictor-Actor-Critic
architecture

The Proposer-Predictor-Actor-Critic circuit (shown in
Figure 1) is a theory of how basal ganglia works with prefron-
tal cortex. There are loops descending from different areas of
frontal cortex through the basal ganglia and thalamus, which
converge back to modulate the function of the same areas of
frontal cortex (Alexander, DeLong, & Strick, 1986; Haber,
2010; Sallet et al., 2013; Haber, 2017). In this theory, this
same functional circuit operates in each of the different
levels of decision-making and action-selection associated
with each different fronto-striatal area. We assume, with
many others (e.g., Miller & Cohen, 2001) that complex
decision-making consists of selecting (gating) working
memory representations into an active state. Those repre-
sentations then condition further steps in the decision-
making process, including action-selection. Critically, we
also argue that each such circuit also functions sequentially
across multiple iterations within complex decision-making
tasks. This is a serial-parallelmodel, in which parallel neu-
ral network computations are iterated serially so that each
option can be evaluated with the full computational power
available.

& The cortical Proposer (cortical areas depending on task
domain; see Methods section) settles on a representation
of one potentially rewarding action, plan, or task set (we
use the term Plan for all of these, because the neural
mechanisms are isomorphic). The parallel process of gen-
erating a candidate Plan involves neural activation across
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multiple interconnected cortical areas, which integrates
learned synaptic weights with the current external inputs
(stimuli, context, affective and body states, etc.) to pro-
duce a plausible plan that represents at least a locally-
maximal satisfaction of all these factors (Hopfield, 1984;
Ackley, Hinton & Sejnowski, 1985; Rumelhart &
McClelland, 1986; O’Reilly & Munakata, 2000;
O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013). This pro-
cess acts in a single parallel neural computation and so is
relatively fast.

& A cortical Predictor (e.g., parietal and/or medial temporal
lobe for motor actions) predicts specific outcomes of that
plan in a given context or situation. This step is optional; it
is engaged only when a prediction-based strategy is
employed, which takes extra time, while (usually) provid-
ing additional accuracy and generalization to the decision.
While this computational model does not capture it, we
think this decision of whether to engage additional predic-
tions is one of many sequential decisions in the overall
decision making process.

& The Actor, consisting of a basal ganglia loop linked to the
Predictor area, takes a predicted value as input and uses
what it has learned from the reward history of similar
predictions to accept or reject that plan. If the proposed

plan is rejected, the Proposer proposes a different plan,
and the process continues. The critical computational
feature of this basal ganglia system, which is not well-
supported in the cortical system, is the ability to boil
everything down to two opposing evaluations: Go
(direct) and NoGo (indirect), which critically allows
the system to delay to consider other options. We pro-
pose that it often operates in a serial fashion in complex
human decision-making. The basal ganglia uses cortical
inputs, which enables it to function effectively in novel
decision-making contexts where the history of learning
is only applicable when it is associated through abstract
representations developed by cortex.

& Once a plan is selected and an outcome is experienced, the
Critic estimates the value of that outcome relative to its
expectations for that situation as a reward prediction
error (Schultz, 2016). This Critic is composed of a set
of subcortical areas that function as a reward-prediction
system, and it uses that reward prediction to discount
the outcome’s value, sending the result as a phasic do-
pamine signal. The Critic’s dopamine signal trains both
the Actor and the Proposer components, whereas the
Predictor is trained by the specific outcome that
occurred.

Figure 1. Structure of Proposer-Predictor-Actor-Critic architecture. The
top section is a broad functional diagram, emphasizing the serially itera-
tive and hierarchical nature of our proposed decision-making process.
The bottom expands those functions and identifies the brain areas that
perform each function. BG, Basal Ganglia; VS, Ventral Striatum (along

with amygdala and related regions). This architecture and the associated
brain regions are described in more detail in the Methods section. There
are two parallel circuits with a hierarchical relationship: the outer loop
circuit selects a plan, and the inner loop then selects an action appropriate
to that plan.
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By binarizing (accept/reject), as well as sequentializing
(considering one proposed plan at a time), this canonical
decision circuit could scale out to arbitrarily complex deci-
sions, in the same way that sequential computer programs
can accommodate arbitrarily complex chains of logic.
Parallel algorithms are faster but have more constraints
based on interference and binding problems. Furthermore,
interactions between isomorphic loops between cortex and
BG, at different levels of the anterior-posterior PFC gradi-
ent of abstraction (Badre & D'Esposito 2007), enable this
set of mechanisms to function semi-hierarchically, where
higher-level decisions can be unpacked into subgoals and
steps at lower levels.

Neural Evidence of Sequential Decision-Making

While most of the neuroscience data in animal models is con-
sistent with the idea that multiple options are evaluated in
parallel (Balleine, Delgado, & Hikosaka, 2007; Collins &
Frank, 2014), there is some recent detailed neural recording
data that suggest a more serial process in some more complex
tasks. Hunt et al. (2018) concluded that monkey orbitofrontal
cortex (OFC) and anterior cingulate cortex (ACC) neurons
represent the value of the currently attended stimulus.
Parallel models, such as traditional drift-diffusion models,
would seem to predict that both alternatives, or a difference
of the two, should be reflected in the recording data. They
used a two-alternative choice task, but with multiple attributes
for each option, and recorded from monkey frontal neurons.
The activation values of those neurons in OFC correlated with
the identity and the value of the currently attended stimulus,
and the ACC showed a more stepwise function, perhaps func-
tioning as a belief updating and accept/reject signal in their
paradigm.

OFC primarily represents the value of the currently fixated
option; while previous cue values are represented above baseline
level, the current cue representation is actually anticorrelated
with previous cue values, indicating a roughly subtractive

relationship. This indicates a comparison-with-current-best-
option representation, as opposed to the value-summation repre-
sentations assumed by parallel models. In other words, in the
OFC, Hunt et al. found a signature of attention guided value
comparisons as the monkey shifts its gaze from one location to
the next. Hunt et al. interpret their data as subjects making se-
quential decisions of whether to accept or reject the option they
currently think is best. The primary OFC representation data is
shown in Figure 2a, and we address other aspects of their data in
the Discussion section.

Rich and Wallis (2016) also examined firing patterns in
OFC neurons and found that they largely represented the val-
ue of a single choice option at any given point in time. Activity
was recorded in OFC while monkeys performed a two-
alternative-forced-choice task, and that data was used to train
a decoder to distinguish neural representations of those
choices. The decoder’s estimate of the presence of each option
showed a strong reciprocal relationship; a strong representa-
tion of one option corresponded to a weak representation of
the other option. This pattern of results indicates that the OFC
primarily represented the value of one of the two options at
any given time point. These data are also summarized in
Figure 2b.

Despite the overall serial nature of the full loop of decision-
making in our framework, there is still an important parallel
selection of a single option among all others. On each itera-
tion, the Proposer’s learned connection weights select one
plan using standard neural parallel processing. (this is de-
scribed in detail in the subsection “Structure of Proposer-
Predictor-Actor-Critic architecture”). Thus our model is a
serial-parallel model, and we think the addition of strategic,
discrete serial steps to parallel neural processing is one key
component of human intelligence (Herd et al., 2014). This
serial hypothesis is consistent with the finding that value rep-
resentations in ventromedial prefrontal cortex and striatum in
the early stages of decision making tasks correlate strongly
with the outcome the animal will go on to select on that indi-
vidual trial, rather than an average of all available outcomes,

Figure 2. a) Data from Hunt et al. (2018) showing correlations between
neural activity and cue values at each time point in monkey OFC during a
two-option comparison task. b) Data from Rich and Wallis (2016).
Decoder results on individual trials. Red lines are decoder estimates of
the probability of a representation of the chosen option; blue lines are

estimated probabilities of available of unchosen options; and gray lines
are an average of the two remaining options that are not available on that
particular trial. Results, and additional analysis, strongly indicate that
OFC neurons alternate between representing each of the available op-
tions, and do not represent them in parallel.
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as shown by the recording data above, and in Kable and
Glimcher (2009).

We ran a full model, as described in detail below, and
several variants that illustrate different possible decision-
making strategies and brain computations accompanying
them, and some possible individual differences in risk bias.
Those simulations and results are as follows:

& Full model: Over the course of training, the model increas-
ingly relies on the prediction-free Proposer component. Its
performance speeds up as it requires the serial consider-
ation of fewer plans by the Predictor, Actor, and Critic.
This illustrates a smooth transition from more controlled
to more automatic processing (Shiffrin & Schneider 1977)
or habitual behavior (Tolman, 1948).

& No-Proposer: Plans are selected for consideration at ran-
dom instead of through reward learning. This variant
learns more slowly but generalizes to the held-out test
set better, because it cannot transition to the more auto-
mat ic , habi tua l mode of per formance as the
Proposer learns, as the full model does. Comparing this
with the full model illustrates the advantages and disad-
vantages of the Proposer’s contribution.

& No-Predictor, model-free: In this variant, the model’s
Proposer and Actor components (cortex and basal ganglia)
perform model-free RL. This addresses the possibility that
the system sometimes makes decisions without taking
time to make any prediction about outcomes. This variant
performs poorly on our full, complex task, but can per-
form well on simpler tasks and performs faster without the
need to wait for an explicit prediction from the cortical
Predictor layers. We think this is the fastest but least ac-
curate mode of human decision-making, as proposed by
Daw, Niv, and Dayan (2005).

& Value-only Predictor: In this variant, the two cortical
prediction layers do not predict a specific Result or
Outcome, but only the value of the result. This variant
blurs the line between prediction-based and prediction-
free strategies; it is technically performing a model-free
computation, but it is using prediction. This fast, mixed
mode of prediction can be performed in a single com-
putational step. Thus, it performs faster but with poor
generalization relative to the full model with its two-
step Predictor component.

& Unstructured Predictor: In this variant, the Predictor com-
ponent does not separate predictions into distinct steps that
match the task structure. It performs nearly as well as the
full model on the training set but much worse on novel
combinations of situation and goal (the test set). This re-
sult illustrates the improved generalization produced by
splitting predictions into steps that match the task domain.

& Basal ganglia parameter variations affecting risk. We
shifted the balance between Go (D1) versus NoGo (D2)

pathways in the Actor (basal ganglia) component. The
model reproduces experimental results showing more
risky decisions with more D1 influence, in accord with a
variety of empirical results. We also modeled vicarious
learning, in which people learn from others’ experiences
in risky domains and showed how different vicarious ex-
periences (e.g., different public awareness campaigns),
produce different behavioral risk profiles.

Table 1 (methods) summarizes all of the model variants,
whereas Table 2 (discussion) summarizes their results and
interpretations.

Next, we present the specific computational implementa-
tion of our overall framework, the above manipulations, and
their results. In the Discussion, we consider the relationships
between this framework and a variety of other approaches to
understanding decision making across a range of different
levels of analysis.

Methods

Modeling framework

Our model was created within the open source Leabra model-
ing framework (O’Reilly & Munakata, 2000; O’Reilly et al.,
2012; O’Reilly, Hazy, Herd, 2016). The Leabra framework is
a cumulative theory of cortical function, with variants cover-
ing subcortical function. It has been used to model a wide
variety of cognitive phenomena and is an attempt to con-
strain a general theory of cortical function with as much
evidence as possible. In this case, however, we have fo-
cused not on the specific contributions of the Leabra
framework but the general computational properties. Our
results hold true for a variety of parameter choices within
the Leabra algorithm, and we believe that they should hold
true for neural network models with similar architectures
under a wide variety of learning rules, activation functions,
and other parameter choices.

The Leabra framework uses point neurons with sigmoidal
response functions. It is here (and most frequently in other
work) run with rate-coded responses. This arrangement is
similar to a number of other modeling frameworks designed
to address similar levels of analysis—those reaching up to
human cognition and behavior (Deco & Rolls 2002; Deco &
Rolls 2003; Rumelhart &McClelland, 1986; Grossberg 2013,
Brown, Bullock & Grossberg 2004; Collins and Frank, 2014).
Leabra units are usually considered to be representative neu-
rons among a much larger population. The full model here is
of limited size. It contains a total of 975 units, and each of the
three cortical processing layers (Proposer, State Predictor and
Outcome Predictor) contain only 100 units each for the stan-
dard model. This small model is adequate to demonstrate our
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general points, but much larger models are needed to process
complex real-world input (e.g., visual object recognition from
images; O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013).

Task

We model an abstract decision-making task that could ap-
ply to various domains. A Situation leads to different
Results, depending on the Plan that is selected. Each
Result provides one motivationally relevant Outcome. If
this Outcome matches the agent’s current Goal, a reward
is provided to the model. If it does not, no reward or pun-
ishment is given (except for use of stochastic punishment
only for the risky decision-making model manipulations,
described in that section). We used a deterministic task,
but our model should apply to stochastic domains with little
modification. There is an interesting question of whether
the predictions sample stochastically from multiple likely
outcomes or are a mix of possible outcomes as in “succes-
sor representations.” Those questions are outside the scope
of the current paper (Fig. 3).

For example, in spatial foraging, physical locations would
be the Situations and Results, Plans would be for navigating
between locations, and Outcomes and Goals would be phys-
ical requirements like food, water, and shelter. In the domain
of social decision-making, Situations and Results would be
social situations, such as being challenged on one’s claims,
while Plans would be general approaches to social interaction

(agree, discuss, threaten, etc.), and Goals/Outcomes would be
social goals such as gaining respect or getting agreement, etc.
In complex tasks, Situations and Results would be task states,
while Outcomes and Goals would be progress toward task
subgoals. For instance, a Situation could be a certain board
position in chess, whereas a Result would be a new board
position, which could accomplish Goals of controlling the
center of the board, freeing pieces, creating attacking pressure,
or defending a vulnerable piece.

The model interacts with the task as a set of localist input
and output layers. There is one input unit each for the four
possible Goals; ten input units for the Situations; ten units for
the possible Results; and four units for the four possible
Outcomes, each matching one Goal. Value is represented by
23 units capturing a continuous −1 to 1 scale.

Model computations and biological underpinnings

Different areas of cortex and basal ganglia have been shown to
be involved in different types of decision-making. A core
hypothesis of this theory is that, while different areas have
representations of different domains, their circuits and com-
putations are closely analogous. Thus, our task and model are
both presented in relatively abstract terms. In the following
section, we describe each component of the model in more
detail, including its computations and the biological evidence
upon which it is based (Fig. 4).

The Proposer model component learns to propose an ap-
propriate plan based on the Situation and Goal inputs.
Theoretically, this can be learned from a variety of signals.
In the current model, we used the dopamine signal, such that
connections from inputs to and from the Proposer layer are
strengthened or weakened when the Critic produces a positive
or negative dopamine signal based on its computed expecta-
tions, and the actual outcome. The Proposer layer of the model
maps to different areas of cortex depending on the task do-
main, in accord with recording and imaging studies showing
different specialized representations in different areas of pre-
frontal and motor cortex (Badre & D’esposito, 2007), and
evidence accumulation for perceptual decision-making in
areas specific to the task (reviewed in O’Connell, Shadlen,
Wong-Lin, & Kelly, 2018).

If the proposed Plan is rejected, the Proposer produces a
different plan. This is implemented with an accommodation
function on the units in the Proposer layer; units that were
active in the last trial become less active, allowing units
representing a different Plan to dominate. In the reported sim-
ulations, a maximum of five Plans were considered before the
simulation “timed out” and progressed to a new Situation and
Goal combination.

The Predictor component consists of two areas and stages
of prediction: state and outcome. The State Predictor learns to
predict the Result (the state that would result from the current

Figure 3. Task. The depicted are input and output layers of the model. The
model’s task is to choose a Plan that achieves an Outcome matching its
current Goal, given a random starting Situation. Each Situation and Plan
lead deterministically to a Result (conceptually, another Situation), which
leads to one Outcome which is potentially rewarding (e.g., food, water, or
shelter, or in a social context, agreement, submission, or appreciation). The
model receives a reward signal if it chooses a Plan that matches its current,
randomly chosen Goal. There are 10 Situations and Results, 5 Plans, and 4
Outcomes and Goals, for a total of 240 Plan-Situation-Goal combinations,
each of which deterministically leads to success or failure.
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Situation and the Plan currently under consideration). The
Outcome Predictor layer (identified with OFC) predicts the
Outcome (potential reward, e.g., food, social dominance) of
that Result (state) and the reward value of that Outcome (1 if it
matches the current Goal, 0 if it does not). Thus, the two
Predictor layers are each making a prediction in their own
domain, based on the current Situation and Goal, and the
Plan currently under consideration. Each of those environ-
mental variables are presented to the network as an input from
the simulated task—each in a localist coding in which a single
unit corresponds to a single variable identity. The actual
Result, Outcome, and Value of that combination is presented
as an output and training signal if the Actor component ac-
cepts the current plan. The Predictor areas of our model pass
their predictions to the basal ganglia through their output
Value layer. The Predictor areas, like the proposer, will map

to different cortical or medial temporal areas depending on the
specific domain of decision-making.

Note that this model assumes that OFC represents both
specific outcomes (e.g., food vs. water, Rudebeck &
Murray, 2014) and outcome value (Cai & Padoa-Schioppa,
2014). Our model would showOFC units relating to predicted
task state (Wilson, Takahashi, Schoenbaum, & Niv, 2014),
because that layer takes the predicted state as an input. Our
model predicts that state prediction is primarily performed by
other cortical areas.

In our main model the basal ganglia layer receives input
only from the Value prediction layer of the cortex, which
represents the summarized output of cortical prediction. This
single input provides an ideal signal for the basal ganglia to
learn from, because after learning the task structure, the cortex
is able to make a very accurate prediction of the reward value

Figure 4. Model. The computational model has four broad functional
divisions, identified with each element of our Proposer-Predictor-Actor-
Critic terminology. Each small square is a simulated unit; colors are unit
activations captured on one sample trial. The first two are different areas
of the cortex (red outline) (O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013;
O’Reilly, & Munakata, 2000; O’Reilly et al., 2016). The Proposer and
Predictor each take the current Situation and Goal, and respectively pro-
pose a plan, and predict its outcome given those conditions. Those func-
tions are both distributed across areas of cortex and medial temporal lobe;
the areas that serve these roles will depend on the task domain. The Actor
functional division (blue outline) is the basal ganglia loop attached to the
relevant areas of cortex (Hazy, Frank, and O’Reilly 2006; Herd et al.

2013). It uses reinforcement learning (RL) to “gate” or enhance signals
from specific areas of cortex. It thus adds a RL-driven selection mecha-
nism that acts to enhance (“accept”) representations in frontal cortex or
reject them to allow consideration of other options. The final subsystem is
the reward prediction system (yellow outline) (Hazy, Frank, O’Reilly,
2010; Mollick et al., in press; Hazy, Frank, & O’Reilly, 2007). This
system is the Critic; it acts as a teacher of the Actor and Proposer systems.
Yellow arrows depict dopamine connections that train those areas. The
Critic learns to predict rewards and discounts the dopamine signal of
those predicted rewards. Gray arrows indicate all-to-all learning
connections.
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of the current candidate Plan. Cortical inputs to basal ganglia
are known to be diverse and integrative (Haber, 2010), so we
think that in reality the basal ganglia often integrates informa-
tion from multiple sources to make a final decision.

The Actor component in the basal ganglia determines
whether to accept or reject the current plan. In our current
model, the basal ganglia is composed of the Matrix and
Globus Pallidus (GP) layers, with the GP layer which also
includes the computational roles of the substantia nigra and
thalamus in the basal ganglia loops (Hazy, Frank, and
O’Reilly, 2006). The Go and NoGo pathways (Schroll &
Hamker; 2013; Hazy et al., 2007; Collins & Frank, 2014)
compete to make a decision, based onweights learned through
dopamine reward signals from the Critic component of the
model, described below. Thus, the weights for the Go path-
way support accepting the current Plan, and those in the NoGo
pathway support rejecting the current Plan. The Actor in our
full model receives connections only from the Value layer—
the output layer of the Predictor component. This was a prac-
tical choice to allow better performance (four inputs proved
difficult for our implementation of BG to learn). In the actual
brain, we would expect that basal ganglia to receive inputs
from a variety of cortical areas, allowing it to make decisions
without the support of a prediction of value from cortex
(Haber, 2010). Our no-predictor model variant indeed in-
cludes those connections from input layers.

The PFC and Output layers also are elements of the Actor
and represent the downstream effects of selecting the pro-
posed plan. When the GPe layer activates (which in turn hap-
pens when theMatrix comparison favors the Go layer over the
NoGo layer), the PFC layer is gated into the PFC_deep layer,
which in turn activates the Output layer, which we interpret as
the model activating the Plan currently under consideration.
This architecture is modeled in accord with our existing
PBWM theory of working memory (Hazy, Frank, and
O’Reilly, 2006; Herd, Hazy, Chatham, Brant, & Friedman,
2014), reflecting the idea that a plan would usually be main-
tained in an active state so that it can bias further processing
accordingly (Miller & Cohen, 2001; Herd, Banich &
O’Reilly, 2006). As output layers of this model, they do not
feed back and play a functional role, except as an input to the
Critic component, giving it the information that a plan was
accepted and will be pursued, and so a reward may be
forthcoming.

The Critic component of the model is adapted from the
PVLV model of reward prediction, detailed in Hazy, Frank,
& O’Reilly (2010) and Mollick et al. (in press). In the current
model, we use the Primary Value (amygdala and ventral stri-
atum) components, which predict rewards via projections
originating in the Output layer, and use this prediction to dis-
count predicted rewards when they occur. Thus, expected re-
wards generate lower levels of phasic dopamine bursts and
unexpected failures produce phasic dips. These effects are

well-documented empirically, as reviewed in Schultz (2013).
We did not use the Learned Value portion of the model, which
drives Conditional Stimulus (CS) dopamine. In this one-step
task, it is redundant with a trace learning rule we use in the
Actor. This learning rule affects those units that triggered the
previous action and allows them to learn from the dopamine
signal that resulted at the time of US. Using this hypothesized
trace learning rule means that CS dopamine is only necessary
for learning to achieve subgoals. The Critic and Actor portions
of this model would presumably function almost identically if
we had used CS dopamine instead of trace learning, so that
distinction is outside the scope of the current work.

The reward-prediction function of the Critic system is cru-
cial, because it is the only source of negative learning signals
in our primary task. As in many human decision-making do-
mains, there is no explicit punishment. Pursuing a plan that
does not accomplish the current goal does not cause any di-
rect, physical harm. The critic discounts the actual reward, in
effect subtracting the predicted reward from that actually re-
ceived. It is only by receiving less reward than predicted, and
experiencing a dopamine dip based on expectation, that the
agent knows that it has committed an error. Without the re-
ward prediction Critic system in place, the model learns only
from success and, as a result, learns to accept every proposed
Plan. There is direct evidence that reward prediction signals in
the striatum can be influenced by prediction-based computa-
tions in this way (e.g., Simon & Daw, 2011; reviewed in Doll,
Simon & Dayan, 2012).

In addition to our training, we used a holdout test set to test
generalization. During training, a subset of Situation/Goal
pairs were withheld and never shown. This allowed us to test
generalization or transfer to novel combinations of situations
and goals. In testing mode, those withheld pairings were pre-
sented, and no weight updates were performed. Testing for 5
epochs is interleaved every 25 epochs during all simulations to
obtain a learning curve for generalization performance for the
held out examples. Of the possible 40 Situation/Goal pairs, for
any given simulation, 4 pairs were left out. For each simula-
tion, different Plan/Situation to Result to Outcome pairings
were chosen at random, and a different training/testing split
was chosen.

Results

Serial prediction of outcomes

We tested the model’s match to empirical data by performing
an analysis similar to one Rich &Wallis (2016) performed on
their neural recording data from monkey OFC. This study is
described in the Introduction section above. In our analysis,
we looked at activations in the Value layer on a cycle by cycle
basis, correlating its activations with the idealized activation
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for a good and a bad option. The Value layer represents the
predicted value of the predicted outcome based on the plan
being considered and captures the value-relevant representa-
tions of our model’s equivalent of OFC. This analysis shows
how the value prediction evolves over time, including how it
shifts as the plan the model is considering changes after the
Actor rejects a plan.

Rich and Wallis (2016) calculated cosine similarities be-
tween neural recordings from OFC at each point in time for
every trial, and the average activity when a choice was accept-
ed. In Fig. 5 below, both analyses shows a relatively clean
representation of the predicted outcome of one option at each
moment in time, which is strongly indicative of serial
performance.

While this is not surprising, as we designed the model to
perform a serial analysis of options, the match between this
data and of Rich & Wallis lends support to their hypothesis
that their monkeys were serially considering response options
and that their OFC (and likely, other linked, contributing brain
systems) was predicting outcomes of one possible response at
a time.

Basic Model Results

We report several results from our model, demonstrating its
basic functionality and accounting for central aspects of the
empirical data.We first discuss the performance of the primary
(“full”) model (discussed in detail above) and then compare
that model to several variants. Each comparison illustrates a
different computational aspect of the full model’s performance.

Each of our results were taken from 50 runs using different
random starting connection weights, train/test splits, and or-
dering of trials and random selection of Plan for consideration
for the no-Proposer models.

The State Predictor learns to correctly predict a Result
(94.5% ± 0.4 SEM) given an input of a Situation and a Plan,
whereas the Outcome Predictor learns to predict both an

Outcome (91.3% ± 0.8) and a Reward (98.4% ± 0.08) given
a predicted Result (from the State Predictor layer) and a Goal.
All performance statistics are taken from 50 model runs with
different random seeds, averaging performance between
epochs 500 to 600. We report standard errors of the mean
for all uncertainties.

Because their roles are each split out separately, this be-
comes a relatively easy learning task. Note that the learning
task is made harder by the fact that these layers only learn
when an option is selected, so that sampling is uneven; as
the model learns to select correct options, it ceases selecting
and learning about nonrewarding options. This bias toward
exploitation versus exploration can negatively affect learning.
It can prevent learning about new combinations of Situation
and Plan, and it causes the cortical Predictor layers to partially
“overwrite” their correct predictions about nonrewarding (and
so decreasingly sampled) Plan-Situation combinations until
they are incorrectly predicted. As a result, the basal ganglia
Actor starts to select these nonrewarding options, which then
triggers self-correcting new learning. Thus, the model has an
intrinsic tendency to titrate between exploration and exploita-
tion, and by approximately maximizing reward in the short
term, it never achieves maximal performance. For example,
the full model averaged between epoch 500 to 600 over 50
batches chooses an optimal plan in 95.9% ± 0.4% of trials on
the training set.

Computational shift and speedup with experience

Our model shows some transition from slower, more
prediction-based to faster, more prediction-free computations.
This transition has long been a topic of interest in psychology
under the terms controlled versus automatic behavior
(Shiffrin & Schneider 1977; Cohen, Dunbar, & McClelland,
1990). It also has been addressed in terms of a shift between
goal-directed to habitual behavior (Tolman, 1948; Tricomi,
Balleine & O’Doherty, 2009); however, that distinction does

Figure 5. Value representations over time, illustrating the serial
consideration of one action at a time, in model and empirical data. a)
Model. Cosine similarity to canonical Value representations, plotted
over time in one instance. In this trial, the model considered two Plans
whose outcomes did not match the current Goal, and the Predictor
component correctly predicted a low Value, before correctly predicting

the rewarding Outcome of the third Plan it considered. b) Similar analysis
of monkey OFC representations during decision-making. Cosine
similarity of current activations to average of neural activity at time of
decision (Rich & Wallis, 2016). Each analysis shows a relatively clean
representation of the predicted outcome of one option at each moment in
time, indicating a serial prediction computation.
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not map directly to prediction-based versus prediction-free
computations, as illustrated by the fact that our prediction-
free Proposer component takes the current Goal into account
and learns to produce candidate Plans that accomplish that
goal. Because it selects a candidate Plan based on its weights,
learned from the relationship between Situation, Goal, and
previously performed Plans, the Proposer model component
is performing a prediction-free computation. This mismatch
between the definitions of prediction- or model-based and
goal-directed behavior is discussed further in O’Reilly et al
(2020).

As the Proposer component learns, we found that it reduces
the number of Plans that the full model considers, and so saves
substantial time, as shown in Figure 6b and c. Thus, to the
extent that the Proposer can propose a good plan early in the
consideration of options, it can significantly reduce the overall
decision-making time. We think this speedup is made more
dramatic in some cases by not waiting for the Predictor; we
model that possibility in the no-Predictor variant model archi-
tecture (explicitly modeling the mechanisms that control
whether or not to use a Predictor component are planned for
future work).

Our full model generalized above chance but rather poorly
on the held-out test set (47.7% ± 3.4). This generalization
performance seems surprisingly poor given the model’s com-
putations. Because it separately predicts Outcomes given Plan
and Situation, and Reward given Outcome and Goal, it should
be able to produce near-perfect generalization to the test set of
withheld Situation-Goal combinations. In contrast, the no-
Proposer model, in which plans are considered by random
draw instead of learned selection, performed very well on

the generalization test (92.0% ± 1.1%) (Figure 6a). We found
that the full model sometimes generalizes incorrectly despite
thorough training because the basal ganglia has learned a bias
to accept whatever plan the Proposer proposes. This happens
since the Proposer often proposes the correct plan on the first
try during training (74.2% ± 1.4% after 500 epochs of train-
ing). Because the Proposer is never trained on the held-out test
set combinations of Situation and Goal, it proposes a correct
plan at below chance levels in the generalization test (22.4% ±
3.1%), and yet the basal ganglia will have an increased ten-
dency to approve the first candidate plan. This produces worse
performance on generalization vs. training (47.7% ± 3.4% on
the held-out test set vs. 95.9% ± 0.4% on the training set;
Figure 6a). We take this as a serious proposal for how
habitization works: basal ganglia becomes less important as
cortex more reliably proposes a good-enough plan on the first
try.

Model Variants

We ran several model variants to explore and illustrate the
computational functions of each component, and proposed
explanations for several phenomena. Table 1 provides an
overview of each model variant for reference; full explana-
tions are provided below.

No-Predictor, Model-Free Model

Our primary, full model addresses how the brain might per-
form prediction-based decision-making. To address how the
human brain might perform faster, but less accurate decision-

Figure 6. Full model speedup and no-Proposer model. a) Test behavior
for full (black lines) versus no-Proposer (red lines) models. The no-
Proposer model considers a randomly selected candidate plan on each
time step. It performs about as well as the full model on the training set
and performs almost as well on the generalization set as the training set. b)
Fraction of first candidate plan correct for the Proposer layer (black line)

versus no-Proposer (red black line). The Proposer learns across the course
of 600 epochs to select rewarding candidate plans. c) Number of candi-
date plans considered. The full model considers fewer plans per decision,
on average since its Proposer component learns to select useful plans to
consider first. Thus, the Proposer portion of the model allows it to per-
form faster as it learns, at the cost of worse generalization performance.
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making, we ran two comparison models, one with no explicit
prediction, and another which predicts only the Value of a
Plan-Situation-Goal combination, without predicting the
Result or the Outcome.

In the first comparison model, we simulated the original
hypothesis of Daw, Niv, & Dayan (2005) that the basal
ganglia performs prediction-free decision-making. This sub-
cortical model-free version of the model uses only the basal
ganglia to accept or reject each plan, with no prediction from
the Predictor component. Without any contribution from the
Predictor component, the Value layer has no activation. Thus,
it was necessary to change the connectivity of the model by
introducing a direct connection from the Plan, Situation and
Goal to the MatrixGo and MatrixNoGo layers, and removed
the connection from the Value layer. This model performed
poorly with default parameters (33.1% ± 0.7% on the training
set, around the empirically determined chance performance
level of 32.3% ± 0.5%). This appears to be the result of a bias
toward accepting plans when the basal ganglia matrix layer
has more input layers. We adjusted the threshold level in
weighing the matrix Go versus NoGo activities, from 0.1 to
0.5, and saw better performance of 51.7% ± 0.8% for training.
This variant performed poorly, at 23.6% ± 1.8% on the testing
set, as expected, because it does not segment the task into
predicting Results and Outcomes, and so should not be able
to perform above chance on the holdout test set (it actually
performs worse than chance, because it has learned to respond
correctly to combinations not in the test set).Whenwe added a
punishment value of 0.5 to all Outcomes that did not match
the current goal, the model’s performance on the training set
improved to 69.9% ± 1.2%. This appears to be the result of
further reducing the Go bias early in learning. This variant still
performed at or below chance levels on the testing set, 21.1%
± 2.3%.

Our model thus predicts an upper bound on the types of
decisions that can be learned by the basal ganglia without
predictive input from the cortex, in line with other predictions
from other theories of model-free decision-making.

We agree with the hypothesis that some decisions are made
in a model-free mode that relies primarily on basal ganglia
(Daw, Niv, & Dayan, 2005). However, we would predict that
even in those situations, the basal ganglia are making their
decision using highly processed cortical representations of
sensory/state information as input, so cortex participates
heavily even in “prediction-free” decisions. It may be difficult
to fully eliminate any form of cortical model-learning from
even the most basic forms of human decision-making, consis-
tent with evidence reviewed by Doll et al. (2012).

One advantage of prediction-free decision-making is that it
should allow faster performance, because the basal ganglia
need not wait for a prediction (or whole series of predictions)
from cortex or medial temporal lobe. Consistent with this
model, Oh-Descher et al. (2017) have observed a shift fromTa
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cortical to subcortical activity when time pressure was in-
creased, accompanied by a shift in decision style to use a
simpler set of criteria.

Value-only Predictor model

People also may switch to strategies with less outcome pre-
diction when the task structure becomes more complex, in-
creasing the difficulty and demands of explicitly predicting
outcomes (Kool, Cushman & Gershman, 2018). We illustrate
another such possible strategy with our next model variant. In
this hypothesized decision-making model, the cortex partici-
pates in model-free but prediction-based, decision-making. In
this hypothesized strategy or model, the computational power
of the cortex is used to learn and predict which actions will be
successful, but without making specific predictions about out-
comes. This model variant instead makes a simpler, one-step
prediction of the value of a Plan in a given Situation. This type
of prediction is model-free according to the commonly used
definition, because it does not include a prediction of a specific
outcome. The prediction should be faster (because it demands
fewer cognitive steps) but less useful in novel situations.

This version of the model therefore learns about the value of
a plan in accomplishing a given Goal in a given Situation, but
without using a serial process to predict specific outcomes, in a
specific order, as our primary model does. Instead, the two
cortical layers work in series, to produce a more powerful
“deep” network with two hidden layers, which takes in all of
the relevant information, and produces only a predicted Value
as an output. This model is similar to other deep networks in
that error-driven learning feeds back from the output, to the
final layer, and from there to the first layer, allowing both layers
to work in series to produce the output using two stages of
neural representation. We think that humans may sometimes
use the cortex and basal ganglia in this technically model-free,
but prediction-based way. This computational approach brings
the computational power of cortex to bear, without requiring
individual, time-consuming steps for each specific predictive
step necessary to arrive at a likely outcome in a complex task.

This model performs well on the initial training set
(92.9% ± 0.6% optimal Plans chosen after training), but it
does not generalize above chance level on the testing set
(25.9% ± 3.3% vs. an empirical chance level of 32.3% ±
0.5% (Figure 7). (Measured as average performance during
an all select pre-training with random plan choice.) This
illustrates one key advantage of prediction-based deci-
sion-making, when predictions are organized into separate
steps: it can produce the correct decision on the very first
encounter with a new combination of known elements (e.g.,
starting a known maze with the reward in a new but known
location, etc.), because each element’s outcome is predicted
separately.

This version of the model is at a second disadvantage:
without making specific predictions, it cannot be organized
to learn separately about the two steps of prediction for this
task. During this pretraining, the model learned about the
values of uniformly sampled random Plans for each Goal
and Situation combination, before the Proposer, Actor, and
Critic components were allowed to choose and learn. This
biases the experiences of the Predictor component.

Without this pretraining advantage, the model performed
somewhat worse on the primary task (86.9% ± 0.8%); because
of this worse training performance in the absence of
pretraining, we do not draw conclusions from its even worse
(roughly at-chance) generalization performance.

Unstructured Predictor comparison model

Humans appear to be capable of decomposing their predic-
tions of outcomes into multiple discrete steps. For instance, in
planning our day we may predict that taking the northbound
freeway will get us downtown, then, in a separate cognitive
step, predict that being downtown will allow us to meet a
potentially valuable contact for lunch near where they work.
This decomposition of problem space into sensible subcom-
ponents offers substantial computational advantages (at the
likely cost of slower performance).

In reality, we think that humans can use a flexible and
unlimited number of predictive steps, but for simplicity our
computational model always uses two steps. The State
Predictor layer predicts a Result, and the Outcome Predictor
layer uses that prediction to predict the Outcome linked to that
Result (and the reward value that results from that Outcome in
combination with the current Goal). To illustrate this advan-
tage, we ran another comparison model that does not ex-
plicitly separate those two predictive steps. In this version,
there are still two cortical layers, but they are organized in a
strictly serial manner: the first layer receives all inputs
(Plan, Situation, and Goal) and projects to the second layer,
which projects to each prediction layer: Result, Outcome,
and Value. Thus, this comparison model is similar to a
standard deep network with two hidden layers. The cortical
layers are larger (400 units vs. 100 in the main model) to
give this model a better chance of performing well. When
the model is so arranged, it performs somewhat worse than
the full model on the training set (89.0% ± 0.7%) and dra-
matically worse on the generalization tests (20.6% ± 2.5%)
(Figure 7). (When the two hidden layers are held to the
same size, the model performs slightly worse: training
81.9% ± 1.2%; testing 27.7% ± 2.9%.)

This result is interesting in relation to recent progress in
artificial neural networks. It is certainly possible for a neural
network to decompose a complex problem into its compo-
nents and so achieve good generalization through error driven
learning. This computational principle has been demonstrated
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by the recent success of deep networks on visual object rec-
ognition (Krizhevsky, Sutskever, & Hinton, 2012; Wang
et al., 2017). Such learning may even produce internal predic-
tions of outcomes in the hidden layers, despite being trained
only to predict their value, as addressed in the Discussion
section. However, those networks receive millions of training
trials, while biological brains experience only a handful to
thousands of decisions in each domain (Lake et al., 2017).
Creating a priori divisions in predictive steps can reduce the
amount of training needed for generalization to new situations
dramatically if those divisions match the structure of the real
world. Exactly how those predictive steps are created to match
the world’s structure is an outstanding question, but it is likely
to include directing attention to different types of outcomes.

Applications to Risky Decision-Making

One notable application of a mechanistically detailed theory
of human decision-making is in understanding how humans
make bad decisions. Taking large risks, such as driving while
intoxicated, risky sex, and dangerous drug use are all areas in
which bad decisions produce enormous societal and personal
costs. Risky decisions in political and military domains can
produce even worse impacts. While the model as it stands
cannot fully describe the complex processes by which humans
make such decisions, it does still offer some potential expla-
nations of factors leading to more risk-averse or risk-tolerant
styles of decision-making.

Our comparison between the full model and the no-
Predictor variant shows how the human brain can support
two distinct approaches to making decisions: a fast approach,
without explicit predictions of outcomes, and a slower but
more accurate prediction-based approach. This speed/
accuracy tradeoff between model/prediction-free and model/
prediction-based computations appears to be a common con-
clusion in related work. If this is correct, one major factor in
mitigating risky decision-making is to use interventions that
encourage a careful, prediction-based approach when deci-
sions may have serious consequences. While this suggestion
may seem obvious, it is not clear that existing interventions
have fully explored this strategy.

We performed additional modeling of another potential
factor in risky decision-making: individual differences in pro-
pensity to approach and avoid. These individual differences
have been characterized as the two opponent systems, the
Behavioral Inhibition System and Behavior Approach
System (BIS/BAS). There are many individual genetic and
environmental influences that could affect approach and
avoidance behaviors; we manipulated a fairly basic parameter
controlling our model’s Go versus NoGo behavior.

To address risky decision-making, we modified our task to
reflect more closely real-world situations in which risky be-
havior has been identified and studied. In most such real-
world domains, there are rare, highly negative outcomes, bal-
anced against more frequent, smaller rewards. To approximate
that profile, we modified our task and rewards to produce

Figure 7. Reduced PredictionModel Results. The full model performs at
around 95% accuracy on the full task (i.e., rejecting poor Plans until
choosing a Plan that achieves the current Goal for each Situation/Goal
combination). It performs reasonably well on the testing set of reserved,
never-before-seen combinations of Goal and Situation, tested every 25
epochs). Two versions of an unstructured prediction model performed
much worse on the testing set. Each of these models used the two predic-
tor layers in series, without the intermediate State Prediction step trained

independently. The Value-only model was trained to produce only the
value, whereas the unstructured model produced all of the same predic-
tions as the full model but without separating those by layer. One layer
acts as a hidden layer, and the output layer predicts State, Outcome, and
Value. This very different performance on the hold-out test set illustrates
one key advantage of prediction-based processing with structured predic-
tions in discrete steps: it can produce correct decisions on the very first
experience with new combinations of known causal factors.
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more small rewards and a few large punishments.We used the
same basic task structure but made three goals (instead of one)
rewarding for each trial and added stochastic large punishment
when the model selected the remaining single bad outcome for
its current goal on any trial. We rewarded the model (with a
0.2 reward value) for achieving an Outcome that matched any
of those three randomly selected Goals. We stochastically
punished the model (with a punishment of 1) on 25% of the
failing trials (in which it arrived at an Outcome that matches
the one currently invalid Goal). This produced a total base rate
of 6.25% (1/16) punishment trials and a base rate of punish-
ment to reward amounts of 12.5% punishment.

We then manipulated the model (our full model, with all
components as depicted in Figure 2). Differences in reward
learning and decision-making have been observed inmany stud-
ies when drugs and optogenetics have been used to differentially
strengthen the Go (D1-receptor-dependent) and NoGo (D2-re-
ceptor-dependent) pathways in dorsal striatum (corresponding to
the Actor basal ganglia model component of our model) (Frank,
Seeberger, & O’Reilly 2004; Moustafa, Cohen, Sherman, &
Frank 2008; These results show the expected difference. In line
with published experimental results suggesting that strengthen-
ing D1 pathways leads to increased responding to rewarding
options, while strengthening D2 pathways leads to increased
avoidance of bad options (Frank, Moustafa, Haughey, Curran,
&Hutchison, 2007). This also is consistent with results showing
that drivingD1 neurons in theGo pathway directly causesmotor
actions (Sippy, Lapray, Crochet, & Petersen, 2015).

We simulated this by manipulating a gain factor moderat-
ing the competition between those pathways in our simulated
Globus Pallidus internal segment (GPi layer), the final step in
the basal ganglia loop that decides whether to use the current
candidate plan (Go) or reject this plan and consider a different
candidate (NoGo). To show this, we measure the avoidance/
acceptance of bad options. Furthermore, to isolate the effect of
the manipulation on the GPi, we ran the model without the
proposer to ensure a balanced sampling of good and bad plans.
Strengthening the D2-driven NoGo pathway in our model
relative to the D1-driven Go pathway leads to a more cautious,
less risky behavioral profile in which fewer options are select-
ed overall (Figure 8, below).

Vicarious Learning for Risky Decisions

In many domains, including risky decisions, people seem to
base their decisions not on their own experience but on
what they have learned about the experiences of others.
They might simulate the experiences of others in enough
detail to produce a relatively complete physiological re-
sponse to good or bad outcomes, including dopamine re-
lease; in this case, our model of learning for decision-
making would function identically whether experiences
were personal or vicarious. Alternatively, in some cases
people may learn information in the abstract, without
experiencing the physiological responses.

We simulated such a learning by separately training the
Actor (basal ganglia) and cortical portions of the model. The
cortical model was trained using a training set of oversampled
good or bad plans chosen with an 80-20% probability, where-
as the Actor was trained using a 50-50% training set. These
probabilities were achieved with an algorithmic proposer.
This phase of training modeled early learning of good and
bad experiences in a variety of domains and training the
Predictor component (cortex) on our risky decision task, de-
scribed above, but in this case with a reward value of 0.5 for
each correct choice (the choice of 0.2 reward for the Go vs.
NoGo manipulation was chosen to show behavioral differ-
ences more clearly, but using 0.5 reward also showed smaller
differences). This training simulated vicarious experience
with the abstract semantics of this task, for instance, hearing
about others’ successes and failures in gambling, inebriated
driving, risky sex, etc. We then tested the model on making
decisions on that task but with all learning turned off.

This test provided a measure of model behavior on risky
decision-making in a domain that has only been experienced
vicariously (e.g., the first time a teenager chooses whether to
ride with an inebriated driver). We demonstrated that a model
trained on mostly negative outcomes made many fewer risky
decisions than a model trained mostly on positive outcomes
(7.9 ± 1.1% chance of choosing a bad plan for the negatively
over sampled model versus 46.6% ± 2.4% for the positively
over sampled model). This result follows straightforwardly
from the model’s distinction between Actor and Predictor

Figure 8. Go versus NoGo pathwayManipulations. Risky decision makingmodel with increasing strength of NoGo pathway (modeling D2 receptors in
dorsal striatum). Models with higher relative D2/NoGo pathway strength accept fewer bad options, creating an overall less risky behavioral profile.
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components. This demonstration illustrates how those compo-
nents map to abstract knowledge and full experience (whether
direct or simulated) of rewarding and punishing outcomes.

Discussion

We have presented a computational implementation of our
Proposer-Predictor-Actor-Critic theory of how the core loops
between the frontal cortex and basal ganglia support a variety
of complex human-level decision-making unfolding over
multiple sequential steps. We have shown that our model
can learn to accurately propose and predict outcomes in a
multidimensional decision-making task that captures impor-
tant aspects of real-world tasks and that using predictions of
specific outcomes produces better performance. Furthermore,
the model was able to generalize its knowledge to novel task
configurations that it was never trained on. This generalization
ability also depends critically on its predictive-learning com-
ponents. As training proceeded, the proposer aspect of the
model became much better at generating appropriate plans.
This affected the balance of exploration vs. exploitation, while
also significantly speeding up decision-making performance
with expertise. Both of these phenomena emerged out of the
more basic properties of the model and provide important
first-principles predictions about the dynamics of learning in
people and other animals.

Finally, our model accords with the data of Hunt et al.
(2018), Rich & Wallis (2016), and others who have found
evidence that the OFC and related brain systems encode
reward predictions about whatever option is currently
attended, relative to other options. Hunt et al. (2018) also
interpret their recordings from ACC to indicate that the ACC
is also considering a single option, the best one encountered
thus far, and accepting or rejecting that option. Because the
monkeys gave a left-vs.-right manual movement response, we
find it somewhat surprising that the ACC did not act as a
parallel accumulator of the estimated relative value of each
action. The ACC has a good deal of real estate devoted to
manual left-vs.-right movement, and their task was quite
well-practiced.

Their data are not conclusive, because they did not perform
strong tests for neural representations of the other options.
Their finding of a large accept-reject signal in even a relatively
simple task may indicate that, even for relatively simple and
fast decisions, people do not accumulate relative values for
multiple options in parallel, but make a fully serial consider-
ation of one option at a time, despite the nonoptimality of
doing so in purely computational terms. This would be con-
sistent with some theories of decision-making (some reviewed
by Hayden, 2018); inconsistent with others (some reviewed
by Turner, Schley, Muller, & Tsetsos, 2018); and entirely

orthogonal to many aimed at the psychological level, with less
specification of mechanisms and specific computations.

In the remaining sections, we consider the relationship be-
tween our framework and other existing frameworks, and as-
sociated empirical data, and then enumerate a set of testable
empirical predictions from our model. Our theory is intended
to be integrative across a great deal of animal and human work
and associated theories, so it is compatible with many of those
we discuss. Our model is intended to provide a specific hy-
pothesis of the neural mechanisms, so it is compatible with
many theories of human decision-making specified at more
abstract levels of analysis. No theory of which we are aware
covers all of the same ground or bridges levels to the same
extent. We note the differences between this and other related
theories. Table 2 summarizes the key results we compare to
other theories.

Relation to theories of model-based vs. model-free
decision-making

Overall, our framework has a significant amount of overlap
with the model-free versus model-based framework (MFMB)
originally elaborated by Daw et al. (2005) and widely
discussed in the subsequent literature. Both frameworks in-
clude an essential role for predicting future sensory and other
states based on internal “models” of the environment, along
with a critical role for dopamine-mediated learning to select
“good” versus “bad” actions. However, whereas the MFMB
framework is based on a dichotomy between these two types
of processes, our framework emphasizes their synergistic in-
teractions within the context of the characteristic fronto-
striatal circuit replicated across many frontal areas. The corti-
cal and basal ganglia components of this circuit each contrib-
ute unique and important computational functions to the over-
all decision-making process, supported by their unique neural
properties.

Thus, we think that the dichotomy envisioned in the
MFMB framework is typically much more of a continuum,
with model-like elements likely to be involved in many cases
to varying extents. Our model, and this proposed continuum,
is consistent with key findings from fMRI studies by Daw,
Gershman, Seymour, Dayan, & Dolan (2011) and Simon &
Daw (2011), where the striatum seemed to be involved in
prediction-based decision-making, in that its activations cor-
relate with predictable outcomes. In addition, Kool, Cushman,
&Gershman (2016) found that people typically exhibit a com-
plex mixture of both model-free and model-based profiles.

Predictions of the model

One important distinction between the current theory and the
majority of work on human decision-making is our reliance on
detailed depth-recording and tractography data. The
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component models were created based largely on animal
work. While those animals are not trained to perform tasks
as complex as those we address andmodel, that work provides
vastly more detailed information on neural computations than
can be obtained from humans. Our central argument here is
that the same circuits that perform action-selection in animals
are sufficient to explain complex decision-making in humans,
when they are employed serially, and have access to the more
abstract representations available in the human brain (see also
Haber & Knutson, 2010 on this mapping). Our model makes
strong predictions about the interaction between cortex and
basal ganglia, and neuroimaging and neuropsychological ap-
proaches with human subjects should be able to test those
predictions and so falsify or support this theory.

Our primary predictions are the computational divisions-
of-labor that we have emphasized throughout: cortex produces
a candidate plan; other cortical regions may produce a model
of the predicted outcomes; and connected loops of basal gan-
glia make a final decision to use that candidate or reject it (at
least for the moment) and consider another candidate in a
serial, iterative process. Perhaps our most central prediction
is that human decision-making, and the predictions upon
which it relies, work serially in relatively novel domains.

It is somewhat challenging to test this prediction. Our mod-
el is not easily falsifiable solely through behavioral data. The
history of research in visual search serves as a useful analogy,
as much behavioral work attempted to distinguish serial from
parallel processes, apparently with no success (Wolfe 2003).

However, neuroimaging data or neural recording data could
falsify our theory and model, just as more recent recording
data has provided strong evidence on the serial/parallel ques-
tion in visual search (Eimer 2014). Tracking precise timing of
representational content in humans is challenging with current
neuroimaging techniques, and allowing subjects to select their
own ordering of sequenced steps makes this problem more
difficult. Interpreting detailed animal recording data can be
difficult; for instance, the neural recording data of Lorteije
et al. (2015) were reinterpreted to fit models of one-step par-
allel process (Hyafil &Moreno-Bote, 2017). However, animal
data (Hunt et al. 2018; Rich&Wallis, 2016) and clever human
behavioral designs (e.g., using priming at different times dur-
ing decision-making in concert with self-reported ordering of
predictions) can bring evidence to bear on this prediction.

While the current model has two prediction steps hard-
wired, we think that another similar decision may be required
to perform each predictive, model-creation step. These sub-
decisions may be performed by the same Actor component of
basal ganglia, which might use the same dopamine reinforce-
ment signal to learn to delay a final decision long enough for a
cortical prediction to play a role, or to accept the Proposer’s
first Plan to perform quickly under time pressure. It also is
possible that the decision to perform more predictive steps
may use an anatomically distinct but functionally analogous
loop of the same canonical circuit, a loop of basal ganglia
associated with an area of cortex that uses domain-
appropriate learning to predict specific outcomes. This

Table 2 Summary of results

Model type Train Test Purpose Key results

Full model
(proposer & predictor)

95.9% 47.7% To demonstrate the full working of the serial
proposer-predictor-actor-critic neural de-
cision making model

Transitions automatically and smoothly from
serial prediction based to proposer based and
thus enables faster decisions

No proposer
(only predictor)

95.8% 92.0% To demonstrate the generalization
capabilities of a pure predictor based
model

Better generalisation due to only using
prediction based strategy. Results in slower
decisions due to unordered considerations of
plans

Value only predictor
(proposer & model free

predictor)

92.9% 25.9% To demonstrate differences between value
only predictions and state outcome
predictions (model free but prediction
based)

Cortex can perform complex value only
predictions; good performance on overtrained
cases, but no generalization

No predictor model
(no proposer & no predictor)

69.9% 21.1% To demonstrate the role of subcortical brain
areas in prediction free decision making

There is an upper bound on the types of
decisions that can be learned by the BG
without predictions

Unstructured
predictor
(proposer & one step

predictor)

89.0% 20.6% To demonstrate an anatomical separation of
state and value prediction.

Division into predictive steps matching the task
speeds generalization dramatically

Risk:
Go/No Go
(no proposer)

0.1-73.4%
0.2-79.1%
0.3-84.5%

N/A To demonstrate potential individual
difference in the Go and NoGo pathway
for the actor

Reducing the threshold for Go decisions
increases risky behavior.

Risk:
Vicarious
(no proposer)

Neg - 95.5%
Pos - 82.9%

N/A To demonstrate the effect vicarious decision
making of others has on individual
decision making

Training on mostly negative outcomes resulted
in fewer risky decisions than training mostly
on mostly positive outcomes

50 Cogn Affect Behav Neurosci (2021) 21:35–57



anatomical and computational question awaits further compu-
tational and empirical work. These possibilities are certainly
differentiable empirically, but testing them with existing
methods would be challenging.

While existing theories and evidence suggest that OFC
often does predict reward value and stimuli that are closely
linked to reward (reviewed in Rudebeck &Murray, 2014), we
assume that predictions of Results will occur in different brain
regions for tasks in different domains, even when their task
structure is identical. While existing evidence is consistent
with this prediction, it is currently insufficient to eliminate
the alternative hypothesis that predictions of outcomes are
always made in the same brain regions, regardless of domain.
For instance, state prediction error signals have been observed
in the intraparietal sulcus and in several areas of lateral PFC
when people either observed or performed a spatially arranged
state selection task (Gläscher, Daw, Dayan, & O'Doherty,
2010). This prediction can be further tested with relatively
straightforward neuroimaging methods.

Relation to other theories of decision-making

There are a number of other existing theories of how cortex
and basal ganglia contribute to decision-making. Our model
and theory draw from those previous theories but has distinc-
tions from each.

Dayan (2007) has explored some consequences of a theory
much like ours for sequencing complex behavior. He imple-
mented a simple model of reinforcement learning, which he
identified with BG, PFC, and hippocampus, and trained it to
produce multi-step behavior. He identified the usefulness of
such a system in producing complex behavior based on verbal
instructions. That work was based on the neural and biological
model of O’Reilly & Frank (2006), upon which our current
theory is also based. Although it does not directly address
decision-making, that theory is focused on how the basal gan-
glia’s “gating” of information into working memory can pro-
duce arbitrarily complex behavior. Thus, this theory is very
closely related to the current one.

Solway & Botvinick (2012) present a computational theory
of prediction-based and prediction-free decision-making that is
closely related to ours. Their model similarly includes PFC,
BG, OFC, and amygdala, performing predictions for both out-
comes and reward value, and includes an instantiation as a
learning neural network model. The biggest difference between
our models is that theirs performs action-selection as a parallel
process, whereas ours predicts outcomes for only one option at
a time. This is a central feature of our model; we believe that
parallel plan selection can produce fast and useful actions when
there is sufficient experience with a specific decision but that a
serial prediction process is a key component of human gener-
alization of knowledge in complex domains. Most theories that
take detailed empirical data (e.g., animal single-cell recordings)

into account similarly propose a parallel consideration of mul-
tiple options. Our theory holds that adapting this system to
consider options serially allows humans to make decisions in
more complex and novel domains.

Another interesting difference is that their theory focuses
on the Bayesian inversion of a model of outcomes and task-
space. This roughly equates to backward-chaining from de-
sired outcomes to actions, while our theory currently only
addresses forward chaining. It seems likely that humans can
perform both types of chaining; the circumstances favoring
and computational constraints surrounding each strategy re-
main a question for future work. Solway & Botvinick’s model
also differs from ours in identifying the hippocampus and
medial temporal lobe (MTL) with the outcome-prediction
component. We think the MTL is probably involved in both
proposing plans and predicting outcomes when there is little
experience with the task domain, so that one-shot learning is
necessary. The current task and model include cortex in both
Proposer and Predictor roles, for simplicity.

Collins and Frank (2014) present a model with substantial
overlap with our model of the basal ganglia (and indeed they
share a common ancestry; Frank, Loughry, & O’Reilly,
2001). Their OpAL model accounts for incentive effects of
dopamine that our model does not, and proposes a theory, in
accord with empirical evidence, of how background dopa-
mine levels can focus basal ganglia decision-making on op-
portunities versus rewards in a flexible and useful way. Like
Solway & Botvinick (2012), and many other theories based in
part on neural networks and animal data, their theory ad-
dresses a parallel action selection process, which we think is
employed for well-practiced decisions (like many laboratory
tasks), whereas ours proposes a serial process for more novel
and complex task spaces.

Daw & Dayan (2014) offer a theory so compatible that our
model could be considered a proposal for the mechanistic
implementation of their computational level theory. They do
not specifically address the serial versus parallel issue but
appear to assume a serial prediction process. They propose
that model-based (prediction-based in our terminology)
decision-making relies on sparse sampling of predicted paths
through problem-spaces, which is critical in problem spaces
that are too complex to allow for a full start-to-finish predic-
tion of every possible action. This is a critical computational
requirement, and our model partially but incompletely ad-
dresses this point. Our model does not directly confront this
issue, because it currently works only in a limited problem-
space in which a full prediction can be made for each candi-
date Plan. However, our model does include an element that
can help in addressing this problem. Our Proposer component
selects plans for more detailed outcome prediction, in a fast,
parallel neural constraint satisfaction process. This efficiency
also contributes to effective sparse sampling of a plan space to
focus on areas that are likely to be productive.
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Daw & Dayan (2014) propose a different mechanism con-
tributing to this same computational efficiency: prediction-
free estimates of state value are employed in complex tasks
to avoid the time commitment of following every model
through task-space to a conclusion. We propose that the basal
ganglia makes prediction-free decisions at every step of model
building. Our current model does not perform this function,
but we intend to capture this in future extensions of the model.
Similarly, we propose that the decision to use cortical,
prediction-based reasoning is itself made by the same canon-
ical circuit of linked cortical and basal ganglia loops.
Consistent with this prediction is evidence that deciding on
task strategy activates the frontopolar cortex and inferior lat-
eral PFC (Lee, Shimojo, & O’Doherty, 2014).

Daw, Niv, & Dayan (2005), followed by many others,
propose a categorical distinction in which PFC performs
prediction-based computations and basal ganglia performs
prediction-free decisions. In our model and theory, basal gan-
glia contributes to both types of decisions, and cortex alsomay
(see the cortical prediction-free model section). Subsequent
empirical work has called this strict separation of systems
into question. Cortex now appears to be heavily involved in
habitual behaviors (Ashby, Turner, & Horvitz, 2010), and
there is strong evidence that basal ganglia plays a critical
role in higher-level cognitive function (Pasupathy &Miller,
2005; Balleine, Delgado, & Hikosaka, 2007) and in goal-
directed behavior (Yin, Ostlund, Knowlton, & Balleine,
2005). Our model builds upon that evidence. Our cortical
Predictor component performs an optional extra step,
adding information to the prediction-free system, in distinc-
tion from that proposal of two parallel and competing sys-
tems. This theory and follow-up work (Daw&Dayan 2014)
(along with most verbal theories of decision-making) do not
directly address the parallel versus serial distinction upon
which we focus, although their theoretical treatment of hu-
man decision-making seems consistent with assuming a
largely serial process, in which each prediction adds a non-
trivial time cost.

Buschman & Miller (2014) present a theory with substan-
tial overlap but substantial differences from ours and that of
Daw & Dayan (2014). They focus on a related but separate
distinction: BG learns concrete associations quickly, whereas
PFC slowly learns more abstract concepts for decision-mak-
ing. Our model does not currently address this distinction;
doing so is a promising avenue for future work. Buschman
& Miller propose several possible computational advantages
of the interaction between PFC and BG, none of which map
closely to our Proposer-Predictor-Actor distinction. In partic-
ular, they propose that such loops may allow for stereotyped
sequences of actions or thoughts to be strung together, in
analogy to the well-studied role of BG in contributing to se-
quences of motor actions. Our model is consistent with this
role but does not currently address it. They also make the

suggestion that PFC’s ability to capture abstract concepts al-
lows the BG’s action-selection to work in more abstract do-
mains. While we propose a collaborative model of action se-
lection between PFC and BG, we agree that this expansion of
animal action-selection to complex human decision-making
relies on the learning and use of abstract representations in
PFC, another computational advantage that we do not directly
explore in the current model.

Our proposed mapping from prediction-based versus
prediction-free decision-making to anatomy is compatible
with that proposed by Khamassi & Humphries (2012); how-
ever, our mapping of the distinction from goal-directed to
model-based computation is not. They propose that
dorsomedial striatum participates in model-based action selec-
tion, while dorsolateral striatum participates in model-free ac-
tion selection. Our model would occupymore anterior areas of
frontal cortex, and our basal ganglia maps to different areas of
dorsal medial striatum, because it receives from OFC
(Balleine, Delgado, & Hikosaka, 2007) and performs goal-
directed behavior. It is critical to note that our model performs
goal-based behavior even in the no-predictor variant whose
computations are prediction-free, and model-free (by what
appears to be the most common definition of the term). This
confusion is one reason we prefer the term prediction-based to
model-based. We address this issue in more detail in O’Reilly
et al. (2020).

Koechlin & Hyafil (2007) also present a theory broadly
consistent with ours but specific to cortical contributions; they
do not address the role of basal ganglia or dopamine. They
focus on human anterior prefrontal cortex (APFC) and review
evidence showing its importance in complex, branching
decision-making tasks. Donoso, Collins, & Koechlin (2014)
present a related theory of how APFC is involved in strategy
testing in complex tasks. These are both consistent with our
theory, although our current model does not directly address
the distinction; we propose that the same circuits we outline
here are also at work in the APFC, and the same serial process
is used to select strategies (or plans in our terminology) based
on their previous success.

Our model and theory are also broadly compatible with
Botvinick & Weinstein’s (2014) review of work in hierar-
chical reinforcement learning. We make similar arguments
for the computational advantages of making decisions hier-
archically: selecting a broad plan, then subgoals, and only
finally selecting actions. While our theory is compatible
with that work, our focus here is on outlining the neural
mechanisms that instantiate that computational process,
and our current model does not progress through such a
hierarchical decision process. Expanding the model to per-
form such a process is another topic for future work.

A great deal of work has been devoted to mathematical
theories of decision-making. Because those theories make no
contact with detailed neuroscience data, there is (so far) little
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contact between the current theory and that mathematical level
of analysis. Because our theory allows for a variety of
decision-making strategies, composed of different cognitive
steps, it could be used to match results from many of the wide
variety of models that are still being debated (Hastie &Dawes,
2010). We view those theories as working on a separate but
complementary level to this one.

One notable exception is the drift-diffusion or sequen-
tial sampling framework, which has been closely related
to anatomy and neural data. The mathematics of drift
diffusion have been argued to closely characterize neural
firing in relevant areas of cortex during perceptual deci-
sions (e.g., lateral intraparietal lobe during a task based
on movement; Hanks, Ditterich, & Shadlen, 2006; and
other perceptual cortical areas for different perceptual
tasks; O’Connell et al., 2018). Neural activity in basal
ganglia have also been shown to closely map to a drift
diffusion model (Ding & Gold, 2013). It has been argued
that the basal ganglia’s structure matches an extended
version of drift diffusion that takes into account the ev-
idence accumulated for other options to achieve optimal-
ity under certain conditions (Bogacz & Gurney, 2007).
Although we have not simulated a task with progressive
information accumulation, we believe our model is con-
sistent with those findings and theories. We would map
the cortical accumulation of evidence primarily to the
Proposer model component, with the basal ganglia
Actor component merely following, because reward his-
tory has an uncomplicated relation to perceptual catego-
ry in those tasks.

Where the current theory disagrees with sequential
sampling models is the serial/parallel distinction when
they are applied to complex tasks (Busemeyer &
Townsend, 1993). Even when they incorporate serial at-
tention, sequential sampling models are fundamentally
parallel in their accumulation of evidence (Diederich, &
Oswald 2014). While such models may capture some
aspects of complex decisions quite well, we argue that
they do not match either the computations or underlying
mechanisms involved in human decision-making over
time scales longer than about a second.

The perceptual decision tasks usually modeled by drift
diffusion models are relatively simple and well-prac-
ticed. We would actually predict that such a task would
be approached in parallel, with separate neural popula-
tions in cortex and basal ganglia accumulating evidence
for each option simultaneously. The present model does
not capture such parallel computations, but many others
do (e.g., Collins & Frank, 2014). We think serial consid-
eration of each option is necessary to perform complex
and novel decisions involving multiple factors. It seem
possible for neural learning to bind together the informa-
tion relevant to each option when it is relatively simple

and well-practiced (e.g., leftward motion to pressing a
button with the left hand), but much more difficult with
multiple factors (varying goals and situations, as in our
task). Furthermore, such parallel consideration becomes
undesirable when a decision is important enough to merit
devoting all available cognitive resources to fully con-
sider each option, and time is available to do so.

Risky and biased decision-making

Our manipulations addressing risky decision-making are a
modest first effort to apply our model and theory to ad-
dressing the individual differences, or risk factors, for
risky decision-making. Our manipulation of D1/Go versus
D2/NoGo pathway strength in dorsal striatum matched
previous empirical results (Stopper, Khayambashi, &
Floresco, 2013). We think that these results suggest the
utility of such a rich and detailed model in addressing the
biological and environmental causes of risky behavior,
but they certainly are not comprehensive. It remains for
future work to expand on those predictions. Simulating a
different task that better captures real-world risky
decision-making would be useful in more fully capturing
that phenomena. Such a task would be closer to a gam-
bling task: payoffs are highly stochastic, with relatively
little to learn about good and bad options.

The second key factor in human risky decision-
making is capturing how humans learn about highly
risky activities without directly experiencing the worst
consequences. It seems clear that humans learn from vi-
carious experience; for instance, hearing about an auto
accident caused by drunk driving seems to change be-
havior, despite a lack of firsthand experience with the
outcome. Mental simulation has strong theoretical and
empirical support (Reviewed in Barsalou, 2008). The
precise mechanisms of vicarious learning are an impor-
tant outstanding question, one we hope to address in
future work. In particular, it is not known whether the
dopamine system participates in vicarious learning, or
whether that direct signal of reward and predicted reward
is reserved for real rewards. Understanding how vicari-
ous learning works in relation to risky decisions should
have important implications for interventions, because
most interventions involve communicating information
about outcomes, rather than actual , experienced
outcomes.

Risky decision-making has a good deal of overlap
with bad, or biased, decision-making. Many paradigms
do not distinguish risk-seeking behavior (in which some
individuals prefer risk-reward tradeoffs in which high
risks produce equally great average rewards) from bad
or biased decision-making, in which some individuals
simply make bad decision in certain domains, such as
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domains in which bad outcomes simply outweigh good
ones, such as gambling against the house. Those deci-
sions also are classified as examples of cognitive biases.

The current theory makes two important behavioral predic-
tions regarding sources of biases. The first prediction is that
some risky decision-making results from a failure to make a
prediction-based decision. This strategy results from a tradeoff:
the construction of useful predictive models is relatively time-
consuming, and so not worth performing for less important
decisions. Such a time tradeoff has been proposed as one major
component in mental effort effects (Shenhav, Musslick, Lieder,
Kool, Griffiths, Cohen, & Botvinick, 2017; Kurzban,
Duckworth, Kable, & Myers, 2013). Impulsive individuals,
who are more vulnerable to making risky decisions
(Białaszek, Gaik, McGoun, & Zielonka, 2015), may be biased
in their preference for this time-saving tradeoff.

The second prediction is that, even when some amount of
predictive model-building is performed, the model, and there-
fore the decision, will be biased by several factors. Most pre-
dictive models will by necessity be incomplete, since most
domains do not allow for a construction of all paths to all
outcomes in finite time (Daw & Dayan, 2014). The subset of
outcomes that are predicted may be nonrandom and biased.
One important bias should arise from motivated reasoning
effects. For instance, if it is more pleasant to think about pos-
itive outcomes, people will include more pleasant than un-
pleasant outcomes in their model than an unbiased estimate.
This bias should occur because our model posits that outcome
prediction models are created based on further iterations of the
same canonical circuit, other areas of PFC and BG “decide”
whether to create each predictive step in the model.

The behavior of the basal ganglia Actor component of each
such predictive loop is shaped by and so ultimately under the
control of dopamine reward signals. Because those signals sum
total predicted reward across time and dimensions (Schultz,
2013), this system does not produce locally optimal decisions.
Of particular importance, decision-making in challenging do-
mains appears to be highly biased toward perceived social re-
ward, which is one type ofmotivated reasoning (Kahan, Jenkins-
Smith, Braman, 2011). For instance, one may anticipate a prox-
imal monetary reward for getting the right answer to a simple
math problem but also anticipate a social reward from peers for
getting the answer that accords with their political beliefs (Kahan
et al 2011; Kahan, Peters, Dawson, & Slovic, 2017). Motivated
reasoning has been proposed as an underlying cause for flawed
decisions of enormous consequence, such as the intelligence
community deciding that Iraq likely possessed weapons of mass
destruction (Jacobson, 2010). Understanding the neural basis of
decision-making should help us understand and compensate for
motivated reasoning, and perhaps other important biases. Our
current model does model basal-ganglia based and dopamine-
trained control components of the loops involved in creating
predictions, so capturing such an effect remains for future work.

Conclusions

We have presented a relatively computationally and mechanis-
tically detailed theory of how human beings make decisions.
We presented a computational model that captures the core of
that theory, as a canonical brain circuit. The mechanisms we
proposed for this microcircuit are based on extensive empirical
work on animal action selection, so the most central proposal is
that human complex decision-making uses similar mechanisms
and computations, enhanced by using more abstract represen-
tations, and more iterative and hierarchical steps. To allow such
iteration to accumulate useful sub-decisions into a complex
decision, each step must work serially by considering a single
proposed action, plan, or conclusion at a time.

We term that canonical decision circuit a Proposer-
Predictor-Actor-Critic model, in which the cortex proposes a
potential plan or action, the basal ganglia acts to accept or
reject that plan, and the amygdala and associated subcortical
systems acts as a critic to gauge the success of that plan rela-
tive to expectations. This basic process can be enhanced to
incorporate specific predictions of outcomes by the use of
additional iterations of such a circuit to serve as a Predictor
component, which can provide additional information to the
Actor at the cost of extra time. When it uses this process of
creating predictions, the circuit is performing model (or pre-
diction)-based computations; when the Predictor component
is not involved, the computations are largely model (or pre-
diction)-free (although the learning in the other components
may induce some neurons to represent likely outcomes, and so
constitute a limited form of model-based processing).

While the empirical support for such a canonical circuit,
and its use in human decision-making is indirect, we think it is
quite strong. However, it remains for future work to investi-
gate how such a circuit might work in detail, and whether and
how a series of relatively simple choices can aggregate to
create the most complex human planning, decision-making,
and thinking.
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