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1 Introduction

Originally coined by Newell and Simon (1956) in the context of computer science, the term working memory

(WM) was introduced into Cognitive Psychology by G. A. Miller, Galanter, and Pribram (1960), who used

it for the idea of holding goals and subgoals in mind in the service of planning and executing complex

behaviors (Cowan, 2017). Since then the usage of the term has evolved in complex and nuanced ways such

that Cowan (2017) could distinguish nine separate definitions currently in use by various researchers. For

the work described in this chapter, the definition attributed to G. A. Miller et al. (1960) will be adopted

(Table 1: Glossary).

Broadly speaking, there are two levels of computational working memory models: abstract cognitive-

level models, and neurobiologically-based models, the latter of which are the primary focus of this chapter.

These models are based on the discovery of persistent delay-period neuronal activity in the prefrontal cortex

of nonhuman primates, in a variety of delayed-response tasks (e.g., Funahashi, Bruce, & Goldman-Rakic,

1989; Fuster & Alexander, 1971; Kubota & Niki, 1971). A central idea behind most of these models is that

neural activity can be sustained through mutual excitation, where populations of interconnected neurons

send each other excitatory activity in a self-perpetuating fashion (also described as reverberant or recurrent

activity). Computationally, this corresponds to a stable attractor in a dynamical system: a state that remains

constant over time once the system enters the vicinity of that state (known as the attractor basin) (see

Barak & Tsodyks, 2014; X.-J. Wang, 2001, for reviews). This mechanism of working memory can be

more specifically described as robust active maintenance, which is distinct from a more transitory form

of continued neural activity in posterior cortex that can persist for a few hundreds of milliseconds, but is



Table 1: Glossary
Acronym / Term Definition

WM Working Memory: As used here, the set of cognitive processess used for holding goals and subgoals
in mind in the service of planning and executing complex behaviors (after G. A. Miller et al., 1960 as
attributed by Cowan, 2017).

1-2-AX A hierarchical form of the AX-CPT in which the target sequence (AX vs. BY) is signaled by outer-loop
cues (1 or 2).

ACT-R Adaptive Control of Thought – Rational: A highly influential production system-based model of cognition
developed by John Anderson and colleagues.

AX-CPT A-then-X Continuous Performance Task: Subjects observe sequences of letters and have to respond
correctly for the target sequence of an ‘A’ followed by and ‘X’.

BPTT Back Propagation Through Time: An extension of the backpropagation algorithm to RNNs
Backpropagation The dominant learning algorithm used in connectionism and deep learning (Rumelhart, Hinton, &

Williams, 1986)
BG Basal Ganglia: A set of subcortical nuclei involved in modulating frontal cortical function including motor

activity and executive function.
Connectionism A very successful and highly influential approach to behavioral and, especially, cognitive modeling in

Psychology that emerged in the 1980’s and emphasized learning in neural networks.
Deep Learning A general term for a growing number of neural network-based machine learning models that share the

feature of having many different layers stacked hierarchially.
ID/ED Intradimensial/Extradimensional: A dynamic categorization task switching task in which a block’s op-

erational rule switches either within a dimension (e.g., red vs. green) or extradimensionally (color vs.
shape).

LSTM Long Short-Term Memory: A highly influential recurrent neural network model developed by Juergen
Schmidhuber and colleagues that introduced the idea of gating maintenance so as to protect it over
long time periods.

ML Machine Learning: A branch of computer science that deals with various forms of statistical learning.
Roughly equivalent to artificial intelligence (AI)

N-back A continuous performance task in which subjects must indicate when a currently displayed stimulus
matches with one presented n-steps back. Typically 1 < n < 5.

PBWM Prefrontal Cortex and Basal Ganglia Working Memory: A neural network-based model of WM mainte-
nance and updating that emphasized the role of the basal ganglia in gating items into active mainte-
nance and updating them as appropriate (Hazy, Frank, & O’Reilly, 2007; O’Reilly & Frank, 2006).

Production System A computer program typically used to provide a form of artificial intelligence. It is characterized by a set
of productions or rules that pair states (IF part of the rule) with actions to be executed (THEN part of
the rule).

PVLV Primary Value, Learned Value: A neurobiologcially informed and constrained alternative to the temporal
difference (TD) algorithm for generating reward prediction error (RPE) signals used to train the rest of
a given network model.

RL Reinforcement Learning: A branch of machine learning in which actions are learned by trial and error
based only on scalar-valued feedback, i.e., good or bad.

RNN Recurrent Neural Network: A category of neural network in which some subpopulation of the units
feedback to excite themselves on sequential timesteps.

RPE Reward Prediction Error: An error signal generated as the difference between actual received reward
versus that that has come to be expected.

SRN Simple Recurrent Network: An simple form of RNN that involves a direct copy of information from the
prior time step to contextualize the current time step.

TD Temporal Differences: The dominant RL algorithm for generating reward prediction error (RPE) signals
used to train models.

Vector Rotation A term used to describe the quantification of the changes in neural population activity that treats each
unit as a single dimension in the high dimensional space corresponding to all recorded units. Thus, as
the population activity changes over time it can be described as rotating in this high dimensional space.

WCST Wisconsin Card Sort Task: Subjects match cards according to color or shape as defined by implicit
rules that change periodically without instruction.

quickly overwritten by new stimuli (e.g., distracters).

Functionally, the ability to robustly maintain activity over time must also be complemented by an ability

to rapidly update to encode new information into working memory, when such information is transiently



present in the sensory input. These two demands are mutually contradictory, and the concept of gating

has been introduced as a way to dynamically switch between robust maintenance versus rapid updating.

The long-short-term-memory (LSTM) model (Hochreiter & Schmidhuber, 1997) introduced an abstract

algorithm for multiple forms of gating (maintenance gating of new information into working memory, and

output gating of maintained information from working memory), and various neurobiological mechanisms

have been proposed to support gating, including the neuromodulator dopamine (Braver & Cohen, 2000;

Durstewitz, Seamans, & Sejnowski, 2000; Seamans & Yang, 2004) and the basal ganglia (Dayan, 2007,

2008; Frank, Loughry, & O’Reilly, 2001; Frank & O’Reilly, 2006; Todd, Niv, & Cohen, 2008).

The neurobiologically-based approach has embraced empirical data from multiple species and levels

of analysis to inform and constrain the models. At a systems and cognitive level of analysis, this work

emphasizes the importance of working memory as a core component of higher cognitive function, including

attention, cognitive control, decision-making, goal-directed behavior, and executive function (Baddeley,

1986; Baddeley & Hitch, 1974; Engle, Tuholski, Laughlin, & Conway, 1999; Friedman et al., 2006; Miyake

et al., 2000). Machine learning algorithms (e.g., LSTM) are also an important source of inspiration for

understanding the functional properties of such models, and learning more generally plays an important

role in some of this work, to understand how complex cognitive functions can emerge from simpler neural

machinery.

Sustained neural activity is essential for higher-level cognitive function, to enable consistent plans or

goals to drive processing over the duration necessary to achieve desired outcomes. Mechanistically, actively-

firing neurons in the prefrontal cortex can drive a top-down biasing of neurons in domain-specific posterior

cortical areas, to focus their processing on task-relevant information (E. K. Miller & Cohen, 2001; O’Reilly,

Braver, & Cohen, 1999). This is also known as task-based attention. The specific ability to maintain stable

activity in the face of potentially distracting stimuli or thoughts has been an important feature of working

memory in the cognitive literature (Baddeley & Hitch, 1974; Miyake & Shah, 1999), for example in the case

of complex working memory span tasks, that require maintaining selected information in the face of ongoing

complex cognitive processing.

The ability to plan or evaluate different possible future courses of action critically depends on this

ability to maintain internal representations of these plans without the support of external stimuli. Indeed,

based on the comparative development of frontal areas across species, the core working memory ability



likely evolved to maintain affective goal states to guide behavior toward those goals, in frontal areas that

correspond to ventral and medial areas in the primate brain (V. J. Brown & Bowman, 2002; Ongür & Price,

2000; O’Reilly, Russin, & Herd, 2019; Uylings, Groenewegen, & Kolb, 2003).

Table 2 includes specific examples of tasks and phenomena that have been modeled with this approach.

For example, the PBWM model incorporates biologically-based mechanisms of frontal robust active main-

tenance, basal ganglia gating mechanisms, and learning mechanisms based on phasic dopamine, and can

simulate a wide range of commonly studied working memory tasks including the 1-2-AX and phonolog-

ical loop (O’Reilly & Frank, 2006), ID/ED dynamic categorization (O’Reilly, Noelle, Braver, & Cohen,

2002), WCST (Rougier & O‘Reilly, 2002), N-back (e.g., Chatham et al., 2011), task switching, the Stroop

task (Herd et al., 2014), hierarchical rule learning (Badre & Frank, 2012), and the reference-back-2 task

(Rac-Lubashevsky & Frank, 2020).

This review of the field of neurobiologically-based working memory models focuses on the following

central, open questions that characterize many of the important differences across existing models:

• From the gating perspective, what is the nature and scale of the neural substrate that is subject to

gating modulation? The potential range here might extend from the gating of individual neurons at

the most fine-grained end of the scale to the en-masse gating of the entire PFC by a global gating

mechanism (e.g., the neuromodulator dopamine).

• What kinds of qualitatively different gating dynamics exist in the brain, and what are their respective

neural substrates? Possibilities include: input gating (allowing sensory / bottom-up activation into

prefrontal cortex), maintenance gating (updating new information into active maintenance), forget

gating (removing, resetting active maintenance), and output gating (output of information from active

maintenance).

• What is the temporal relationship between gating events and the maintenance period? For example,

the gating of an item into robust maintenance could be a punctate event with the gate opening only

transiently at the start, and then closing again. Alternatively, the gate could persist in an open state

throughout the maintenance period, playing a critical role in sustaining the active maintenance.

• How static vs. dynamic are working memory representations over the maintenance period? Evidence

for both relatively static, boxcar-like sustained activity, as well as various waxing-and-waning patterns



of delay-period activity have been reported.

• What is the nature and source of working memory capacity limitations? Is capacity limited by some-

thing like a small number of discrete slots (Cowan, 2001; G. A. Miller, 1956), or is it more like a

single shared resource (e.g., Ma, Husain, & Bays, 2014)?

• Can working memory representations provide a substrate for a form of content addressable memory

in service of variable binding and transfer?

These questions also have numerous mutual interdependencies, such that a comprehensive theory needs

to consider all of the issues interactively. Each of the above questions will be revisited in the General

Discussion section that follows the model descriptions.

Although the focus is on the neurobiologically-oriented models here, there is an extensive literature on

more abstract models that target human-level cognitive function specifically, and account for a range of

behavioral data regarding the nature and limits to working memory capacity and the modalities involved

(e.g., Logie, 2018; Oberauer et al., 2018a, 2018b; Vandierendonck, 2018). For additional background and

reviews, interested readers are referred to other sources to learn about them (e.g., Adams, Nguyen, & Cowan,

2018; Burgess & Hitch, 2005). In addition, readers are encouraged to look at Oberauer et al. (2018a) for

a compilation of benchmark human behavioral phenomena drawn from a wide swath of working memory

tasks that a panel of researchers have deemed important for proposed models to address. These benchmarks

constitute a kind of “psychophysics” of working memory: many different ways of probing the basic process

of encoding and retrieving information over a relatively short interval, including: serial recall, free recall,

complex span tasks, visual change detection, recognition, memory updating, and n-back.

The overall organization for the remainder of the chapter is as follows. First, the theoretical Background

for many of the issues introduced here will be provided in following section. Then, models at different

points on the spectrum articulated above are reviewed, considering how they might inform an understanding

of the role of gating and whether there are qualitatively different forms of working memory systems or

not. Finally, a synthetic summary of the basic ideas will be provided including a return to the motivating

questions listed earlier.



Figure 1: Detailed mapping of a standard occulomotor delayed response task onto patterns of neural activity across
different lamina within the dorsolateral prefrontal cortex (dlPFC). Superficial layer (II) neurons receive bottom-up
sensory inputs encoding the cued location for a delayed visual saccade, in this case, the red light at 90 degrees to the
left of the central yellow fixation point. Specialized deep layer III neurons with extensive lateral recurrent connec-
tivity, expressing both NMDA and GABA-B channels, provide the reverberant attractor dynamics to sustain the cue
location over the delay period, during which time the animal must maintain central fixation. When the fixation cross
dissappears, the animal is allowed to respond, and deep layer V output neurons drive the motor response, to saccade to
the previously-cued target location. All aspects of this task are typically trained through reinforcement-based learning
in a shaped fashion, such that the animal learns that reward only occurs when all steps are correctly performed. Figure
adapted from Arnsten et al., (2012)

2 Background

The most central phenomenon for all neurobiological models of working memory is the sustained delay

period firing of neurons in the prefrontal cortex (PFC) (e.g., Fuster & Alexander, 1971; Goldman-Rakic,

1995; Kubota & Niki, 1971; E. K. Miller & Desimone, 1994; Sommer & Wurtz, 2000). This phenomenon

has been the subject of extensive computational modeling research, at multiple levels of analysis. The core

ability for neural circuits to maintain a signal through the enduring firing of neurons has been extensively

investigated through many variations on attractor networks (see Barak & Tsodyks, 2014; X.-J. Wang, 2001,

for reviews). Specifically, neurons can maintain information over time through active firing sustained by

a pattern of mutual reciprocal excitation (you pat my back and I’ll pat yours, essentially). Although brief

periods of self-sustained activity can be seen across much of the neocortex, the PFC seems clearly special-

ized in this regard (e.g., Funahashi et al., 1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995; Kubota

& Niki, 1971; E. K. Miller, Erickson, & Desimone, 1996; M. Wang et al., 2013). Thus, a critical question

is: are there specialized neural mechanisms in the PFC that explain this ability?



Figure 1 from Arnsten, Wang, and Paspalas (2012) shows a widely-accepted framework for how these

reverberant attractor dynamics operate within a standard oculomotor delayed response task to maintain the

cue location during the delay period, enabling a delayed saccade to the cued location (J. W. Brown, Bullock,

& Grossberg, 2004, developed an early system’s level model with this structure, as discussed later). Specif-

ically, a specialized population of deep layer 3 pyramidal neurons within the prefrontal cortex has been

identified, which has extensive lateral, mutually excitatory (recurrent) connectivity (Kritzer & Goldman-

Rakic, 1995; Y. Wang et al., 2006). This pattern of connectivity has undergone a prominent evolutionary

expansion in primates (Elston, 2003; M. Wang et al., 2013), and has a high concentration of N-methyl-D-

aspartate (NMDA) receptors which are important for stabilizing this reverberatory activity and contribute to

its continued informational specificity. These receptors have a switch-like bistability, such that when they

are activated they drive sustained excitatory currents that reinforce the activity of already-activated neurons.

There are also important complementary bistable inhibitory GABA-B channels that prevent previously in-

active neurons from becoming activated, which greatly enhances the robustness and stability of the attractor

states (Sanders, Berends, Major, Goldman, & Lisman, 2013).

Several studies have shown that NMDA receptor blockade impairs working memory performance in

multiple species (Krystal et al., 2005; Moghaddam & Adams, 1998; Roberts et al., 2010). A particularly

elegant study by M. Wang et al. (2013) showed that the targeted administration of antagonists to NMDA,

but not AMPA, in deep layer 3 pyramidal cells blocked persistent activity in monkey PFC and impaired

performance on a spatial working memory task. These authors also showed that the NMDA receptors

involved were phenotypically specialized to express high levels of the NR2B subunit.

The laminar specialization shown in Figure 1 makes sense according to standard patterns of cortical

connectivity. Sensory inputs activate superficial layers directly and via layer 4, which then projects up to

the superficial layers, and the subcortical output from the PFC arises from the deep layers, with the large

layer 5b output neurons providing direct motor-level output (i.e., their axons constitute the pyramidal tract

projections to the spinal cord). These layer 5b neurons also project to the basal ganglia and other subcortical

targets. There is also a population of layer 6 corticothalamic (CT) neurons that project to the thalamus, which

will be discussed below. In addition to driving output responses, the layer 5b output neurons also transmit

both sensory input and sustained active maintenance signals, as revealed by the unambiguous recording of

all of these firing patterns in identified layer 5b neurons (Sommer & Wurtz, 2000). This can arise from



different patterns of projections from layer 2 and 3 neurons into layer 5b, and can be computationally useful

in enabling all aspects of the PFC activity to be available to subcortical systems.

The issue of gating can be seen directly in the activation patterns illustrated in Figure 1. Specifically,

what causes the layer 5b output neurons to only fire at the moment when a response should be initiated, and

not sooner during the delay period? Furthermore, if the superficial layer neurons were always capable of

updating the state of the layer 3 delay cells, irrelevant distracters would thus interrupt the working memory

system, but a defining characteristic of working memory is its robustness in the face of such distractions.

These questions are addressed in abstract, algorithmic terms by the LSTM model (Hochreiter & Schmidhu-

ber, 1997), which has a maintenance gate that learns when to allow new information into working memory,

and an output gate that learns when to allow information out of the working memory system. Both of these

gates operate as a simple multiplicative factor on a precisely balanced, linear working memory cell that can

perfectly maintain information indefinitely over time until further gated.

Thus, from a neurobiological perspective, a central question concerns the nature of possible neural mech-

anisms that could support these forms of gating. One early set of proposals focused on the neuromodulator

dopamine, which affects virtually all aspects of the PFC circuitry, including NMDA and GABA-B receptors

(Braver & Cohen, 2000; Durstewitz et al., 2000; Seamans & Yang, 2004). Specifically, transient changes

in dopamine firing, driven by its synergistic role in reinforcement learning, could modulate the stability of

activity dynamics in PFC, switching between robust maintenance and a more labile state where rapid updat-

ing is possible. However, such a mechanism would likely affect all of PFC at a time, due to the widespread

nature of dopamine innervation, and the relative homogeneity of dopamine cell firing, making it difficult to

selectively update some information while robustly maintaining other states. For hierarchical motor control

and various standard working memory tasks, this ability to selectively update is essential.

Motivated by data on the extensive interconnectivity and functional relevance of the basal ganglia (BG)

for frontal function (G. Alexander, DeLong, & Strick, 1986; R. G. Brown & Marsden, 1990; Graybiel, 1995;

Middleton & Strick, 2000; Mink, 1996), a number of models have advanced the idea that the BG are well-

positioned to provide this more selective gating function (Beiser & Houk, 1998; J. W. Brown et al., 2004;

Dayan, 2007, 2008; Dominey & Arbib, 1992; Frank, 2005; Frank et al., 2001; Gruber, Dayan, Gutkin, &

Solla, 2006; Houk, 2005; O’Reilly & Frank, 2006; Todd et al., 2008). Other work has directly addressed

BG gating from a theoretical and empirical perspective (Chatham, Frank, & Badre, 2014; Dahlin, Neely,



Larsson, Backman, & Nyberg, 2008; Voytek & Knight, 2010). Specifically, there are numerous parallel

loops of circuitry between the frontal cortex and BG that could provide a more selective, focal gating signal,

and the essential function of the BG is widely thought to be to disinhibit excitatory corticothalamic loops

in frontal cortex. In the motor domain, this disinhibition is thought to drive the initiation of overt motor

actions (Mink, 1996). Thus, by analogy, BG gating in higher-level PFC areas could drive the initiation of

cognitive-level actions, including the updating of working memory representations.

With the above providing a relatively well-established foundation, the next section will motivate some of

the more unresolved questions that different neurobiologically-based computational models have explored,

which will then be reviewed in greater detail in the remainder of the chapter.

2.1 The Nature of (BG) Gating and PFC Representations

The nature of working memory gating at many different levels of analysis represents a huge space of unre-

solved questions, including the most basic question of whether gating is really even present in the first place.

Some of these questions were highlighted in the introduction, including: the granularity over which gating

might operate; which of the different kinds of gating (maintenance, output and others) might be active, and

via which neural mechanisms; and how might gating dynamics relate to maintenance activation?

At the abstract computational level of analysis, there is an influential set of papers that showed how some

working-memory like abilities could emerge in a basic type of recurrent neural network (RNN) without any

form of gating mechanism (Botvinick & Plaut, 2004, 2006). Interestingly, these models focused on well-

learned types of behavior, including highly-practiced task performance and immediate serial recall (e.g.,

repeating a phone number or other information you’ve just been told), and they took 100’s of thousands of

trials to learn. These models also lacked any strong form of specialized active maintenance mechanism,

and instead learned to shape dynamically unfolding patterns of neural activity over time to systematically

encode the relevant temporal structure.

To help situate these models within a larger functional taxonomy, the well-established dichotomy be-

tween controlled and automatic (habitual) processing in human behavior (Cohen, Dunbar, & McClelland,

1990; O’Reilly, Nair, Russin, & Herd, 2020; Shiffrin & Schneider, 1977) is particularly relevant. Controlled

processing is specifically required in cases of novel or difficult cognitive tasks that require sustained atten-

tion and, typically, multiple cognitive steps. Paradigmatic examples include mental arithmetic, planning



moves in a game of chess, and evaluating multiple potential aspects of a difficult decision-making prob-

lem. By contrast, automatic processing occurs for well-learned, often single-step cognitive operations, for

example reading printed words. The widely-studied Stroop task demonstrates this distinction very clearly,

where automatic word reading is unaffected by irrelevant ink colors, but less well-practiced color naming is

strongly affected by conflicting color words (Dunbar & MacLeod, 1984; Stroop, 1935).

Thus, one could argue that the highly-trained, fine-grained, non-gated dynamics of recurrent neural

networks capture the faster time-scale, automatized forms of behavior and cognition associated with well-

learned tasks, which are thought to be supported by cortical networks in the parietal and lower-order frontal

motor areas. In contrast, controlled processing may require strongly gated, more discrete, longer-time-scale

dynamics supported by BG / PFC based models. The working memory contents in this latter case reflect

plans, goals, and other more sustained forms of information, associated with dorsolateral PFC (dlPFC) and

ventromedial PFC (vmPFC) areas. One can think of these controlled processing roles of the BG / PFC

circuitry as longer-time-scale “outer loops” of cognitive function involved in maintaining and selecting task

plans and goals, that organize the sequential order of actions and cognition over longer periods of time.

Within these outer loops, “inner loops” of more automatic, well-learned cognitive steps and actions take

place.

Thus, instead of representing a challenge to the importance of gating and specialized active maintenance

mechanisms, the basic RNN models help to delineate the specific domain of relevance for these mechanisms,

within the higher-level cognitive control / executive function domain, which is where at least some of these

models have been specifically targeted.

Within the space of models with gating mechanisms, the question of representational granularity is of

central importance. On one end of the spectrum is the LSTM model, which is typically used with each

individual working memory unit having its own dedicated set of gating units. This produces a very fine-

grained, diverse, and dynamic set of memory signals updating separately in many different ways over time.

By contrast, the more biological models based on the constraints dictated by the BG / PFC system require a

significantly more coarse-grained form of gating. Specifically, as reviewed below, biological data establish

that there are orders of magnitude fewer gating neurons in the output nuclei of the BG, relative to neurons

of the frontal cortex, meaning that relatively large aggregates of frontal neurons should share gating signals.

At the most coarse-grained end of the spectrum, the widely-used ACT-R computational modeling frame-



work (Anderson & Lebiere, 1998; Stocco, Lebiere, & Anderson, 2010) features the BG as the central bottle-

neck that drives the sequence of production firing steps, according to the classical production system model

of higher-level cognitive function. A production in this framework represents a single automatic inner-loop

step of processing, such as adding together two single-digit numbers, retrieving a fact from declarative mem-

ory, or focusing attention on a particular element in a visual input display. Critically ACT-R requires that

only a single such production can fire at any given time, producing a very coarse-grained form of gating (at

least in the temporal domain), compared to models where many different gating signals can fire in parallel.

Interestingly, there is a nice convergence between the abstract, cognitive-level ACT-R framework and the

more biologically-based BG-gating models (Jilk, Lebiere, O’Reilly, & Anderson, 2008), even though they

were derived from very different starting points. The principle of BG-gating of PFC active maintenance is

the hub that connects these frameworks most directly. Remarkably, based on purely behavioral considera-

tions, the ACT-R framework converged on a production firing constraint of no-faster-than 50 msec, which

directly matches the intrinsic oscillatory mode of the BG circuit (Bogacz, 2013; Courtemanche, Fujii, &

Graybiel, 2003; Schmidt et al., 2019).

Another important angle on the representational question is in terms of how dynamic and high-dimensional

working memory representations are over time and representational space? Several electrophysiologi-

cal studies support the notion of mixed selectivity coding, where individual neurons have complex, high-

dimensional response profiles relative to relevant task variables (Fusi, Miller, & Rigotti, 2016; Mante, Sus-

sillo, Shenoy, & Newsome, 2013). The high dimensional aspects of mixed selectivity are recognized to

be useful for flexibility in solving arbitrary tasks, but they come at the expense of generalizing to new

stimuli within a dimension. On the other hand, a long history of studies also support a more discrete, lower-

dimensional organization, with more discrete, “square wave” style temporal dynamics (Funahashi et al.,

1989; Fuster & Alexander, 1971; Goldman-Rakic, 1995; Kubota & Niki, 1971; Sommer & Wurtz, 2000).

These different temporal dynamics may interact with the representational organization of information as

well, with more fluid, high-dimensional, mixed-selectivity coding associated with the more automatic pro-

cessing, inner-loop end of the spectrum, and more discrete, square-wave dynamics associated with the more

controlled, outer-loop end of the spectrum.

Ultimately, the computational models can only serve to raise and focus questions, and further empirical

studies are required to more definitively answer these questions. For example, does the proposed distinc-



tion between more continuous, fine-grained, dynamical models and the more discrete, broader-scale gated

models fit with direct contrasts between different levels of PFC and posterior cortex? Or, is it possible

there is only one of these two types of mechanisms operating in the brain, supporting the whole scope of

relevant time-scales and modes of cognitive function? And more specifically, for gating operating through

the BG, how is this gating organized relative to representational content and neural structure, under the

strong biological constraints that there are many fewer gating neurons in the BG relative to PFC neurons. Is

there evidence for separate gating signals for different chunks of PFC, and what is the organization of these

chunks if so?

At a more detailed, biological level, there are a number of questions about the neural mechanisms that

could subserve different forms of gating (maintenance, output, etc). Based on the laminar organization

of PFC (Figure 1), maintenance gating should preferentially affect the specialized deep layer 3 neurons

(M. Wang et al., 2013), while output gating ultimately needs to affect the subcortically-projecting layer

5b output neurons (e.g., J. W. Brown et al., 2004; Harris & Shepherd, 2015; Larkum, Petro, Sachdev, &

Muckli, 2018; Ramaswamy & Markram, 2015; Sommer & Wurtz, 2000). Interestingly, there are two dif-

ferent types of thalamic afferents to cortex, core vs. matrix, which may differentially impact these cortical

layers (Clascá, Rubio-Garrido, & Jabaudon, 2012; Jones, 1998a, 1998b, 2007; Phillips et al., 2019), and

could thus be involved in both forms of gating. Specifically, core-type thalamic projections target the central

layers, including 3 and 4, while matrix-type preferentially target layer 1 where the apical tufts of pyramidal

cells from layers 2, 3, and 5b reside, the thick tufts of subcortically-projecting layer 5b being particularly

prominent (Harris & Shepherd, 2015; Larkum et al., 2018; Ramaswamy & Markram, 2015).

Furthermore, most areas of the frontal cortex receive input from at least two different thalamic nuclei,

and both core- and matrix-type thalamic relay cells, with medial dorsal (MD) nucleus prominently send-

ing core-type projections (Giguere & Goldman-Rakic, 1988), but also having matrix-type cells (Münkle,

Waldvogel, & Faull, 2000; Phillips et al., 2019). On the other hand, certain ventral thalamic areas (VM, VA)

predominantly send matrix-type (Kuramoto et al., 2009, 2015), while VL mostly sends core-type (Kuramoto

et al., 2009). In addition, the basal ganglia output nuclei target the matrix-type ventral thalamic areas more

densely and uniformly as compared to the more patchily covered MD (Ilinsky, Jouandet, & Goldman-Rakic,

1985; Kuramoto et al., 2009, 2015; Tanibuchi, Kitano, & Jinnai, 2009a).

Putting these biological data points together, the resulting hypothesis would be that BG-mediated ef-



fects on frontal cortex may be predominantly on the output-gating side (matrix type, targeting 5b output

neurons), while corticothalamic pathways independent of the BG, predominantly via the MD, may drive

PFC maintenance gating (core type, targeting layer 3). This is consistent with a growing body of empirical

evidence supporting a role for the MD nucleus in both the maintenance (Tanibuchi, Kitano, & Jinnai, 2009b;

Watanabe & Funahashi, 2012; Watanabe, Takeda, & Funahashi, 2009; Wyder, Massoglia, & Stanford, 2004)

and updating (Rikhye, Gilra, & Halassa, 2018) of sustained PFC activity. While this idea remains relatively

unexplored computationally, it nevertheless shows how neurobiologically-based models can usefully incor-

porate anatomical data to inform an understanding of the nature of the computations. It is also important

to emphasize that output gating in one PFC area could then directly influence maintenance in other areas,

and that the BG-driven gating could still result in sustained neural firing in targeted PFC areas, so it will

likely require more detailed implemented computational models to really sort through the full implications

and unique signatures of these different types of gating. Ideally, the predictions of such models could then

be tested empirically, at which point some more definitive level of understanding could be established.

2.2 Learning Mechanisms

Another central question for the working memory system is how it ends up being “intelligent” enough to

function as one of the core systems of generalized fluid intelligence, as cognitive-level theories and psycho-

metric data suggest (Engle et al., 1999; Friedman et al., 2006; Miyake et al., 2000). Without a clear answer

to this question, the PFC / BG working memory system ends up as a kind of unexplained homunculus — a

“little person” inside the head that makes humans smart (Hazy, Frank, & O’Reilly, 2006; Hazy et al., 2007).

One clear answer to this question is that the system learns how to strategically control the maintenance and

updating of working memory over the protracted timecourse of PFC functional development.

As such, one of the intriguing features of the dopamine-based gating hypothesis (Braver & Cohen, 2000)

was that it built the gating dynamics directly on top of an emerging understanding of phasic dopamine sig-

naling in reinforcement learning (RL) (Montague, Dayan, & Sejnowski, 1996; Schultz, Dayan, & Montague,

1997), thus providing a direct connection to learning. Subsequent models based on BG gating also retained

this connection to dopamine-based RL (Hazy et al., 2006, 2007; O’Reilly & Frank, 2006), operating directly

within the BG where dopamine receptors are the most dense, and extensive evidence supports a critical role

for dopamine in shaping learning in a manner directly compatible with these models (Collins & Frank, 2014;



Frank, 2005; Frank & O’Reilly, 2006; Gerfen & Surmeier, 2011; Moustafa, Sherman, & Frank, 2008).

These biologically-motivated uses of dopamine-based RL are broadly consistent with current machine-

learning approaches that combine RL with deep learning networks (i.e., Deep RL), which have proven

successful at learning to succeed at a variety of different competitive games including Atari video games,

chess, and Go (e.g., Mnih et al., 2015). However, the LSTM gating model upon which Deep RL is based still

relies on a form of error backpropagation that is difficult to reconcile with known biology (unlike simpler

forms of backpropagation which do have a reasonable biological mapping; O’Reilly, 1996; Whittington

& Bogacz, 2019). Overall, the direct connection between dopamine and motivated, goal-driven learning

may be synergistic with the task-driven function of the PFC more generally, and together with its known

biological basis, suggests it may be the more likely form of learning in these systems.

Also, the combination of RL with selectively updatable, actively maintained working memory represen-

tations can be exploited to produce a sort of inductive bias to use those representations in a way that can

be co-opted under new task conditions, resulting in a form of out-of-distribution generalization or learning

transfer (Bhandari & Badre, 2018; Collins & Frank, 2013, 2016; Frank & Badre, 2012; Kriete, Noelle, Co-

hen, & O’Reilly, 2013; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005; A. Williams & Phillips, 2020).

Thus, there may be some connection with human-level symbolic-like processing abilities and these under-

lying neural systems (O’Reilly et al., 2014).

2.3 Activity-Silent Working Memory

Finally, although the focus here is mostly on the neural mechanism of sustained neural firing, considerable

work has shown that the broad functionality attributed to working memory can also be supported by other

neural mechanisms. For example, Braver and colleagues have championed the distinction between proactive

vs. reactive cognitive control in which the former corresponds to sustained neural firing to span a temporal

delay while the latter involves the temporary offline storage, e.g., in the hippocampus, and its retrieval later

at the time in which the information is actually needed (e.g., Braver, Paxton, Locke, & Barch, 2009).

More recently, the potentially related idea of activity-silent working memory has gained considerable

traction, based on the observation that neural activity is often quite variable during the delay interval, and

sometimes seemingly even nonexistent (Stokes, 2015). Thus, perhaps temporary strengthening of recurrent

synapses involved in WM could be contributing, consistent with the role of long-acting, intrinsic cellular



mechanisms (e.g., O’Reilly & Frank, 2006; X.-J. Wang, 2001), specifically the recruitment of NMDA recep-

tors shown to be critical for stabilizing reverberatory activity. It has also been proposed that activity-silent

working memory reflects an optimization that PFC can use if it can get away with it, but not if manipula-

tion of longer maintenance is needed (Masse, Yang, Song, Wang, & Freedman, 2019), which is consistent

with the broader idea that the more demanding form of working memory supporting executive function may

require sustained active maintenance, but more automatized forms may not.

Next, the following section will delve deeper into the ideas and questions raised here and in the Introduc-

tion, starting with a more detailed discussion of the abstract machine-learning level computational models,

and then working down to more biologically-based models.



Table 2: Working Memory Models Covered
Model Salient Features Key Results

Active Maintenance - Persistent Cortical Activity

Attractor-based Corticocortical reverberant activity Long time constants of NMDARs enable per-
sistent activity (X.-J. Wang, 2001)
Specialized NR2B NMDAR subunits critical to
robust maintenance (M. Wang et al., 2013)
(Nassar, Helmers, & Frank, 2018)

Corticothalamocortical reverbera-
tory activity

Mouse ALM (Guo et al., 2017)

Gating-Relevant (Machine Learning)

AlphaStar (Deep
Mind)

Deep RL, DCNN Defeated human players at Starcraft II (Vinyals
et al., 2019)

Botvinick-Plaut SRN + BPTT Immediate serial recall (Botvinick & Plaut,
2006)

Deep Q-Network Deep RL Learned to play a large suite of Atari games
(Mnih et al., 2015)

LSTM Multiple forms of fine-grained gating (Hochreiter & Schmidhuber, 1997)
(Gers, Schmidhuber, & Cummins, 2000)
(Schmidhuber, Gers, & Eck, 2002)

Open AI Five Deep RL (includes LSTM) Team of five cooperating artificial agents
defeated tournament-level human teams in
Dota2 (https://openai.com/five)

Combined Deep RL with supervised
learning with sensory feedback sig-
nals

Learned facile manipulation using
human-like robotic hand (Dactyl)
(https://openai.com/blog/learning-dexterity/)

BG-Based Gating

Beiser-Houk i - Maintenance gating: reverberant
corticothalamocortical activity

Sequence learning (Beiser & Houk, 1998)

ii - Transient disinhibition of thalamic
relay cells switches them into a per-
sistently active up state

Dominey-Arbib i - Maintenance gating: persistent
suppression of BG output permits
sustained corticothalamocortical re-
verberant activity.

i - Memory-guided saccades. (Dominey & Ar-
bib, 1992)

i - Input gating - BG selects between
two presented potential targets

ii - Visuomotor discrimination for selective sac-
cades (Arbib & Dominey, 1995; Dominey, Ar-
bib, & Joseph, 1995)

FROST i - Explicitly excludes a role for BG in
the initiation of maintenance gating

Memory-guided action selection. (Ashby, Ell,
Valentin, & Casale, 2005)

ii - Attentional, cortically-initiated
maintenance feeds back to BG that
then helps support it

Attentional effects on working memory capac-
ity

Gruber et al. Phasic dopamine trigger mecha-
nism affects the bi-stability of cells
in both BG and cortex

Initiation of WM maintenance; Prevention of
drift for WM representations in continuous
space. (Gruber et al., 2006)

PBWM i - Intrinsic cellular maintenance
mechanisms triggered by BG gating
signals

1-2-AX, Phono loop (Hazy et al., 2007;
O’Reilly & Frank, 2006), WCST (Rougier &
O‘Reilly, 2002), N-back Chatham et al. (2011)

ii - Phasic dopamine signals train
BG gating signals based on cor-
rect/incorrect outputs

task switching, the Stroop task (Herd et
al., 2014), reference-back-2 task (Rac-
Lubashevsky & Frank, 2020), and more...

Schroll et al. Increased STN activity in response
to salient stimuli transiently sup-
presses the thalamus and termi-
nates reverberant corticothalamo-
cortical activity.

WM memoranda updating (Schroll, Vitay, &
Hamker, 2012)

TELOS i - Division of labor between super-
ficial cortical layers for maintenance
and deep for output.

Output gating by BG of memory-guided sac-
cades trained by RL (J. W. Brown et al., 2004)

ii - BG gating of maintenance sig-
nals in superficial cortical layers to
deep layers for output



Context
copy

learn
t-1

Input

Hidden

Output

t

Figure 2: The simple recurrent network (SRN). The Context layer holds a copy of the prior (t-1) Hidden layer
activation state, and the current Hidden layer has learnable synaptic weights that can adapt to incorporate this temporal
context as needed to help learn the current Input / Output mapping. However, anything that is not needed on the current
or few subsequent time steps will be rapidly forgotten: the system has a very limited effective memory span.

3 Recurrent Neural Networks, LSTM, and the Deep Learning Revolution

The machine learning / AI version of the classic attractor model of working memory involves recurrent

neural network (RNN) models, which have some form of recurrent (reciprocal) connectivity, in contrast to

the more predominant, simpler forms of neural networks that are purely feedforward. The simple recur-

rent network (SRN) (Cleeremans, Servan-Schreiber, & McClelland, 1989; Elman, 1990; Jordan, 1986) is a

particularly simple version, based on a feedforward backpropagation network in which a copy of a layer’s

activation vector after each timestep is fed back into the network on the following timestep as an additional

input, most typically involving the hidden layer feeding back into itself (Figure 2). This t − 1 activation

vector is input by a weight matrix that connects each t−1 unit with all of the hidden units at timestep t; that

is, there is an all-to-all projection from a hidden layer to itself, offset by one timestep.

Thus, a hidden layer’s previous activity state provides a continually updated and integrated temporal

context input to itself at every timestep. Then, the recurrent weights conveying the t − 1 information are

updated after every timestep along with all the other network weights according to the standard backprop-

agation algorithm (Rumelhart et al., 1986). More recently, there is some indication that thalamocortical

circuits in the posterior cortex might support something very similar to the SRN, which would be consistent

with a more short-term role (O’Reilly, Russin, Zolfaghar, & Rohrlich, 2020).

Whereas learning in the SRN is limited to looking back a single timestep, a more general, powerful

learning algorithm was also developed, known as backpropagation through time (BPTT) (R. J. Williams

& Zipser, 1992), which can be understood as an “unrolling” of the multiple iteration timesteps of network
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Figure 3: “Unrolling” an SRN for back-propagation through time (BPTT). As in the simple SRN a copy of the Hidden
layer activation state is saved at the end of each timestep that sends learning weights to the current Hidden layer that
can adapt to incorporate this temporal context as needed to help learn the current Input / Output mapping. All of these
weights are then adapted after each timestep by the usual gradient descent back-propagation algorithm. Because of
the veridical representation of each timestep’s context the effective memory span of the system is extended.

processing constituting a particular sequence into an equivalent “spatialized” network to which standard

back-propagation can be applied (Figure 3), with the critical factor being that in calculating the gradient-

based contribution to the output error the recurrently connected hidden layer now has two descendent layers

contributing to the calculation: the output layer on the current timestep as well as the hidden layer on the

subsequent one. Although only a tiny part of the full BPTT algorithm as described in the Goodfellow,

Bengio, and Courville (2016) text, Equation 1 shows how the BPTT computation of the gradient for a

recurrently connected hidden layer depends on two descendent layers:

5h(t)L =

(
∂h(t+1)

∂h(t)

)>

(5h(t+1)L) +

(
∂o(t)

∂h(t)

)>

(5o(t)L) (1)

where 5h(t)L and 5o(t)L are the per timestep gradient contributions to the loss (error) function, L,

of the hidden, h, and output, o, layers, respectively; and
(
∂h(t+1)

∂h(t)

)>
and

(
∂o(t)

∂h(t)

)>
are matrices of partial

derivatives of the unit-by-unit changes in activity of descendent layers h(t+1) and o(t), respectively, with

respect to the hidden layer activity on the reference timestep h(t). For further details on BPTT as well

as the standard back-propagation algorithm itself, interested readers are referred to the excellent text by

Goodfellow et al. (2016), and/or a very informative tutorial-level treatment by Werbos (1990), one of the

original inventors of the back-propagation algorithm (Werbos, 1974).

The BPTT procedure can be combined with the SRN context copying method, and the combination can

be quite powerful. Two important applications of this combined model (Botvinick & Plaut, 2004, 2006)



provide a good illustration of the potential abilities of the more dynamic form of working memory, as

explored next.

3.1 The Botvinick-Plaut RNN Model

The key contribution of the Botvinick and Plaut (2004) RNN model was to show that extensive backprop-

agation training enabled the model to develop a structured, hierarchical encoding of a well-learned task

(preparing a cup of instant coffee or tea), which was robust to disruption in the sequence of events, and

behaved similarly to humans overall. This model thus overcame the major limitation of a purely sequen-

tial chaining approach to sequence learning, which is that chaining is catastrophically brittle to any sort

of disruption in the processing of a sequence, because every timestep is completely dependent on the state

resulting from the prior one. Specifically, the extensive training enabled hierarchically-organized cross-

step contingencies to be learned, overcoming the short-time-scale working memory properties of the SRN

mechanism.

Subsequently, Botvinick and Plaut (2006) addressed the working memory domain more directly by

adapting their model to reproduce many of the patterns of errors made by normal and impaired participants

in a serial recall task in which four to-be-remembered items were presented in sequence (encoding stage)

and the network was required to reproduce the items in the same order during a decoding stage. Like the

coffee-making results, the core finding was that the network was again robust to disruption having learned

representations that captured aspects of the hierarchical nature of the task on its own. Figure 4 shows how

the hidden layer activation vector in this model evolves over the course of four encoding timesteps followed

by four decoding timesteps. At each time point, the hidden layer population vector changes so as to best

match its efferent weights to the output layer such that the output units decode the proper item in sequence.

What is responsible for this behavior? The answer is learning and the power of distributed representa-

tions (Hinton, McClelland, & Rumelhart, 1986). Consider the first recall timestep (second circled 1 starting

from the left in Figure 4) during the training process. The context layer’s population vector copied over

from the previous timestep will correspond most to just-encoded stimulus 4. If the network’s output on this

timestep is wrong, the recurrent weights from the context to the current hidden layer will be weakened so

that next time around a different output might be made. If correct, the recurrent weights will be strength-

ened, in particular, those weights coming from the context layer units that overlap with the activation vector



The data in Figure 5 are most easily parsed by focusing on a
single step of processing. Consider, for example, the first step of
recall. The four points plotted here indicate the visibility of ele-
ments at list positions one, two, three and four, reading from top to
bottom. Note that elements at Position 1—the position being
recalled on this step—are associated with the largest cosine, that is,
the highest visibility. At recall step two, the pattern has changed.
Here, list Position 2 has the largest cosine. Once again it is the
element being recalled that is most visible to the output layer.
Element 1, no longer immediately relevant to the system’s output,
is represented on this step so as to be quite invisible to the output
layer, with an activation vector that is almost orthogonal to the
relevant output weights.
The connected data series in the figure provide an indication of

how the representation of individual list elements evolves over the
course of a trial, from encoding through recall. On the step in
which an element is encoded, it is represented with an activation
vector that renders it relatively visible to the model’s output layer.
On the next time step, the representation of the element is strongly
transformed, so as to render it essentially invisible to the output
layer. Then, over the succeeding steps, the element’s representa-
tion gradually shifts, bringing it more and more into line with the
relevant output weights. By the time the element is to be recalled,
it is again relatively well aligned with those weights, and thus once
again relatively visible to the output layer. The overall process can
be visualized as an incremental rotation of the vectors that repre-
sent individual list elements. In a manner of speaking, these

vectors are rotated out of view just following encoding, and then
gradually rotated back into view as the time to recall them
approaches.5,6

5 The relatively dramatic representational shift occurring just after en-
coding (and after recall) is driven by feedback from the output layer, as
conveyed via the output-to-hidden projection. This can be inferred from the
finding that the weight vector connecting the output layer to any given
hidden unit tends to correlate negatively with the weight vector connecting
that hidden unit back to the output layer. Given this role, the feedback
projection from the output layer can be understood as paralleling the
“competitive filter” in the competitive queuing model of Houghton (1990),
as well as other mechanisms for post-output suppression. Note that the
output-to-hidden projection was included in the model to implement the
assumption that internal representations of serial order are influenced by
feedback from output systems. Further simulations indicated that that the
network can be successfully trained without this projection, resulting in
patterns of performance similar to those observed when the projection is
present. Under these circumstances, the hidden-to-hidden weight matrix
appears to assume the function served by the output-to-hidden weights. In
both versions of the network, the hidden-to-hidden weights are responsible
for driving the smaller, stepwise transformations that occur over the re-
maining steps of recall.
6 To say that element representations are rotated through representa-

tional space implies that their magnitudes remain constant. Further analysis
indicated that this is, in fact, true for the model. With the one exception of
the encoding step, in which element vectors tended to be relatively large,
the magnitude of element vectors remained essentially constant over sub-

Figure 5. Mean cosine of angle between element vectors and relevant hidden-to-output weight vectors. Each
time series is based on vectors representing elements at a particular list position, as indicated by the numeric
labels. Labels are included only on time steps in which the represented element is to be output.

209MEMORY FOR SERIAL ORDER

Figure 4: How RNNs convey information over time to make it available when needed. Data associated with four items
are shown (circled numbers 1-4). Data points reflect a similarity measure between the population activity vector in the
hidden layer and the corresponding weights that connect the hidden layer to the output. Following memorandum 1 as
an example, note the high similarity value on the first (encoding) trial in which the network must output the identity
of that item. However, on the next trial, the similarity drops precipitously when the second item is encoded (and
output). Subsequently, the similarity measure for the first item gradually rises over further encoding trials until it again
becomes highest on the fifth trial, which is the first decoding trial and the first item needs to be output again. One can
think of the activity vector in the hidden layer as rotating over the sequence of trials such that each item to be recalled
takes turns being the best match to the output weights. Figure from Botvinick & Plaut, 2006, Figure 5.

that most corresponds to stimulus 1.

Gradually, based on changes in the recurrent weights from the context layer (hidden at t-1), the current

hidden activation vector will come to approach that corresponding to outputting stimulus 1. In this way, the

population vector of the hidden layer comes to change systematically over subsequent timesteps in a way that

allows for correct sequential outputs. This systematic change in the population vector activity is sometimes

called “vector rotation” (see Table 1: Glossary). Thus, this evolution of the population vector along a

trajectory that exposes representations only at the appropriate time is reminiscent of the dynamic population

vector trajectories described in activity-silent and/or dynamically evolving working memory representations

(e.g., Stokes, 2015; Stokes et al., 2013).

These models may best describe an implicit form of memory where the relevant information is deeply

embedded in complex neural dynamics, which might be difficult for other systems to access in more gener-
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Figure 1: Architecture of memory cell cj (the box) and its gate units inj, outj. The
self-recurrent connection (with weight 1.0) indicates feedback with a delay of
one time step. It builds the basis of the CEC. The gate units open and close access
to CEC. See text and appendix A.1 for details.

We also have

netcj(t) =
X

u
wcjuyu(t� 1).

The summation indices u may stand for input units, gate units, memory
cells, or even conventional hidden units if there are any (see section 4.3). All
these different types of units may convey useful information about the cur-
rent state of the net. For instance, an input gate (output gate)may use inputs
from other memory cells to decide whether to store (access) certain infor-
mation in its memory cell. There even may be recurrent self-connections
like wcjcj . It is up to the user to define the network topology. See Figure 2 for
an example.
At time t, cj’s output ycj(t) is computed as

ycj(t) = youtj(t)h(scj(t)),

where the internal state scj(t) is

scj(0) = 0, scj(t) = scj(t� 1) + yinj(t)g
�
netcj(t)

�
for t > 0.

The differentiable function g squashes netcj ; the differentiable function h
scales memory cell outputs computed from the internal state scj .

4.2 Why Gate Units? To avoid input weight conflicts, inj controls the
error flow to memory cell cj’s input connections wcji. To circumvent cj’s
output weight conflicts, outj controls the error flow from unit j’s output

Figure 5: The LSTM memory cell (rectangle) with constant error carousel (CEC; circle with diagonal chord). See
main text for explanation. From Hochreiter & Schmidhuber, 1997, Figure 1.

alizable, flexible ways. Furthermore, such dynamic temporally-evolving representations would not appear

to be ideal for broadcasting a sustained plan of action, or desired goal state, over a relatively long period of

time, to guide coordinated behavior across a wide range of different brain areas toward carrying plans and

achieving goals. Indeed, most theories of conscious awareness emphasize that sustained stable activity over

relatively long time periods (10’s to 100’s of milliseconds) is a necessary property (Lamme, 2006; Seth,

Dienes, Cleeremans, Overgaard, & Pessoa, 2008), consistent with this overall idea that the kinds of memory

associated with these rapidly rotating high-dimensional activity states would likely not be consciously acces-

sible. This is consistent with the overall suggestion that the form of working memory supporting controlled

processing is distinct from that supporting highly automated sequential behavior.

3.2 Long Short-Term Memory and Gating

Despite capturing many aspects of human behavior, the SRN / BPTT models remained strongly limited on

their ability to span longer temporal delays, because each additional step back in time, which is equivalent to

adding an additional hidden layer in the BPTT framework (Figure 3), results in another step of exponential

decay of both the activations and the backpropagated learning signals (i.e., the “vanishing gradient” prob-

lem; Goodfellow et al., 2016). They also had difficulty filtering out the effects of distracters, and selectively

updating to encode infrequent relevant items from a sequential stream. Furthermore, whatever flexibility

and robustness they were able to exhibit required extensive training, and even then was relatively limited.

To directly solve these problems, Schmidhuber and colleagues introduced dynamic, learned gating mecha-

nisms in the long short-term memory (LSTM) model (Gers et al., 2000; Hochreiter & Schmidhuber, 1997;

Schmidhuber et al., 2002).



The fundamental functional element in LSTM is the memory cell (the rectangular box in Figure 5). At

the core of the memory cell is the constant error carousel (CEC), which is effectively a unit having a linear

activation function and a fixed self-recurrent connection of weight 1.0 (the circle with a diagonal chord at

middle-bottom of the rectangle), which enables it to store activity states in veridical form over a potentially

indefinite number of timesteps. By itself, however, the CEC would be constantly bouncing around under

the influence of every input signal into it, and therefore the LSTM model added learnable gating units that

preserve the CEC’s current state when the gate is closed, and allow it to rapidly update when the gate is

open. Thus, the CEC state scj is updated at each timestep according to the following equation:

scj (t) = scj (t− 1) + g(netcj )(t))y
inj (t) (2)

where scj (t) is the CEC’s activity state at timestep t; g(netcj (t)) is a nonlinear, squashing activation

function with codomain 0 to 1; and yinj (t) is the activation of the input gate function inj (left circle beneath

the rectangle with S-shape inside).

Furthermore, an output gate unit (right circle with S-shape) determines when the CEC activation is

communicated to other neurons. Thus, the output of the memory cell, ycj , is computed at each timestep as

follows:

ycj (t) = youtj (t)h(scj )(t)) (3)

where ycj (t) is the memory cell’s output at each timestep; youtj (t) is the activity of the output gate unit

outj ; and h(scj (t)) is a nonlinear function of the CEC’s current state value, scj ..

With these gates in place, the LSTM can lock in and hold information for indefinitely long time periods,

and learn to drive outputs at precise points in the future. Hochreiter and Schmidhuber (1997) adapted a

real-time variant of the BPTT logic described by Robinson and Fallside (1987) for learning when to open

and close these gates, as a function of overall task error. Critically, the input and output gates not only gate

access in and out of the CEC state, they also serve to filter learning by gating the access of back-propagating

error signals to the input (wcji) and output (wicj ) weights of the whole memory cell (Figure 5), thereby

shielding them from changing when the gate is closed.

Each LSTM memory cell is typically used as a single unit would be in a standard network, receiving

full weighted synaptic inputs from lower layers, and sending outputs to higher layers. Although the original



LSTM paper envisioned the possibility of multiple CEC memory cells (and CECs) per set of gates, in

practice this is rarely if ever used. As such, typical LSTM models exhibit similar kinds of complex, high-

dimensional, rotation-like dynamics as the RNNs investigated by Botvinick and Plaut (2004, 2006), but with

the significant advantage of being naturally biased to maintain information over time (instead of having to

be explicitly trained to do so), and having the ability via gating of maintaining information in a relatively

protected manner over long time intervals.

Schmidhuber and colleagues later added a forget gate (not included in Figure 5) to deal with an important

problem that arises under conditions of continuous performance in which events (timesteps) are not grouped

into discrete trials. The problem they identified was that their storage cells/carousels became saturated

without the intermittent clearing (resetting to 0) that generally happens programmatically between discrete

trials. Adding a forget gate unit allows the network to learn to clear storage cells adaptively (Gers et al.,

2000). These forget gates are standard on most current LSTM implementations, and highlight the critical

point that forgetting is really as important as remembering, from a signal-to-noise perspective: it is important

to remove old, irrelevant information so that new, relevant information can naturally drive processing.

3.3 Deep Reinforcement Learning

With the explosion of deep learning over the last decade, it has turned out that the LSTM has become a

workhorse for networks having a predictive, temporal contingency component. These are often still trained

by traditional supervised backpropagation, but recently many deep learning researchers have started to train

these LSTM-based deep networks with a version of RL such that it is only reward signals that are backpropa-

gated in order to train the gating units controlling the LSTM units. This triple merger of deep convolutional

neural networks, LSTMs, and reinforcement learning has become known as deep reinforcement learning

and has spawned many impressive successes just in the last few years.

For example, Deep Q-Network, a Deep RL model, learned to play a large suite of Atari games in an

end-to-end fashion, using only on-screen pixels as input and points from the game serving as a reward

function (Mnih et al., 2015). However, the model was fairly brittle – e.g. if you move the paddle just two

pixels in breakout, it fails to adapt (Kansky et al., 2017). Also, in 2017 a team of five cooperating artificial

agents (Open AI Five) trained by deep RL defeated tournament-level human teams in a modified version of

the Dota 2 virtual game (https://openai.com/five/). And, using the same algorithms as Open AI



Five, a different team combined deep RL with supervised learning on the sensory side (a deep convolutional

neural network) to train a robotic hand (Dactyl) to manipulate a block in an impressively human-like way

(https://openai.com/blog/learning-dexterity/). Finally, in 2019 DeepMind’s AlphaStar

used a combination of deep RL and supervised learning in a deep convolutional neural network to win at

Starcraft II.

In summary, the LSTM model strongly suggests that dynamic gating of working memory has key com-

putational benefits, but current LSTM models retain the more implicit form of dynamic, high-dimensional

temporal dynamics of non-gated RNNs, and both are likely better models of implicit, highly automated task

performance. A key limitation of these automated-task level models is their relative inflexibility, which con-

trasts strongly with the defining features of cognitive control and executive function, which is more closely

associated with working memory in the cognitive neuroscience literature. Models of this latter domain will

be examined next.

4 Gating: Models of Selective Updating

The computational-level insights about the benefits of dynamic, learnable gating in the LSTM algorithm

converge with considerable biological data supporting the idea that the basal ganglia (BG) provides dynamic,

learnable gating for PFC working memory activity. It has long been recognized that what most distinguishes

the frontal cortex from more posterior areas is the additional involvement of the BG in modulating cortical

activity. For motor cortex, this is reflected in the BG’s generally accepted role in the selective gating of

motor actions (e.g., Mink, 1996) and there is now a modern consensus that the BG are critically and

analogously involved in cognitive functioning (R. G. Brown & Marsden, 1990; Dahlin et al., 2008; Frank,

2005; Frank & O’Reilly, 2006; Graybiel, 1995; Gruber et al., 2006; Houk, 2005; Middleton & Strick, 2000;

Rac-Lubashevsky & Frank, 2020; Voytek & Knight, 2010).

Specifically, it has long been suggested that the same basic gating-like mechanisms operational in motor

control may have been adapted during evolution to support cognitive functioning as well (e.g., Beiser &

Houk, 1998; Middleton & Strick, 2000; Wickens, Alexander, & Miller, 1991) and there is now considerable

empirical evidence suggesting that specific gating decisions made by the BG via thalamus can perform a

maintenance gating function (Basso & Wurtz, 2002; Cole, Bagic, Kass, & Schneider, 2010; Hikosaka &

Wurtz, 1983; McNab & Klingberg, 2008; Monchi, Petrides, Strafella, Worsley, & Doyon, 2006; Nyberg
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Figure 6: The basic PBWM framework illustrating the roles of the basal ganglia and PFC in working memory.
Processed information from posterior areas (blue boxes) can be loaded into PFC for active maintenance under the
control of gating by the BG (red boxes). Maintained information can in turn be used to bias processing in posterior
areas. Learning in the BG uses phasic DA signals computed by the PVLV system (purple box; O’Reilly, Frank, Hazy
et al., 2007; Mollick, Hazy, Krueger et al., 2020.

et al., 2009; Rikhye et al., 2018; Stelzel, Basten, Montag, Reuter, & Fiebach, 2010; Yehene, Meiran, &

Soroker, 2008). This has led to a series of computational models based on the interaction of the PFC and

BG, some of which will be reviewed here with a focus on the mechanisms each proposes with regard to

working memory gating.

As noted in the introduction, these BG-based models tend to focus on longer time scales of action

selection and cognitive control, with the general idea that the BG functions at a longer outer-loop time scale

to help select the next course of action, and support the cognitive control and executive functions needed to

organize behavior over these longer time scales. These ideas are consistent with the striking data from severe

cases of Parkinsonism and other BG disorders, which result in a catatonic state with little to no voluntary,

self-initiated action, as depicted in the movie Awakenings (starring Robert De Niro and Robin Williams).

Thus, it is likely that these models describe entirely different phenomena compared to the automatic, habitual

inner-loop level behavior characterized by the RNN models described above.

4.1 The PBWM Framework

The PBWM (prefrontal-cortex, basal-ganglia working memory) model was directly inspired by LSTM gat-

ing, combined with the extant BG biological data (Frank et al., 2001; Hazy et al., 2007; O’Reilly, 2006;

O’Reilly & Frank, 2006) (Figure 6). PBWM assumes the basic sustained firing of PFC neurons as described

above (supported by both recurrent excitatory loops and intrinsic mechanisms including NMDA channels),



and shows how the BG disinhibition of PFC can drive the rapid updating of these sustained working memory

representations. Specifically, as illustrated in Figure 7:

• Firing in the direct or Go pathway of the BG will disinhibit a select subset of one or a few of the

excitatory thalamocortical loops in corresponding areas of PFC (called stripes), and this disinhibition

should provide a sufficient jolt of extra excitation to open NMDA receptors, and trigger robust active

maintenance. This notion of Go-gating for working memory updating is consistent with the character-

istically sparse and episodic nature of much of BG signaling (G. E. Alexander, 1987; Kimura, Kato,

& Shimazaki, 1990; Plenz & Wickens, 2010), and with the idea that BG is specifically engaged at the

initiation of action.

• The NoGo pathway serves to oppose the Go pathway in the process of deciding whether to update

individual stripes (Collins & Frank, 2014; Frank et al., 2001; O’Reilly, 2006; O’Reilly & Frank,

2006). In the PBWM model, if the NoGo pathway wins out in the competition between these two

pathways, ongoing active maintenance continues in the associated PFC areas. This is in contrast to

other possible models where the NoGo is seen as more directly inhibiting activity in the cortex (e.g.,

Arbib & Dominey, 1995; Ashby et al., 2005; Dominey et al., 1995; Dominey & Arbib, 1992; Mink,

1996; Schroll et al., 2012). In computational simulations, the ability of NoGo firing to protect ongoing

active maintenance has proved valuable. Nevertheless, this is not a fully settled issue, and remains

an important question for ongoing research. For example, D2 activity in the BG has been shown to

suppress specific actions, induce NoGo learning, and affect updating and distractibility (Collins &

Frank, 2014; Frank & O’Reilly, 2006; Hikida, Kimura, Wada, Funabiki, & Nakanishi, 2010; Kravitz,

Tye, & Kreitzer, 2012; Yttri & Dudman, 2016; Zalocusky et al., 2016).

• Phasic dopamine signals generated by reward prediction errors serve to reinforce Go / NoGo decisions

based on the relative value of reward outcomes.

• By enabling selective updating of different stripes where information can be encoded, a powerful form

of role-filler variable binding (O’Reilly, 2006) and further levels of indirection Kriete, Mingus, Wy-

atte, Herd, and O’Reilly (2011) can be achieved, supporting systematic structure-sensitive cognitive

processing (O’Reilly et al., 2014; Rougier et al., 2005).

A major focus of work in developing the PBWM model has been on how more biologically-realistic



Figure 7: PBWM framework illustrating the roles of Go and NoGo pathways in the basal ganglia in the updating of
working memory. A. When NoGo dominates in the BG, gating is prevented and information is maintained in PFC. B.
When a Go is computed, the gate is opened and new information is loaded into PFC and then maintained.

learning mechanisms might be able to train the BG to learn to gate at appropriate points in time, to support

effective cognitive function. Thus, instead of relying on the biologically-implausible BPTT algorithm as

described above, PBWM uses well-established biological mechanisms of learning based on phasic dopamine

neuromodulation. Specifically, reward-related phasic dopamine signaling provides an appropriate training

signal for both the Go and NoGo pathways of the BG by virtue of the differential expression of dopamine

D1 vs. D2 receptors in the two pathways, respectively (Frank, 2005; O’Reilly & Frank, 2006) (Figure 7).

This directly implements Thorndike’s Law of Effect logic: if gating leads to a better-than-expected outcome,

reinforce that gating, and conversely, if gating leads to a worse-than-expected outcome, punish that gating.

A critical ongoing issue with this form of learning is the need to span potentially long temporal gaps

between gating and subsequent outcomes (i.e., the temporal credit assignment problem). Whereas earlier

versions of PBWM used a CS-like learning mechanism based on the working memory activity patterns

themselves, more recent versions have explored the use of longer-lasting synaptic tags (Redondo & Morris,

2011), which can be initially activated by the gating activity but then modulated and effected by subse-

quent phasic dopamine signals. This produces an overall learning dynamic similar to the ACT-R version of

reinforcement learning, which applies its reinforcement signal at the time of an outcome uniformly to all

production firing (since the last outcome) leading up to that outcome (Stocco et al., 2010).

By incorporating a biologically based model of phasic dopamine signaling (PVLV model; Primary Value

and Learned Value; Mollick et al., 2020; O’Reilly, Frank, Hazy, & Watz, 2007), PBWM has shown that many

complex working memory tasks (including those with arbitrary numbers of intervening distractors) can be

learned from trial-and-error experience using such a gating mechanism. These include the 1-2-AX and
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Figure 8: Proposed division-of-labor between maintenance-specialized stripes and corresponding output-
specialized stripes. A - Maintenance stripe (left) in maintenance mode, with corticothalamocortical reverberant
activity shown (red). Information from that stripe projects via layer Vb pyramidals to a thalamic relay cell for the
corresponding output stripe (Type 2 corticothalamic projection; see text), but the BG gate is closed from tonic GPi/SNr
inhibition so nothing happens yet (gray). B - Output gate opens due to Go signal-generated disinhibition of SNr/GPi
output (green), triggering burst firing in the thalamic relay cell, which in turn activates the corresponding cortical
stripe representation for the appropriate output. Projection from output stripe’s layer Vb pyramidal cells then activates
cortical and subcortical action/output areas, completing a handoff from maintenance to output. NOTE: Input stage of
processing not relevant so left out. Key: MD = mediodorsal nucleus of the thalamus; VA,VL = ventral anterior, ventral
lateral thalamic (motor) nuclei.

phonological loop (O’Reilly & Frank, 2006), ID/ED dynamic categorization (O’Reilly et al., 2002), WCST

(Rougier & O‘Reilly, 2002), N-back (e.g., Chatham et al., 2011), task switching, the Stroop task (Herd et al.,

2014), hierarchical rule learning (Badre & Frank, 2012), and the reference-back-2 task (Rac-Lubashevsky

& Frank, 2020).

In the original PBWM models, it was hypothesized that anatomical structures known as stripes (Levitt,

Lewis, Yoshioka, & Lund, 1993) could be separately, selectively gateable regions, comprised of aggregates

of cortical mini-columns, and correspond roughly to the hypercolumns described generally across a variety

of different cortical areas (Mountcastle, 1997). However, it is not clear if this correspondence is strongly

supported by extant data or not, as the relevant experiments have not been done. Nevertheless, there is some

suggestive evidence of at least some degree of neighborhood consistency in the form of systematically or-

dered iso-coding microcolumns described by Rao, Williams, and Goldman-Rakic (1999), i.e., the equivalent

of the mini-columns referred to above.

Another potential form of organization involves a distinction between neurons that fire well in advance

of a later motor action (i.e., preparatory firing), versus those that fire at the time of the action (i.e., output

or action firing). Different PFC neurons appear to be specialized according to these two different time

domains, with an anatomical organization at least in the frontal eye fields (Sommer & Wurtz, 2000). More



recent versions of the PBWM model have incorporated this distinction between preparatory (maintenance)

gating, and output gating, which also maps well onto these distinct types of gating in the LSTM framework

(Figure 8) (O’Reilly, Hazy, & Herd, 2016; O’Reilly, Munakata, Frank, Hazy, & Contributors, 2012). There

are different learning and activation dynamics demands associated with these different forms of gating in

the BG, which further supports the idea that they are supported by distinct sub-circuits within the overall

system. Finally, there is a growing body of empirical data and theoretical analysis supporting the basic

idea of a kind of maintenance vs. output organization in humans (e.g., Badre & Frank, 2012; Chatham &

Badre, 2015; Chatham et al., 2014; Collins & Frank, 2013; Frank & Badre, 2012; Gayet, Paffen, & Van

der Stigchel, 2013; Haith, Pakpoor, & Krakauer, 2016; Huang, Hazy, Herd, & O’Reilly, 2013; Kriete et al.,

2013; van Moorselaar, Theeuwes, & Olivers, 2014).

In summary, PBWM captures the following core hypotheses in a biologically-based framework that,

while significantly less computationally powerful than the full BPTT of LSTM, is nevertheless capable of

learning executive function tasks that depend on sustained working memory:

• The basal ganglia gates active maintenance in the PFC, with phasic Go-pathway firing driving a rapid

updating to encode new information, and opposing NoGo-pathway firing blocking this update and

supporting continued maintenance (and not inhibiting it).

• This gating can be learned through phasic dopamine neuromodulation, via opposing effects of dopamine

D1 and D2 receptors.

• BG gating affects many PFC neurons at once (those within the same “stripes”), and conversely there

are many separable such stripes controlled by distinct BG gating signals (i.e., they are independently

gatable), raising the important question as how these PFC neurons might be organized relative to their

shared and distinct gating signals.

• There is evidence for separable maintenance vs. output gating, which have different learning and

dynamic requirements in the PBWM model – more work could be done to investigate these issues

empirically.

In the remainder of this section, various other models will be reviewed in the context of overall working

memory and motor / cognitive control tasks, which have proposed different hypotheses about how the gating

dynamics function. For example, in the PBWM framework BG gating works as a kind of spring-loaded gate



in the sense that it serves only to initiate the maintenance process by a brief period of opening. The obvious

alternative is for the BG to participate in the ongoing maintenance process by being the kind of gate that can

stay open, in this case throughout the delay period. Several models have adopted versions of this idea for

maintenance gating.

4.2 Dominey-Arbib Model of Volitional Saccades

Over a series of papers, Dominey and Arbib described a computational model of the saccade system that

prominently included a working memory component for memory-guided saccades (Arbib & Dominey, 1995;

Dominey et al., 1995; Dominey & Arbib, 1992). Based on then-extent electrophysiological data from pri-

mate frontal eye fields like that shown later in Figure 12, the Dominey-Arbib model included separate col-

lections of memory-for-target and saccade-generating units (among a total of four unit types). Dominey and

Arbib proposed a gating mechanism controlled by persistent suppression of BG output that acted permis-

sively at the thalamus to sustain a corticothalamocortical loop of reverberant activity in their memory-coding

cells over the delay period, a form of maintenance gating. Saccades were prevented during the delay by con-

tinued fixation and then permissively triggered by the removal of of the fixation stimulus at the end of the

delay; thus, there was no distinct sense of output gating.

For a separate paradigm of visuomotor discrimination, in which subjects had to select between two

simultaneously presented targets, Dominey and Arbib described a form of input gating performed by the

BG that contributes to the selection between two targets (Arbib & Dominey, 1995; Dominey et al., 1995).

Thus, the Dominey-Arbib model can be said to include versions of input and maintenance gating as defined

here, but not output gating. The model is silent as to the cortical organization that might underlie the

division-of-labor between these two kinds of processing.

4.3 FROST Model of Ashby et al.

An approach similar to that of Dominey and Arbib was taken by Ashby et al. (2005) in their FROST model

(FROntal cortex, Striatum, and Thalamus). With regard to maintenance gating, an interesting and seem-

ingly unique aspect of the FROST model is that it explicitly excludes a role for the BG in the initiation of

maintenance gating, only its persistence. Citing data from Hikosaka, Sakamoto, and Usui (1989) showing

sustained firing in striatal cells that starts only after the offset of the to-be-remembered stimulus, the authors
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Figure 9: Results from the FROST model showing it captures the effects of attention and individual differences in
working memory capacity as reported by Cowan et al., 1999. A - Empirical results. B - Model results. From Ashby,
Ell, Valentin et al., 2005.

propose that the role of the BG is to allow maintenance activity already started in the cortex to recruit a loop

of corticothalamocortical reverberant activity by activating striatal cells and thus disinhibiting the thalamus.

No other kind of gating is mentioned including output gating.

Another distinguishing feature of the FROST model is that Ashby et al. (2005) explicitly attribute a role

for selective attention in the cortical initiation of active maintenance and are able to account for attentional

effects as well as individual differences in the pattern of measured working memory capacity reported by

Cowan, Nugent, Elliott, Ponomarev, and Saults (1999). Figure 9 shows empirical results at the top (A) and

FROST model results below (B) with the higher group of curves in each graph reflecting attentional effects

and each individual curve a subject with differing measured working memory spans.

4.4 Schroll et al. Model of BG

Informed by considerable neurobiological detail regarding the BG, Schroll et al. (2012) developed a compre-

hensive model of BG function (Figure 10). Like the previous models in this section, their model implements
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Fig. 5. Prefrontal-loop effects of presenting a task-relevant stimulus (target) to the
model when another stimulus is currently kept in working memory. For various
layers of a prefrontal loop, subplots present firing rates of selected cells within a
500 ms time period covering target presentation onset (denoted by arrows). Firing
rates of cells coding the target are shown as black lines while gray lines correspond
to the previously maintained stimulus. All firing rates are taken from a randomly
initialized network successfully copingwith an unconditional DR task. Explanations
are given in the main text. GPe: globus pallidus external segment; GPi: globus
pallidus internal segment; ITC: inferior temporal cortex; lPFC: lateral prefrontal
cortex; STN: subthalamic nucleus; Str: Striatum; Thal: thalamus.

generalization task is learned a lot faster than the equally complex
task that is learned during the first two steps of shaping. In fact,
the generalization task is even learned significantly faster than
both the first step of shaping by itself (Mdn = 127.5, IQR = 35),
z = 6.14, p < 0.001, and than the second step of shaping by itself
(Mdn = 360.5, IQR = 88), z = 6.15, p < 0.001. Thereby, it is
clearly shown that the model profits from previous experiences:
the more it has already learned about its environment, the better
become its abilities to solve further problems.
Spread of activity within cortico-BG-thalamic loops

When a stimulus is presented to themodel, it can either become
maintained inWMor it fades away as visual stimulation ends. Fig. 5
illustrates how a target stimulus – once associated to reward –
is actively maintained in WM: when the target comes up in ITC,
target-related activity (black line) is relayed to lPFC. lPFC then
activates associated striatal and subthalamic cells. Subthalamic
activity rises fast leading to a global increase in GPi firing via all-to-
all excitatory connections. This breaks the circle of reverberating
activity in the respective prefrontal loop, erasing any previously
maintained stimulus (see gray lines) from WM. In the meantime,
GPe activity rises through subthalamic excitation. By all-to-all
inhibitory connections to GPi, GPe counterbalances the excitatory
effect of STN on GPi and thereby – with a brief delay – brings
WM reset to an end. As the previously maintained stimulus is
erased from WM, target-related lPFC activity can activate striatal
target-coding cells. Via inhibitory connections, these striatal cells
then decrease firing of a GPi neuron that is associated to the
target. This neuron in turn disinhibits a corresponding thalamic
cell. Thalamus then excites cortex so that target-associated activity
can reverberate in the prefrontal loop.

Fig. 6 depicts the effects of target presentation on the motor
loop: the target-coding cellswithin lPFC and ITC excite striatal cells
of the motor loop. These cells then inhibit an associated GPi cell
that in turn disinhibits a corresponding thalamic cell. Thalamus
then excites the particular MI cell that codes the response that the
target stimulus has been mapped on.

Fig. 6. Motor-loop effects of presenting a task-relevant stimulus (target) to the
model when another stimulus is currently kept in working memory. For various
layers of the motor loop, subplots present firing rates of selected cells within a
500 ms time period covering target presentation onset (denoted by arrows). Firing
rates of cells associated to the target and its associated response are shown as
black lines, gray lines correspond to the previously maintained stimulus and its
associated response. All firing rates are taken from a randomly initialized network
successfully coping with an unconditional delayed response task. Explanations are
given in themain text. GPi: globus pallidus internal segment; ITC: inferior temporal
cortex; lPFC: lateral prefrontal cortex; MI: primary motor cortex; Str: Striatum;
Thal: thalamus.

Development of WM control

Fig. 7 shows the development of WM control. Firing rates
are taken from a randomly initialized network learning the
unconditional DR task. Infero-temporal, lateral prefrontal, striatal,
subthalamic and pallidal activities of the prefrontal loop are shown
for four periods along the process of learning (trials 1–5, 52–56,
91–95 and 129–133). The unconditional DR task we employed
contains two stimuli, A and B. Black lines show firing rates of
cells that can a posteriori be identified as having learned to code
stimulus A, gray lines correspond to stimulus B.

The leftmost column (trials 1–5) shows prefrontal-loop activi-
ties soon after the model is exposed to the task: lPFC task-related
activities begin to emerge through the development of Hebbian
connections from ITC. The corresponding lPFC cells have, how-
ever, not yet learned to activate striatal or subthalamic cells so
that all representations fade away from WM when visual stim-
ulation ends. Some decades of trials later (trials 52–56), cortico-
subthalamic connections have largely developed as evidenced by
the existence of task-related subthalamic activity upon stimulus
presentation. Further, cortico-striatal connections have begun to
emerge, resulting in some striatal activity upon stimulus presenta-
tion. Pallidal representations have not yet clearly developed as evi-
denced by themore or less uniform firing of GPi across trials. Thus,
stimulus-associated activity cannot reverberatewithin cortico-BG-
thalamic loops and lPFC representations still fade away when vi-
sual stimulation ends. Another four decades of trials later (trials
91–95), pallidal representations have started to evolve: stimulus B
(gray lines) shows clear task-related GPi activity (i.e. decreases of
firing rates contingent upon stimulus presentation). This stimulus
is now maintained in the loop independent of visual stimulation
(which can be seen by ongoing activity after visual input ends). It
can be concluded that a closed loop of connections that subserve
the observed maintenance has been developed for this stimulus.
Stimulus A (black lines) however is still not clearly represented in
the layers and mostly fades away when visual input ceases. The

Figure 10: The model of Schroll, Vitay & Hamker, 2012. See main text for explanation. From Schroll, Vitay &
Hamker, 2012, Figure 5.

maintenance gating as persistent activity in the striatum that permits continued reverberation of the corti-

cothalamocortical loop. The subthalamic nucleus (STN) in their model exerts a strong excitatory tone on the

output nuclei of the BG (GPi and SNr) and also itself receives widespread excitatory inputs from much of

frontal cortex. The onset of a new relevant stimulus transiently increases STN, and therefore GPi and SNr,

activity in a relatively global manner, thus transiently suppressing the thalamus and breaking the positive

feedback loop of reverberatory corticothalamocortical activity, effectively clearing the current contents of

working memory. This allows an updated memorandum to be stored. Because the input from STN to GPi

and SNr is known to be relatively global, it is not clear, however, how this mechanism might be able to

discriminate between to-be-stored items versus distracters. Similarly, it is not clear how such a mechanism

might be able to selectively update only one out perhaps three or four currently maintained items.

4.5 Beiser-Houk Model of Sequence Learning

Two influential models have embraced something like a hybrid of the punctate and sustained versions of

maintenance gating and may suggest some ways in which the two approaches might be synthesized. The

sequence-production model of Beiser and Houk (1998) exploits unique biophysical characteristics of thala-

mic relay cells, which exhibit burst firing in response to BG-mediated disinhibition, which in turn activates

the corticothalamocortical reverberatory activity. Although striatal activity was only transient so as to initiate



D. G. BEISER AND J. C. HOUK3170

and several of its reciprocally linked areas (e.g., posterior
parietal, orbitofrontal, anterior cingulate, and superior tem-
poral cortex) converge in a general way onto the same vol-
ume of caudate, although the predominate pattern is one of
segregation or interdigitation of terminal fields as opposed
to frank intermixing (Selemon and Goldman-Rakic 1985).
Alternatively, cue-related sensory signals in posterior pari-
etal might be relayed to CD units via the sensory-related
cells in the PF through cortical-cortical projections (Bates
and Goldman-Rakic 1993; Selemon and Goldman-Rakic
1988). What is important to note here is that either mecha-
nism of convergence could be used to provide the model’s
caudate layer with sensory-related input information.
Continuing on to the next layer of the loop, spiny neurons

in the head of the caudate make inhibitory synapses (de-
picted as ‘‘a’’ in Fig. 1) with neurons in the dorsomedial
one-third of the GPi (Hedreen and DeLong 1991), which
in turn project to nuclei of the thalamus including ventralis
anterior (VA) and ventralis lateral (VL) (DeVito and An-
derson 1982). Neurons in the GPi are characterized by a high
rate of tonic activity interspersed with momentary pauses due
to spiny neuron firing episodes (Wilson 1990). The tonic
activity inhibits projection targets in the thalamus, and the
pauses produce a disinhibition of thalamic neurons (Deniau
and Chevalier 1985). This disinhibition initiates a postinhib-
itory rebound discharge response within thalamic relay neu-
rons that is mediated, in part, by low-threshold T-type cal-
cium channels (Wang et al. 1991). Thus the dual inhibitory
action of this pathway serves to activate thalamic discharge
through disinhibition (Deniau and Chevalier 1985).
VA and VL, along with other thalamic nuclei including

the medialis dorsi (MD), contain neurons that project ipsilat-
erally back to the PF to close the cortical-basal ganglionic
loop (DeVito and Anderson 1982). An additional loop is
formed by neurons in area 46 of the PF that project in a
reciprocal manner back to several thalamic nuclei including FIG. 2. Array of cortical-basal ganglionic modules. Three modules of
MD and VA (Jacobson et al. 1978; Siwek and Pandya the type shown in Fig. 1 are combined to illustrate the organization of a

modular array regulating prefrontal (PF) cortex activity. C units of Fig. 11991). It has been suggested that such a cortical-thalamic
are divided into 2 categories. Those that receive recurrent input via theloop has the potential, given sufficient gain, for sustaining basal ganglia and thalamus are designated R (recurrent) units, whereasactivations, like those thought to be correlates of working those receiving cue-related input from posterior parietal cortex are desig-

memory, through positive feedback (Dominey and Arbib nated event (E) units. CD units receive convergent input from many R and
E units and themselves are interconnected by inhibitory collaterals to form1992; Hikosaka 1989; Houk and Wise 1995).
a competitive network (shown symbolically by the shaded gray area) .There is also an indirect pathway through the basal ganglia

that is not depicted in Fig. 1 because it is not simulated in
the present rendition of the encoding model. tion of the instruction sequence. To simulate the onset and

offset of individual cue lights, E units are toggled sequen-
tially on and off. This type of signal resembles that of visualSequence encoding with an array of modules
fixation neurons of the posterior parietal cortex; these neu-
rons respond to the onset of the stimulus and give briskThe delayed sequence task begins with an instructional

period during which three cues are illuminated in a particular discharges that continue as long as the stimulus remains
within the receptive field (Goldberg and Colby 1989). Neu-serial order (Barone and Joseph 1989; Funahashi et al. 1993;

Kermadi and Joseph 1995; Kermadi et al. 1993). After a rons in area 7a respond to the retinal location of a visual
stimulus with receptive fields that are typically unimodalshort delay period, the subject is required to touch the cues

in the same order in which they were illuminated. Because and broadly tuned (Robinson et al. 1978). Such cue-related
signals could be conveyed to cells of the prefrontal cortexthe present model focuses on the encoding problem, we will

only consider the instruction and delay phases of the task. via corticocortical projections. Clearly, the model’s labeled-
line inputs do not exploit much of the rich information con-The encoding model (Fig. 2) combines several modules

of the type shown in Fig. 1 into an interacting array. The tained in parietal responses; however, this simplification
allows us to focus on the ordinal, rather than spatial, aspectsPF layer is composed of event-related (E) and recurrent (R)

neurons. The three event-related units ( labeled A, B, and C of the encoding task.
Corticostriatal afferents make en passant synapses within Fig. 3) provide the model with a labeled-line representa-
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Figure 11: The model of Beiser & Houk, 1998. Three cortical-basal ganglionic loops are shown corresponding to
three items (A,B,C). Active maintenance is a result of reverberatory activity in the corticothalamocortical recurrent
loop (T—R), triggered by disinhibition at the thalamic relay cell (T) from a corresponding GPi cell. From Beiser &
Houk, 1998, Figure 2.

maintenance-gating in their simulations, they also described instances in which sustained firing throughout

the delay also followed the initial maintenance-triggering activity. Although not directly relevant for their

model, this could provide a bridge to the sustained activity models described above. In addition, this model

was able to reproduce a significant number of sequences, based purely on random initial connectivity without

any learning, suggesting that these burst-firing dynamics may provide a useful general-purpose sequencing

mechanism.

4.6 Gruber et al. Model of Dopamine-Modulated Gating

The model of Gruber et al. (2006) also primarily relies on a trigger-like form of maintenance gating by

the BG, but also had follow-on permissive role over the full maintenance period. In this model, phasic

dopamine affects the bi-stability characteristics of cells in both cortex and striatum, triggering an upstate

among MSNs which in turn triggers a variably stable attractor state in the cortex. A small amount of

persistent striatal activity could stabilize cortical representations even in a continuous space by holding open

the gate at the thalamus for the initialized spatial location, thereby preventing noise-induced drift that is

otherwise problematic for continuous line-attractor models.



Figure 12: Layer 5 projecting cells of FEF showing heterogeneous firing patterns suggesting different roles for
input vs. output processing. Histograms and activity rate curves for individual cells recorded from the frontal eye
fields (FEF) during a visually-guided and memory-guided saccades A Schematic for both tasks. B Delay period cell.
Histogram (background dots) and curve of activity rate for an individual cell recorded in the frontal eye fields (FEF)
during a delayed saccade task. The target stimulus is only on briefly at the beginning of the trial. This cell maintained
its activity during the delay so as to enable other cells to generate a correct saccade at the end of the trial. C Visual
only cells D Movement only cells. E Visuomovement cells showingactivity during both the visual and movement
time epochs. Adapted from Sommer & Wurtz, 2000, Figure 2. Permission pending.

4.7 Brown, Bullock & Grossberg TELOS Model

Informed by the same kind of monkey electrophysiological data as had guided Dominey and Arbib’s work

(e.g., see Figure 12), J. W. Brown et al. (2004) developed a detailed model (TELOS) to account for the

results from many different saccade paradigms, in particular addressing the tension between voluntary (top-

down generated) and involuntary (bottom-up) saccades. Most relevant to the issue of working memory and

maintenance gating are two aspects of the authors’ treatment of the memory-guided saccade case:

• J. W. Brown et al. (2004) explicitly mapped the categories of FEF cells exhibiting differential patterns

of responses to the cortical laminae of the FEF: input-responsive to middle cortical laminae (roughly

layer 4); memory-coding to superficial laminae (2, 3, 5a); and saccade-generating to layer 5b specifi-

cally. Thus, their story about delayed responding was that the superficial layers maintained a memory

of the target location over the delay, while the large subcortically-projecting pyramidal cells of layer



5b were activated at the appropriate time to generate the saccade (see Figure 1 for a diagram).

• In terms of BG-mediated gating, TELOS seems to have been the first neurobiologically informed

model to describe a form of output gating in which the BG served to open a gate that allowed the layer

5b cells to get active at the appropriate time to generate the saccade. Both input processing and the

initiation and maintenance of sustained firing during the delay were treated as more-or-less automatic

processes without involvement of the BG.

Thus, while the models discussed earlier in this section have included a role for the BG in some form

for maintenance gating (Dominey-Arbib also included input gating), TELOS included only a role for BG in

output gating.

With regard to the authors’ mapping of maintenance to the superficial cortical laminae and output to

the deep 5b cells, an apparent problem with this account is that the data from Sommer and Wurtz (2000)

(Figure 12) unequivocally demonstrated that all varieties of activity signals, including memory-cell sig-

nals, are transmitted to the superior colliculus during the delay and these signals can only be coming from

subcortically-projecting layer 5b pyramidal cells. Given that a TELOS-like laminar specialization is consis-

tent with a considerable other data as discussed in the Background, it will be important to reconcile these

two seemingly contradictory data sets with it being likely that some combination of both interlaminar and

intercolumnar divisions-of-labor are both involved.

It is now well-established that layer 5b pyramidals are not homogeneous and can be subdivided into

multiple subtypes according to both morphology (Fries, 1984; Leichnetz, Spencer, Hardy, & Astruc, 1981)

and, critically, differing subcortical targets (Economo et al., 2018; Harris & Shepherd, 2015; Hattox &

Nelson, 2007; Ramaswamy & Markram, 2015; Winnubst et al., 2019). Thus, the functional effects of output

gating depend on which of the 5b subtypes are getting gated and their corresponding subcortical targets.

Although not directly addressed as such in this context by J. W. Brown et al. (2004), their model does adopt

a functional distinction between 5a and 5b subtypes (which are also morphologically distinct), both of which

are likely to project to the superior colliculus, but only 5b is hypothesized to be output-gated by the BG.

Thus, a straightforward reconciliation is to suggest that the 5a neurons convey input and maintenance signals

from other lamina in an ungated fashion, while the 5b are output-gated by the BG, to drive overt responses

such as saccades.

This account is consistent with several details from Sommer and Wurtz (2000) and earlier anatomical



data (Fries, 1984; Leichnetz et al., 1981), suggesting a diversity of morphologies within layer 5 cells that

project to the colliculus, and that the movement cells specifically identified by Sommer and Wurtz (2000)

were indeed the largest and fastest-conducting cells, consistent with the 5b profile. Furthermore, although

Sommer and Wurtz (2000) identified a topographic bias in the locations of motor output vs other cell types

at the most extreme lateral edge of the FEF, there was substantial intermingling of these cell types through-

out most of the extent of the FEF, consistent with the laminar specialization model, and not a stronger

topographic segregation of cells across different regions of FEF.

4.8 Embracing Diversity

In summary, a diverse range of different ideas have been explored across many different neurobiologically-

oriented models developed by several different research groups, but at least there is a general consensus

around the idea that frontal cortex is critical for active maintenance of working memory states over time,

and that the basal ganglia likely plays some kind of role in driving a gating-like modulation of these frontal

activity states. As discussed earlier, there is evidence that multiple different thalamic circuits may modulate

the PFC, with potentially different characteristic patterns of connectivity and targets, in addition to differen-

tial patterns of connectivity with the BG. There are a growing number of empirical studies using advanced

neuroscience techniques to determine the properties and functions of these circuits, the results of which

should directly inform the further development of computational models. Thus, the field may be poised for

a new wave of “second generation” models that incorporate this new data, and may end up adopting different

subsets of the overall mechanisms across the existing set of models reviewed above.

5 General Discussion

This chapter reviewed some of the seminal computational models of working memory in the context of

higher cognitive function overall. In particular, the development of LSTMs was used to motivate the

computational requirements for maintenance and output gating. The authors’ own gating-focused PBWM

framework was also highlighted and compared with several other models through the lens of basal ganglia-

mediated gating. Below are summarized some of the tentative conclusions that might be drawn with regard

to the motivating questions presented in the Introduction.



5.1 Representational Scale of Independently-Gatable Units

All of the neurobiologically-motivated models reviewed in this chapter employ, at least implicitly, some

version of separate channels for separate items, although the PBWM framework is perhaps the most explicit

by mapping these channels onto the biological feature of “stripes”. Interestingly, the adoption of the LSTM

framework by the AI community has evolved in such a way that gating functions at the individual unit level,

which is at the extreme fine-grained end of the granularity scale. It would nevertheless be interesting to

more systematically explore this gating granularity dimension in these models, because it likely has not yet

been explored, and the biological constraints strongly suggest that, at least for BG-mediated gating, there

are many PFC neurons per gating signal.

The relevant biological data is as follows. Originally, G. Alexander et al. (1986) described five largely

independent, closed loops connecting specific regions of frontal cortex with themselves and running through

the BG. Since then, numerous studies have established that the connectivity between the cortex and the BG

has both closed loop and open loop qualities (e.g., Haber, 2003; Haber & Knutson, 2010; Joel & Weiner,

2000), and that the closed loop aspect can be observed at a much more fine-grained level than the original five

loops (Ferry, Öngür, An, & Price, 2000; Flaherty & Graybiel, 1993a, 1993b; Graybiel, Flaherty, & Gimenez-

Amaya, 1991; Haber, 2003), including in humans (Choi, Yeo, & Buckner, 2012; Jung et al., 2014; Pauli,

O’Reilly, Yarkoni, & Wager, 2016). This raises the critical question of just how fine-grained this closed

loop connectivity might be, because that could serve as a kind of lower bound on the neuroanatomical and

representational scope of individually BG-gateable units in terms of working memory updating.

The strongest constraint comes from the fact that there are many fewer neurons in the output pathway

of the BG, the GPi / SNr, than in the corresponding areas of frontal cortex that are affected by BG gating

signals. A reasonable, perhaps conservative, estimate is that roughly 5 billion (35%) of the 14 billion

pyramidal cells in the human brain reside in the frontal cortex (Pakkenberg & Gundersen, 1997). Meanwhile,

a reasonable, possibly generous, estimate for the total number of cells in the output nuclei (GPi and SNr)

of the BG is approximately 740,000 in humans (GPi: 352,000; SNr (non-dopamine): 288,000) (Hardman et

al., 2002). Thus, there are approximately 6,750 frontal pyramidal cells downstream for each BG output cell.

Furthermore, because each isocoding minicolumn has 70 or so pyramidal cells, this implies that there are on

the order of 100 cortical minicolumns downstream for each BG output cell, a ratio that is likely to be a lower

bound. Based on this back-of-the-envelope calculation, as well as the known thalamocortical connectivity



patterns, it seems clear that the gating of individual pyramidal cells, or even individual minicolumns, is

virtually impossible.

5.2 Working Memory Capacity Limitations

Another possible source of constraints on the scope of working memory gating and overall representational

organization comes from studies attempting to determine the origin and nature of capacity limitations in

working memory. George Miller (1956) famously showed that working memory appears to be limited

to holding only 7 plus-or-minus 2 items at a time. Does that magic number somehow reveal how many

independently-gatable working memory states there are? If so, it would suggest a much coarser-grained

form of gating than the most fine-grained end of the spectrum possible according to the GPi / SNr bottleneck,

which is certainly a possibility: many individual GPi / SNr neurons could work together to drive gating for

larger swaths of PFC. However, further research suggests that this capacity constraint can apply separately to

many different representational domains (verbal vs. visual vs. numerical vs. spatial etc) and is actually more

like 4 items than 7 (Cowan, 2001, 2011; Luck & Vogel, 1997, 2013; Zhang & Luck, 2008) as, for example,

when digit span is tested with unpredictable reporting points, where rehearsal and chunking strategies are

less able to contribute to performance (Cowan, 2001). More recently, it has been recognized that differences

in measured memory span may also be complicated by a variable contribution of rapid learning effects

(Cowan, 2019).

It is difficult to know how many such representational domains there are, but for example if there were

70 GPi / SNr neurons per gating unit, and 4 gating units per domain, that would amount to a total of approx-

imately 2,640 different such domains, which might be a reasonable number considering the entire scope of

information coded by the frontal cortex. Again, these are just rough order-of-magnitude calculations, and it

is unlikely that the brain would be crisply organized in this way (i.e., there is likely to be partial overlap and

different subsets activated in different situations, etc).

In contrast to this more “slot-based” analysis, a body of research has found that the precision of memory

varies as a function of the memory load and similarity between visual stimuli (Bays, Catalao, & Husain,

2009; Bays & Husain, 2008; Ma et al., 2014; Wilken & Ma, 2004), and that increased precision for one

item comes at the expense of other co-maintained representations (Gorgoraptis, Catalao, Bays, & Husain,

2011; Pertzov, Bays, Joseph, & Husain, 2013). Thus, this view holds that, instead of a fixed number of



slots, working memory capacity might be better conceived as a single shared resource that can be flexibly

allocated between multiple items (e.g., Ma et al., 2014).

The attractor model, augmented with lateral inhibitory connections, can potentially reconcile this slots

vs. resources debate (e.g., Fukuda, Vogel, Mayr, & Awh, 2010; Nassar et al., 2018; Wei, Wang, & Wang,

2012). Wei et al. (2012) showed how the representation of multiple items in a shared neural population

exhibits characteristics of both continuous resource sharing and discretized items in that only a limited

number of “bump attractors” can co-exist in a single population without colliding (merging), and that the

strength and fidelity of each bump representation is diminished the more items there are that are retained.

Nassar et al. (2018) showed that by adding a center-surround pattern of lateral excitation-inhibition to the

Wei et al. (2012) network they could further account for additional aspects of the precision vs. recall tradeoff

by positing a chunking-like mechanism that serves to combine features of similar value across items (e.g.,

treating various shades of red as a single feature value) and that the benefits of such a representational

strategy seemed to asymptote at a partitioning of the feature space of about four categories.

It would seem at least theoretically possible that discrete gating slots might make different predictions

from these attractor models, and that some particular combination of these two models might provide a more

comprehensive account – this would be a good target for future research.

5.3 Variable Binding and Transfer

The combination of reinforcement learning with selectively updatable, actively maintained working memory

representations enables a form of role-filler style variable binding that supports flexible working memory

function. Information can be encoded into different functionally-defined “slots” of working memory, and

then retrieved according to the relevant functional category, independent (at least to some extent) of the de-

tailed content (O’Reilly, 2006). In addition, the combination can be exploited to produce a sort of inductive

bias to use those representations in a way that can be co-opted under new task conditions, a form of out-of-

distribution generalization or learning transfer. Examples of this kind of learning transfer are Bhandari and

Badre (2018); Collins and Frank (2013); Frank and Badre (2012); Kriete et al. (2013); Rougier et al. (2005);

A. Williams and Phillips (2020).

The Stocco et al. (2010) model of the BG, based on the ACT-R architecture, provides a particularly

powerful form of flexible BG gating that supports the arbitrary routing of information from one part of the



brain to another, like a system bus in a standard computer architecture. However, an important constraint

on such a model is the very small size of the GPi / SNr bottleneck through which all BG output flows — it

is not clear if there is sufficient capacity there to directly route much detailed content through the BG itself.

Instead, it may make more sense to think of the BG as selecting the relevant brain areas through indirect

effects of gating on the frontal cortex, which in turn can provide top-down attentional gain modulation on

the relevant brain areas, and then the information is routed through much higher capacity corticocortical

pathways between these areas. Nevertheless, the principle that the BG may be important for flexible, con-

trolled processing is much more consistent with a wide range of data compared to the older notion that it is

the locus of habitual responding (O’Reilly, Nair, et al., 2020).

5.4 Nature and Kinds of Gating

Across many neurobiologically-oriented models developed by several different research groups there has

emerged a remarkable consensus that the BG plays some kind of role in gating activity in the PFC, even while

there is considerable diversity in ideas for exactly what this role is, among the set of functionally-defined

types of gating supported by the abstract LSTM model (Gers et al., 2000; Hochreiter & Schmidhuber, 1997).

Some argue that it is important for maintenance gating of new information into PFC, while others argue for

a more specific role in output-gating of information out of working memory, while yet others advocate both

roles. As discussed above, a wide range of neuroscience data can be brought to bear on addressing this

question, and while definitive answers are not yet available, there is some indication that the BG is likely

to be more specifically involved in output-gating, via matrix-type thalamic projections, versus maintenance

gating, which is supported by core-type thalamic pathways. Hopefully, the considerable empirical work

going on in this area will soon provide more definitive answers to these important questions.

Another ongoing question concerns the degree to which the BG gating signal functions in a more punc-

tate way to initiate a corresponding effect in the PFC, versus participating in a more sustaining regulation

of cortical activity throughout the delay period. There seems to be strong empirical evidence for both punc-

tate and sustained maintenance signals in the striatum and BG output nuclei. At this point it seems the

most likely case is that there are multiple BG-mediated contributions, including a punctate initiating event,

an ongoing permissive component that supports ongoing corticothalamocortical reverberatory activity, and

possibly even a punctate terminating or clearing event in some cases.



5.5 Static Vs. Dynamic Working Memory Representations

There seems to be compelling evidence for both boxcar-like sustained activity as well as various waxing-and-

waning patterns of activity during working memory delay periods. Thus, it is hard to avoid the conclusion

that both patterns of activity must contribute to working memory-like processing. Assuming this to be the

case, an important challenge for future work will be to better characterize the circumstances under which

different activity patterns tend to predominate in order to better understand the contributions of each. One

obvious contribution to the apparently conflicting stories is that the sustained activity story is generally

older and comes from single-cell recording data, while the dynamic, variable activity story is generally

based on much more recent data and comes from population-based recording data. Thus, at least some of

the difference in the two stories is likely a matter of methodologies and researcher emphasis.

One intriguing possibility is that the sustained activity may be more prevalent during the early stages

of learning any particular task when controlled processing is thought to be most necessary, while the less

metabolically costly, dynamic trajectory pattern may become increasingly prevalent as learning proceeds

and performance transitions to a more automatic mode of processing, perhaps approaching something like

that captured by RNN models such as described by Botvinick and Plaut (2006).

6 Conclusion

The last several decades have seen a great deal of progress in understanding the neurobiological mechanisms

underlying working memory and there is now extensive evidence in support of the basic idea that the PFC

and BG function as an integrated system with the BG is performing something like a gating function for

controlling cognition as well as motor action, including determining when working memory is updated in

PFC. In particular, the BG seems to participate in initiating and/or maintaining a robust form of persistent

activity in the PFC as well as in controlling downstream access to working memory contents via the similar

process of output gating. Nonetheless, much of the story remains to be worked out including many of the

specific details involved and how the transition from controlled to automatic processing may evolve over

repeated experience through continuous learning.
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