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ANISHING THE HOMUNCULUS: MAKING WORKING MEMORY WORK
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. E. HAZY, M. J. FRANK AND R. C. O’REILLY*

epartment of Psychology, University of Colorado Boulder, 345 UCB,
oulder, CO 80309, USA

bstract—The prefrontal cortex has long been thought to
ubserve both working memory and “executive” function,
ut the mechanistic basis of their integrated function has
emained poorly understood, often amounting to a homun-
ulus. This paper reviews the progress in our laboratory and
thers pursuing a long-term research agenda to deconstruct
his homunculus by elucidating the precise computational
nd neural mechanisms underlying these phenomena. We
utline six key functional demands underlying working mem-
ry, and then describe the current state of our computational
odel of the prefrontal cortex and associated systems in the
asal ganglia (BG). The model, called PBWM (prefrontal cor-
ex, basal ganglia working memory model), relies on actively
aintained representations in the prefrontal cortex, which

re dynamically updated/gated by the basal ganglia. It is
apable of developing human-like performance largely on its
wn by taking advantage of powerful reinforcement learning
echanisms, based on the midbrain dopaminergic system

nd its activation via the basal ganglia and amygdala. These
earning mechanisms enable the model to learn to control
oth itself and other brain areas in a strategic, task-appropri-
te manner. The model can learn challenging working mem-
ry tasks, and has been corroborated by several important
mpirical studies. © 2005 Published by Elsevier Ltd on behalf
f IBRO.

ey words: basal ganglia, prefrontal cortex, dopamine, rein-
orcement learning, Pavlovian conditioning, computational
odeling.

his article reviews an ongoing research agenda in our
aboratory and others that is attempting to elucidate the
recise computational and neural mechanisms underlying
orking memory and “executive” function. Our approach

epresents an attempt to understand these phenomena in
erms of a set of biologically based, computational mech-
nisms. This approach has resulted in the identification of
core set of six functional demands that collectively help

efine the fundamental nature of working memory from a
euro-mechanistic perspective. Our proposed mecha-

Corresponding author.
-mail address: oreilly@psych.colorado.edu (R. C. O’Reilly).
bbreviations: ADHD, attention deficit hyperactivity disorder; AX-CPT,
X version of continuous performance task; BG, basal ganglia; DA,
opamine; GPe, globus pallidus, external segment; HC, hippocampal
ystem; ID/ED, intradimensional/extradimensional task; MT, multi-task
odel; PBWM, prefrontal cortex, basal ganglia working memory mod-
l; PC, posterior cortex; PFC, prefrontal cortex; PVLV, primary value
nd learned value; SIR, store/ignore/recall; SNc, substantia nigra pars
ompacta; SNr, substantia nigra pars reticulata; STN, subthalamic

ucleus; TD, temporal difference; VTA, ventral tegmental area; WCST,
isconsin card sort task.

306-4522/06$30.00�0.00 © 2005 Published by Elsevier Ltd on behalf of IBRO.
oi:10.1016/j.neuroscience.2005.04.067

105
isms for dealing with these functional demands collec-
ively explain many of the same phenomena as traditional
orking memory constructs, but in a manner that contrasts
ith them in important ways and does so in a comprehen-
ive, integrated way.

The overall format for the article is as follows. After a
rief introduction of our approach to working memory in
erms of developing a biologically-based architecture for
nderstanding human cognition, we then describe the cur-
ent version of our computational model of the prefrontal
ortex (PFC) and basal ganglia (BG) in working memory
PBWM, prefrontal cortex, basal ganglia working memory
odel), with special emphasis on six key functional de-
ands underlying working memory. To try to make things
s transparent as possible, we describe both the functional
emands and the model itself in the context of a concrete
orking memory task. We then review some of the empir-

cal data that have tested predictions of our model, and
hen outline our research trajectory that is attempting to
imulate many of the most important task paradigms of
orking memory and executive function in a single instan-

iation of a comprehensive model built around the core
BWM mechanisms. Finally, we discuss some overall im-
lications for future work.

iologically-based cognitive architecture

ur PBWM working memory model is motivated by a
umber of considerations derived from an overarching
iologically-based cognitive architecture for understanding
uman cognition (Atallah et al., 2004; O’Reilly and Mu-
akata, 2000). This tripartite architecture is composed of
hree functionally complementary brain systems that can
e understood in terms of a set of computational tradeoffs,
hich provide a more precise and often subtle set of

unctional properties for these areas (Fig. 1). These sys-
ems are as follows:

. The posterior cortex (PC) system that performs the
vast majority of the “automatic” sensory and motor
processing in the brain. This system exhibits slow,
integrative learning that extracts the long-term statisti-
cal structure of the environment, thereby efficiently
representing accumulated knowledge and skills. In a
sense, the PC system provides the “substrate” upon
which the other two (“higher level”) systems operate to
produce working memory phenomena.

. The hippocampal system (HC) system that is special-
ized for rapid (e.g. one trial) learning that binds to-
gether arbitrary information, which can be subse-
quently recalled in the service of controlled processing.
The neural specializations required for this rapid learn-

ing without interference are incompatible with the inte-
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grative statistical learning of the posterior cortical sys-
tem, thus motivating the need for two separate neural
systems.

. The PFC/BG system that is specialized for active main-
tenance of internal contextual information (PFC), which
can be dynamically updated by the BG. This system
can bias (control) ongoing processing throughout the
cortex according to actively maintained information in
the PFC (e.g. goals, instructions, partial products). It
includes a dopamine (DA)-based learning system that
uses a version of reinforcement learning mechanisms
that are widely thought to be supported by the BG and
related mid-brain structures.

Because it represents the canonical form of cortical
rocessing, our model of the PC lies at the foundation of
uch of our work. It is based upon a computational frame-
ork called Leabra (O’Reilly, 1998; O’Reilly and Mu-
akata, 2000; O’Reilly, 2001) that contains all of the basic
echanisms and properties required by our models.
hese mechanisms have mostly been developed sepa-
ately by other researchers over many years. Our special-
zed model of the HC has been developed over numerous
ublications (O’Reilly and McClelland, 1994; McClelland et
l., 1995; O’Reilly and Rudy, 2001; Norman and O’Reilley,
003; O’Reilly and Norman, 2002), and also includes many
hemes going back to earlier work (e.g., Marr, 1971; Mc-
aughton and Morris, 1987; Rolls, 1989) that are widely
dopted in the literature. Our hippocampal model (imple-
ented in the Leabra framework) has been used to simu-

ate a wide range of learning and memory phenomena,

ig. 1. Tripartite cognitive architecture defined in terms of different
omputational tradeoffs associated with PC, Hippocampus (HC) and
rontal Cortex/BG (FC/BG) (with motor frontal cortex constituting a
lend between FC and PC specializations). Large overlapping circles

n PC represent overlapping distributed representations used to en-
ode semantic and perceptual information. Small separated circles in
C represent sparse, pattern-separated representations used to rap-

dly encode (“bind”) entire patterns of information across cortex while
inimizing interference. Isolated, self-connected representations in
C represent isolated stripes (columns) of neurons capable of sus-

ained firing (i.e. active maintenance or working memory). The BG also
lay a critical role in the FC system by modulating (“gating”) activations
here based on learned reinforcement history.
ncluding human recognition memory (Norman and b
’Reilly, 2003), and animal learning paradigms (e.g. con-
extual fear conditioning, nonlinear discrimination learning,
ransitive inference) (O’Reilly and Rudy, 2001; Frank et al.,
003). Our models of the PFC/BG system are elaborated

n the remainder of this paper.
In the context of this overall architecture, we can define

orking memory as an emergent property of the interac-
ions between these three specialized brain areas, involv-
ng both active maintenance of task-relevant information
PFC/BG), and rapid learning of arbitrary associations
HC). These mechanisms support basic memory functions
ssociated with working memory (i.e. memory for partial
roducts of ongoing processing, task goals, etc.), but also
ore complex controlled processing functions that are

ypically ascribed to a “central executive” in other working
emory frameworks (e.g., Baddeley, 1986). Controlled
rocessing emerges from the biasing influence of actively
aintained and updated PFC representations on other
arts of the system (e.g., Cohen et al., 1990, 1996; O’Reilly
t al., 1999; Miller and Cohen, 2001). This “top-down”
iasing (which can also be supported by the HC to some
xtent) supports the performance of task-relevant process-

ng in the face of competition from habitual or more well-
racticed forms of processing that may not be task
elevant.

This contrast between theoretical models that explicitly
istinguish between working memory and executive func-
ion, typically designating them as separate “modules”
e.g., Baddeley, 1986), and our more emergent, interactive
pproach, is critical. Our view that working memory and
xecutive function are really two sides of the same coin
rovides a more parsimonious model, that we believe is
ore consistent with extant biological data on the nature of
eural specializations in the PFC/BG system. These con-
rasting approaches may be due in part to traditional mod-
ls relying on a computer-like mental architecture, where
rocessing is centralized and long-term memory is essen-
ially a passive store. For those models, it makes sense to
ave a separate set of cache-like working memory buffers
edicated to the temporary storage of items that are
eeded during processing by a completely separate cen-
ral executive module (Baddeley, 1986). However, these
rchitectures do not correspond to the known micro-archi-
ecture of the brain, in which processing and memory
unctions are typically distributed within and performed by
he very same neural substrates (Rumelhart et al., 1986).

Thus, instead of thinking about the moving of informa-
ion from long-term memory into and out of working mem-
ry buffers, we think that information is distributed in a
elatively stable configuration throughout the cortex, and
hat working memory amounts to the controlled activation
f these representations. This view shares some similari-
ies with the view of working memory offered by produc-
ion-system accounts (e.g. ACT, Anderson, 1983; Lovett et
l., 1999). However, it does not include the structural dis-
inction between declarative and procedural knowledge
ssumed by such accounts.

To summarize then, our contention is that activation-

ased working memory is best thought of as the primary
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echanism behind the PFC/BG system, and that con-
rolled processing is a resulting emergent function that
epends critically on this mechanism. Furthermore, we
elieve it is likely that working memory may represent a
ind of phylogenetic extension of the same kinds of mech-
nisms that underlie all forms of complex motor coordina-
ion and planning.

This conceptualization has important implications for
orming theories and building models. While it certainly
emains perfectly valid (as well as heuristically productive)
o formulate theories to explain a narrow subset of working
emory phenomena, in doing so one runs the distinct risk

hat those theories will be inherently incapable of dealing
ith other, equally important phenomena in the domain.
hus, any given theoretic model might best be judged not
nly by its fit to the data it was formulated for, but also by its
bility to account for other working memory phenomena—or
t least its potential to do so. In other words, we believe

hat a truly robust theory of working memory is best for-
ulated with the big picture in mind.

he PBWM model of working memory

ased on our cumulative work on a wide variety of working
emory tasks, we have identified a core set of six func-

ional demands, enumerated below, that are required by
asks involving working memory and executive function.
aken together, these functional demands provide a basic
et of constraints for our biologically-based PBWM model.
he 1-2-AX task, which is an extension of the widely-
tudied AX version of the continuous performance task
AX-CPT), provides a nice demonstration for these informa-
ion-processing demands on the working memory system.

The AX-CPT is a standard working memory task that
as been extensively studied in humans (Cohen et al.,
997; Braver and Cohen, 2000; Braver et al., unpublished
bservations; Braver et al., 1999; Frank and O’Reilly, un-
ublished observations). The subject is presented with
equential letter stimuli (A, X, B, Y), and is asked to detect
he specific sequence of an A followed on the very next
vent by an X, by pushing the target (right) button. All other
ombinations (A–Y, B–X, B–Y) should be responded to
ith a non-target (left) button push. This task requires a

elatively simple form of working memory, where the prior
timulus must be maintained over a delay until the next
timulus appears, so that the subject can discriminate the
arget from non-target sequences. This is the kind of acti-
ation-based working memory that has often been ob-
erved for example in electrophysiological studies of work-
ng memory in monkeys (e.g. Fuster and Alexander,
971; Kubota and Niki, 1971; Miyashita and Chang,
988; Funahashi et al., 1989; Miller et al., 1996).

In the 1-2 extension of the AX-CPT task (1-2-AX; Fig.
; Frank et al., 2001; Kroger et al., unpublished observa-
ions), the target sequence varies depending on prior task
emand stimuli (a 1 or 2). Specifically, if the subject last
aw a 1, then the target sequence is A–X. However, if the
ubject last saw a 2, then the target sequence is B–Y.
hus, the task demand stimuli define an outer loop of

ctive maintenance (maintenance of task demands) within
hich there can be any number of inner loops of active
aintenance for the A–X level sequences.

ix key functional demands underlying working
emory

ith the 1-2-AX task as a concrete example, the six func-
ional demands upon the working memory system are:

. Rapid updating: The working memory system should
be able to rapidly encode and maintain new informa-
tion as it occurs. In the 1-2-AX task, as each relevant
stimulus is presented, it must be rapidly encoded in
working memory.

. Robust maintenance: Information that remains rele-
vant should be maintained in the face of the interfer-
ence from ongoing processing or other stimulus inputs.
In the 1-2-AX task, the task demand stimuli (1 or 2) in
the outer loop must be maintained in the face of the
interference from ongoing processing of inner loop
stimuli and irrelevant distractors. Also, a specific A or B
must also be maintained for the duration of each inner
loop.

. Multiple, separate working memory representations:
To maintain the outer loop stimuli (1 or 2) while updat-
ing the inner loop stimuli (A or B), these two sets of
representations must be distinct within the PFC (i.e.
they must not be in direct mutual competition with one
another, such that only one such representation could
be active at a time).

. Selective updating: Only some elements of working
memory should be updated at any given time, while
others are maintained. For example, in the inner loop,
A or B should be updated while the task demand
stimulus (1 or 2) is maintained.

. Top-down biasing of processing: For working memory
representations to achieve controlled processing, they
must be able to bias (control) processing elsewhere in
the brain. For example, whichever outer loop stimulus
(1 or 2) is active at a given time must bias processing

ig. 2. The 1-2-AX task. Stimuli are presented one at a time in a
equence. The participant responds by pressing the right key (R) to
he target sequence, otherwise a left key (L) is pressed. If the subject
ast saw a 1, then the target sequence is an A followed by an X. If a 2
as last seen, then the target is a B followed by a Y. Distractor stimuli

e.g. 3, C, Z) may be presented at any point and are to be ignored. The
aintenance of the task stimuli (1 or 2) constitutes a temporal outer-

oop around multiple inner-loop memory updates required to detect the
arget sequence.
in the PFC/BG system itself, to condition responses
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and working memory updates as a function of the
current target sequence.

. Learning what and when to gate: Underlying all suc-
cessful working memory task performance is the need
to learn when to gate appropriately. This is a challeng-
ing problem because the benefits of having gated
something in are only available later in time (e.g. en-
coding the one task demand stimulus only affects overt
behavior and error-feedback later when confronted
with an A–X sequence).

Earlier computational work by our group of collabora-
ors has instantiated and validated a number of aspects of
ur overall theory, including the graded nature of controlled
rocessing (Cohen et al., 1990); the ability of PFC repre-
entations to bias subsequent processing (Cohen and Ser-
an-Schreiber, 1992); the role of PFC in active mainte-

ig. 3. Illustration of active gating. When the gate is open, sensory
nput can rapidly update working memory (e.g. encoding the cue item

in the 1-2-AX task), but when it is closed, it cannot, thereby prevent-
ng other distracting information (e.g. distractor C) from interfering with
he maintenance of previously stored information.

ig. 4. The BG are interconnected with frontal cortex through a series o
hich is bidirectionally excitatory with frontal cortex, the SNr is tonically

n dorsal striatum fire, they inhibit the SNr, and thus disinhibit frontal c

orking memory representations in PFC. The indirect pathway “NoGo” neurons
he STN provides an additional dynamic background of inhibition (NoGo) by e
ance (Braver et al., 1997); the ability of the BG to update
FC working memory representations (Frank et al., 2001);
nd the role of the HC in rapid learning (O’Reilly and Rudy,
001; Norman and O’Reilly, 2003). Most recently, we have
een focused on the role of the PFC/BG system, and most
pecifically, how, mechanistically, it can learn to do what it
as to do to support working memory.

ynamic updating via BG gating

t is important to note that the first two demands (rapid
pdating versus robust maintenance) are in direct conflict
ith each other when viewed in terms of standard neural
rocessing mechanisms. This motivates the obvious need
or a dynamic gating mechanism to switch between these
wo modes of operation (Cohen et al., 1996; Braver and
ohen, 2000; O’Reilly et al., 1999; O’Reilly and Munakata,
000). When the gate is open, working memory can get
pdated by incoming stimulus information; when it is
losed, currently active working memory representations
re robustly maintained even in the face of potential inter-
erence as from intervening distractor stimuli (Fig. 3).

A central feature of our PBWM model is that the BG
rovide this requisite dynamic gating mechanism for infor-
ation maintained via sustained activation in the PFC. The
G are interconnected with frontal cortex through a series
f parallel loops (Fig. 4). When direct pathway “Go” neu-
ons in dorsal striatum fire, they inhibit the SNr, and thus
isinhibit frontal cortex, producing a gating-like modulation
hat we argue triggers the update of working memory
epresentations in PFC. The indirect pathway “NoGo” neu-
ons of dorsal striatum counteract this effect by inhibiting
he inhibitory GPe (globus pallidus, external segment). The

l loops, each of the form shown. Working backward from the thalamus,
nd inhibiting this excitatory circuit. When direct pathway “Go” neurons
ducing a gating-like modulation that we argue triggers the update of
f paralle
active a

ortex, pro

of dorsal striatum counteract this effect by inhibiting the inhibitory GPe.
xciting the SNr.
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TN (subthalamic nucleus) provides an additional dynamic
ackground of inhibition (NoGo) by exciting the SNr. As
eviewed in Frank et al., 2001, this idea is consistent with

wide range of empirical data and other computational
odels that have been developed largely in the domain of
otor control, but also for working memory as well (e.g.
ickens, 1993; Houk and Wise, 1995; Wickens et al.,

995; Dominey et al., 1995; Berns and Sejnowski, 1995,
998; Jackson and Houghton, 1995; Beiser and Houk,
998; Nakahara and Doya, 1998; Kropotov and Etlinger,
999; Amos, 2000; Nakahara et al., 2001). Our ideas
egarding just how the PFC and BG might work together to
ccomplish this complex coordination are outlined below,
long with a brief description of the specific biologically-
ealistic computational mechanisms that our PBWM model
ses to instantiate them.

. Rapid updating occurs when direct pathway spiny neu-
rons in the dorsal striatum fire (Go units). Go firing
directly inhibits the substantia nigra pars reticulata
(SNr), and releases its tonic inhibition of the thalamus.
This thalamic disinhibition enables, but does not di-
rectly cause (i.e. gates), a loop of excitation into the
corresponding PFC “stripe” (see Multiple, separate
working memory representations below). The effect of
this net excitation is to toggle the state of bistable
currents in the PFC neurons. Striatal Go neurons in the
direct pathway are in competition (downstream in the
SNr, if not actually in the striatum; Mink, 1996; Wick-
ens, 1993) with a corresponding NoGo (indirect) path-
way that promotes greater inhibition of thalamic neu-
rons, thereby working to block gating.

. Robust maintenance occurs via two intrinsic PFC
mechanisms: 1) recurrent excitatory connectivity
(O’Reilly et al., 1999; O’Reilly and Munakata, 2000),
and; 2) bistability (Fellous et al., 1998; Wang, 1999;
Durstewitz et al., 1999; Durstewitz et al., 2000), the
latter of which is toggled between a maintenance state
and a non-maintenance state by the Go gating signal
from the BG.

. Multiple, separate working representations are possi-
ble because of the “striped” micro-anatomy of the PFC,
which is characterized by small, relatively isolated
groups of interconnected neurons, thereby preventing
undo interference between representations in different
(even nearby) stripes (Levitt et al, 1993; Pucak et al.,
1996). We estimate there may be as many as 20,000
such stripes in human PFC (Frank et al., 2001).

. Selective updating occurs because of the existence of
independently updatable parallel loops of connectivity
through different areas of the BG and frontal cortex
(Alexander et al., 1986; Graybiel and Kimura, 1995;
Middleton and Strick, 2000). We hypothesize that
these loops are selective to the relatively fine-grained
level of the anatomical stripes in PFC. This stripe-
based gating architecture has an important advantage
over the global nature of a purely DA-based gating
signal (Braver and Cohen, 2000; Rougier and O’Reilly,

2002; Tanaka, 2002), which appears computationally t
inadequate for supporting a selective updating function
by itself.

. Top-down biasing of processing occurs via projections
from actively-maintained representations in PFC to rel-
evant areas throughout the brain, most typically the
PC, but also the HC and the PFC/BG itself (Cohen and
Servan-Schreiber, 1992; Fuster, 1989).

. Learning what and when to gate is accomplished by a
DA-based reinforcement-learning mechanism that is
capable of providing temporally-appropriate learning
signals to train gating update activity in the striatal Go
and NoGo synapses. Thus, each spiny neuron devel-
ops its own unique pattern of connection weights en-
abling separate Go vs. NoGo decisions in each stripe.

Fig. 5 shows how the BG-mediated selective gating
echanism can enable performance of the 1-2-AX task

see Frank et al., 2001 for a working simulation). When a
ask demand stimulus is presented (e.g. 1), a BG gating
ignal (i.e. a Go signal) must be activated to enable a
articular PFC stripe to gate in and retain this information
panel a), and no stripe (or NoGo firing) should be acti-
ated for a distractor such as C (Panel b). A different stripe
ust be gated for the subsequent cue stimulus A (panel c).
hen the X stimulus is presented, the combination of this

timulus representation plus the maintained PFC working
emory representations is sufficient to trigger a target

esponse R (panel d).

earning when to gate in the BG

f all the aspects of our model that purport to deconstruct

ig. 5. Illustration of how the BG gating of different PFC stripes can
olve the 1-2-AX task (light color�active; dark�not-active). (a) The
ne task is gated into an anterior PFC stripe because a corresponding
triatal stripe fired Go. (b) The distractor C fails to fire striatial Go
eurons, so it will not be maintained; however, it does elicit transient
FC activity. Note that the one persists because of gating-induced

obust maintenance. (c) The A is gated in. (d) A right key-press motor
ction is activated (using same BG-mediated disinhibition mechanism)
ased on X input plus maintained PFC context.
he homunculus, learning when to gate is clearly the most
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entral. For any working memory model, either the knowl-
dge of when to update working memory must be built in
y the model’s designer, or, somehow, a model must learn

t on its own, relying only on its built-in constraints inter-
cting with its training experience. That is, without such a

earning mechanism, our model would have to resort to
ome kind of intelligent homunculus to control gating.

Our approach for simulating how the BG learns to
pdate task-relevant versus irrelevant working memory

nformation builds on our prior work for how the same
ystem modulates the selection of motor responses. Spe-
ifically, the BG are thought to facilitate the selection of the
ost appropriate response, while suppressing all compet-

ng responses (Mink, 1996). In our models, the BG learn
he distinction between good and bad responses via
hanges in DA firing during positive and negative rein-
orcement (for details, see Frank, 2005). In brief, our model
everages the observation that DA D1 and D2 receptors
re relatively segregated in Go and NoGo cells, respec-
ively (Gerfen, 1992; Wise et al., 1996; Aubert et al., 2000).
his is of interest because DA effects on neuronal excit-
bility and synaptic plasticity are dependent on whether it
cts via D1 or D2 receptors (Hernandez-Lopez et al., 1997,
000; Nishi et al., 1997; Centonze et al., 2001). The net
ffect is that increases in DA during positive reinforcement
nhance BG Go firing and learning via simulated D1 re-
eptors, whereas decreases in DA during negative rein-
orcement have the opposite effect, enhancing NoGo firing
nd learning via simulated D2 receptors. This functionality
nables the BG system to learn to discriminate between
ubtly different reinforcement values of alternative re-
ponses, and is consistent with several lines of biological
nd behavioral evidence (Frank, 2005).

For the PBWM model, we have extended these ideas
o include BG modulation of PFC working memory repre-
entations. Thus, increases in DA reinforce BG Go firing to
pdate information that is adaptive to store in working
emory, while decreases in DA allow the model to learn

hat its current working memory state is maladaptive. In
his manner, the BG eventually come to update information
hat is task-relevant, because maintenance of this informa-
ion over time leads to adaptive behavior and reinforced
esponses. Conversely, the system learns to ignore dis-
racting information, because its maintenance will interfere
ith that of task-relevant information and therefore lead to
oor performance.

As Fig. 5 illustrates, the learning problem in the BG
oils down to learning when to fire a Go vs. NoGo signal in
given stripe based on the combination of current sensory

PC) input and maintained PFC activations. From a com-
utational perspective, there are two fundamental prob-

ems that must be solved by the learning mechanism.

Temporal credit assignment. The benefits of having
ncoded a given piece of information into prefrontal work-

ng memory are typically only available later in time (e.g.
ncoding the one task demand stimulus can only really
elp later (in terms of getting an actual reward) when

onfronted with an A–X sequence). Thus, the problem is to (
now which prior events were critical for subsequent good
or bad) performance.

Structural credit assignment. The network must de-
ide which stripes should encode which different pieces of

nformation at a given time, and when successful perfor-
ance occurs, it must reinforce those stripes that actually

ontributed to this success. This form of credit assignment
s what neural network models are typically very good at
oing (e.g. the backpropagation algorithm), but clearly this
orm of structural credit assignment interacts with the tem-
oral credit assignment problem and with the unique mi-
ro-anatomical structure of the stripe-loop architecture of
he PFC and BG, making the technical problem consider-
bly more complex.

The firing patterns of midbrain DA neurons (ventral
egmental area, VTA; substantia nigra pars compacta,
Nc; both strongly innervated by the BG) exhibit the prop-
rties necessary to solve the temporal credit assignment
roblem, because they learn to fire for stimuli that predict
ubsequent rewards (e.g. Schultz et al., 1993; Schultz,
998). This property is illustrated in schematic form in Fig. 6

or a simple Pavlovian conditioning paradigm, where a stim-
lus (e.g. a tone) predicts a subsequent reward. Fig. 5b
hows how this predictive DA firing can reinforce BG Go
ring to gate in and subsequently maintain a stimulus,
hen such maintenance leads to subsequent reward. Spe-
ifically, the DA firing can move discretely from the time of
reward to the onset of a stimulus that, if maintained in the
FC, leads to the subsequent delivery of this reward.
ecause this DA firing occurs at the time when the stimu-

us comes on, it is well timed to facilitate the storage of this
timulus in PFC. In our model, this occurs by reinforcing
he connections between the stimulus and the Go gating
eurons in the striatum, which then cause updating of PFC
o maintain the stimulus.

The apparently predictive nature of the DA firing has
ost often been explained in terms of the temporal differ-
nces (TD) reinforcement learning mechanism (Sutton,
988; Sutton and Barto, 1998; Schultz et al., 1995; Houk et
l., 1995; Montague et al., 1996; Suri et al., 2001; Con-
reras-Vidal and Schultz, 1999; Joel et al., 2002). However,
xtensive exploration and analysis of these models has led
s to develop a non-TD-based account, which moves
way from the prediction framework upon which it is based
O’Reilly and Frank, in press; O’Reilly et al., unpublished
bservations). In brief, TD depends on chaining of predic-
ions from one time step to the next, and any weak link (i.e.
npredictable event) can break this chain. In many of the
asks faced by our models (e.g. the 1-2-AX task), the
equence of stimulus states is almost completely unpre-
ictable, and this significantly disrupts the TD chaining
echanism (O’Reilly et al., unpublished observations).
ur alternative learning mechanism, called PVLV (primary

alue and learned value) involves two separable but inter-
ependent learning mechanisms, each of which is essen-
ially a simple delta-rule or Rescorla-Wagner mechanism

Rescorla and Wagner, 1972; Widrow and Hoff, 1960).
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his PVLV mechanism shares several features in common
ith the model of Brown et al., 1999.

The further details of these PBWM and PVLV learning
echanisms are beyond the scope of this paper, but the
asic results are that the resulting model can learn com-
lex working memory tasks such as the 1-2-AX task based
urely on trial-and-error experience with the task. We pro-
ide more examples of the learning and performance of
his model below.

mpirical tests of the model

n addition to incorporating a large amount of existing
mpirical data, the overall PBWM model of the role of the
FC and BG in working memory makes a number of

urther predictions, several of which have been tested
mpirically. We review some of these below, and then
iscuss ongoing applications of the PBWM model to un-
erstand working memory behavior.

FC organization

he PBWM model strongly predicts that information that
ust be updated at different points in time during a working
emory task (e.g. the outer loop vs. the inner loop of the
-2-AX task) should be represented in different parts of the
FC. This prediction has been tested directly in the 1-2-AX

ask (Kroger et al., unpublished observations), and in a
umber of other tasks that also share this same kind of

nner/outer loop structure (e.g. Braver and Bongiolatti,
002; Koechlin et al., 2000, 2003). In all of these cases,
ore anterior areas of PFC, specifically the frontal pole

Broadman’s area 10) was selectively activated for outer-
oop information, while more posterior areas (dorso-lateral
FC, Broadman’s areas 46/9) were active for inner-loop

nformation.

G/DA mechanisms

ecently, we have tested various aspects of the hypothe-
ized roles of the BG/DA system across both reinforce-
ent learning and working memory processes. First, we
emonstrated striking support for a central prediction of
ur model regarding DA involvement in “Go” and “NoGo”
ognitive reinforcement learning (Frank et al., 2004; Frank,
005). We tested Parkinson patients on and off medica-
ion, along with healthy senior control participants matched
or age, education and a measure of verbal IQ. We pre-
icted that decreased levels of DA in Parkinson’s disease
ould lead to spared NoGo learning, but impaired Go

earning (which depends on DA bursts). We further pre-
icted that dopaminergic medication should alleviate the
o learning deficit, but would block the effects of DA dips
eeded to support NoGo learning, as was simulated to
ccount for other medication-induced cognitive deficits in
arkinson’s disease (Frank, 2005). Results were consis-

ent with these predictions. In a probabilistic learning task,
ll patients and aged-matched controls learned to make
hoices that were more likely to result in positive rather
han negative reinforcement. The difference was in their

trategy: patients taking their regular dose of dopaminergic s
edication implicitly learned more about the positive out-
omes of their decisions (i.e. they were better at Go learn-

ng), whereas those who had abstained from taking med-
cation implicitly learned to avoid negative outcomes (bet-
er NoGo learning). Age-matched controls did not differ in
heir tendency to learn more from the positive/negative
utcomes of their decisions.

We have also tested predictions for a more a general
ole for BG/DA in cognitive function by administering low
oses of DA agonists/antagonists to young, healthy par-
icipants (Frank and O’Reilly, unpublished observations).
he drugs used (cabergoline and haloperidol) were selec-

ive for D2 receptors, which are by far most prevalent in the
G. By acting on presynaptic D2 receptors, cabergoline

educes, while haloperidol enhances, the amount of phasic
A that is released during dopaminergic cell bursting (e.g.,
u et al., 2002). Again, results were consistent with our
odel: Increases in DA during learning caused partici-
ants to learn more about the positive outcomes of their
ecisions (as in medicated Parkinson’s patients), whereas
ecreases in DA caused the same participants to learn
ore about negative outcomes (as in non-medicated pa-

ients). Notably, these same effects were borne out in the
ontext of a modified version of the AX-CPT working mem-
ry task. In our version, a variable number of task-irrele-
ant distractor stimuli were presented during the delay
eriod, and participants were told to ignore these distrac-
ors for the purpose of target (A–X) detection. We also
ncluded an attentional set-shifting condition, in which the
reviously task-relevant letters (A, X, B, Y) became dis-
ractors, while previous distractors were now task-relevant.

Interestingly, increases in DA by haloperidol enhanced
elective working memory updating of task-relevant (i.e.
positively-valenced”), but not distracting (“negatively-va-
enced”) information. By our model’s account, DA release
voked during the presentation of task-relevant informa-
ion reinforces BG Go firing to update this information.
onsistent with this analysis, increased DA release also
aused difficulty not updating (i.e. ignoring) this information
hen it subsequently became distracting in the set-shift.
onversely, under cabergoline (decreased DA release)
et-shifting deficits were observed that were consistent
ith impaired, rather than enhanced, Go learning. In par-

icular, whereas set-shifting deficits under haloperidol were
nly observed in trials for which participants had to ignore
reviously task-relevant distractors, deficits were observed
nder cabergoline when they only had to update the new
ask-relevant set (i.e. in trials without distractors). Finally,
nd perhaps most suggestive for a role of BG DA in
orking memory, participants with low baseline working
emory span were most subject to the effects of increases

n DA by haloperidol, while those with high span were most
ubject to decreases in DA by cabergoline (Frank and
’Reilly, unpublished observations). These latter results
re consistent with the notion that individual differences in
orking memory span are partially characterized by under-

ying differences in DA levels (Kimberg et al., 1997), but
xtend this hypothesis in a more mechanistic fashion con-

istent with our modeling.



t
t
F
e
n
n
c
A
p
P
m
w
s
b
o
i
t
t

S
s

T
v
p
a
p
s
c
t
r
T
w
c
T
a

g
m
(

i
t
i
M
1
a
(
a

F
e
s
r
fi
P
s
l
P
s
u

T

T

S

A

1
W

I

E

A

S
S
N

T. E. Hazy et al. / Neuroscience 139 (2006) 105–118112
Taken together, these results provide strong support
hat BG signals, under modulation by DA, are critical for
he updating of PFC working memory representations.
urther, the model’s success in capturing subtle cognitive
ffects in both Parkinson’s disease and controlled DA ma-
ipulation suggests that it can also be applied to mecha-
istically understand cognitive deficits in those with more
omplex disorders involving BG/DA dysfunction, such as
DHD (attention deficit hyperactivity disorder) and schizo-
hrenia. However, it is also the case that, although the
BWM model has been specifically designed to include
any biological aspects, it obviously also goes beyond
hat is currently known. For example, the model ascribes
pecific roles to subsets of neurons in the nucleus accum-
ens, which provides testable hypotheses about the biol-
gy and function of these systems in the brain. It will be

nteresting to see how some of these ideas implemented in
he PBWM model stand up to further biological investiga-
ions.

imulating multiple working memory tasks in a
ingle integrated model

he PBWM model is quite complex. Although it is moti-
ated by a wide range of empirical data, and some of its
redictions have been tested and confirmed as described
bove, it is nevertheless important to constrain the com-
lexity of the model further by subjecting it to increasingly
tringent tests. One strategy that we have employed suc-
essfully in the past with both our hippocampal and pos-
erior cortical models is to apply these models to as wide a
ange of cognitive neuroscience phenomena as possible.
o the extent that the same basic model can account for a
ide range of data, it provides confidence that the model is
apturing some critical core elements of cognitive function.
he virtues of this general approach have been forcefully
rgued by Newell, 1990.

For these reasons, one important current research
oal is to attempt to simulate a wide range of working
emory tasks with one instantiation of the PBWM model

Table 1). This research builds upon earlier work simulat-

able 1. Brief descriptions of the tasks simulated in the multitask (MT

ask Brief description

troop Color words printed in same or different ink colors, re
word/color in color naming condition, csp with PFC

X-CPT Letters appear one at a time on the screen. Target s
(impaired with PFC damage).

-2-AX Like AX-CPT, except target depends on prior 1 or 2
CST Wisconsin Card Sorting Task: multidimensional stimu

“rule” learned by trial-and-error, and changes unex
D/ED Intradimensional/Extradimensional task, which is like

changes within a given dimension, or across differ
riksen A central, to-be-named stimulus is flanked by consist

flankers.
BCA/ABBA A sequence of stimuli is presented; a response is req

ABBA condition.
erial recall A sequence of verbal items must be recalled in orde
ternberg Digits are presented in an array, then removed. One

-Back Repetitions separated by N in a continuous stimulus sequenc
ng many of the paradigmatic tasks thought to be charac-
eristic of working memory and executive function, includ-
ng: the Stroop effect (Cohen et al., 1990; O’Reilly and

unakata, 2000); the AX-CPT (Braver et al., 1995); the
-2-AX (O’Reilly and Frank, in press); the WCST (Rougier
nd O’Reilly, 2002); the ID/ED dynamic categorization task
O’Reilly et al., 2002); and the Eriksen flanker task (Eriksen
nd Eriksen, 1974; Cohen et al., 1992; Yeung et al., 2004;

ig. 6. (a) Schematic of DA neural firing for an input stimulus (Input,
.g. a tone) that reliably predicts a subsequent reward (unconditioned
timulus US/r). Initially, DA fires at the point of reward, but then over
epeated trials learns to fire at the onset of the stimulus. (b) This DA
ring pattern can solve the temporal credit assignment problem for
FC active maintenance. Here, the PFC maintains the transient input
timulus (initially by chance), leading to reward. As the DA system
earns, it can predict subsequent reward at stimulus onset, by virtue of
FC “bridging the gap” (in place of a sustained input). DA firing at
timulus onset reinforces the firing of BG Go neurons, which drive
pdating in PFC.

and the evidence implicating the PFC in them

is either color or word. Differential slowing is observed for conflicting
.
of A followed by X must be detected, requiring maintenance of A

1�AX, 2�BY target sequence.
shape, number) are sorted according to one dimension; Sorting
Increased perseveration on initial rule observed with PFC damage.

xcept multiple stimuli are presented simultaneously, allowing rule
sions. PFC-related perseveration also observed.
onsistent stimuli. PFC damage causes more intrusion from

en the 1st stimulus repeats. PFC damage causes false alarms in

is probed and measured capacity is often greater than serial recall.
) model,

sponse
damage

equence

stimulus;
li (color,
pectedly.
WCST e
ent dimen
ent or inc

uired wh

r.
location
e must be detected. PFC damage impairs performance.
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ogacz and Cohen, 2004). We also plan to simulate the
BCA/ABBA task (Miller et al., 1996), serial recall (phono-

ogical loop) (Burgess and Hitch, 1999), Sternberg task
Sternberg, 1996), and the N-Back task (Braver et al.,
997).

In addition to the basic goal of simulating all of these
asks within a single model, this model will allow us to
xplore fundamental questions about the nature and ori-
ins of cognitive control, and intelligence more generally,
y varying the training experiences that we give to the
odel prior to testing on the full set of standard experi-
ental tasks. Specifically, we plan to build up a repertoire
f complex cognitive skills by initial training on much sim-
ler tasks, and to explore the extent to which performance
cross a range of tasks can build efficiently upon a com-
on set of shared task elements. Before discussing these

ssues, we first describe our comprehensive MT (multi-
ask) model (designed around the basic PBWM mecha-
isms) that we are developing for this project, and our

nitial efforts demonstrating basic competency for the par-
digmatic working memory tasks listed in Table 1.

he full MT model

ig. 7 shows the MT (multitask) model, with input/output
ayers appearing at the top of the network, posterior corti-
al “Hidden” layers and PFC layer in the middle, and

ig. 7. Overall structure of the MT model. Similar to our other PBWM
G layers are at the bottom-right. The PVLV learning algorithm layers
omponent also includes the BG (Matrix, SNrThal) and PFC on the righ
r multiple featured stimuli are presented in one or more “slots” in the S
ased on these inputs, plus context provided by PFC input, the Hidde
hown model has four “stripes” reflected in the four subgroups of the
NrThal layers. LVe, learned value, excitatory (anatomically associate

same anatomical locus); PVe, primary value (PV) excitatory, extern
triosomes of ventral striatum); SNrThal, abstracted layer reflecting d
G/midbrain areas for learning and gating of PFC at the
d
a

ottom. The input/output representations were designed to
ccommodate the vagaries of each individual task in a way
hat achieves a high level of surface validity.

The perceptual input representations in the MT model
Fig. 8) assume a high level of perceptual preprocessing,
uch that different stimulus items (“objects”) are repre-
ented with consistent and unique activity patterns. We
ncode three separate (orthogonal) stimulus dimensions:
bject identity, color, and size, and we also provide three
patial locations in which a given object may appear. The
ask instruction layer tells the network what to do with the
nput stimuli, including the overall task and any more spe-
ific pieces of information that might be required (e.g.
hether to do word reading or color naming in the Stroop

ask). We are exploring different ways of presenting these
ask instructions, including presenting them only at the
eginning of a block of trials on a given task, at the begin-

he input/output layers are at the top-left of the diagram. The PFC and
lower left hand corner (highlighted in darker gray), and the full PBWM
e (highlighted in lighter gray). Depending on the particular task, single
layer, along with task instructions in the Task_Instruct and SIR layers.
etermines the correct output in verbal or nonverbal form, or both. The
Matrix (striatal matrisomes) layers, and the four units of the SNc and
e central nucleus of the amygdala); LVi, learned value (LV) inhibitory
; PVi, primary value inhibitory (anatomically associated with patch/
indirect pathways via substantia nigra, pars reticulata and thalamus.

ig. 8. Perceptual input features, organized along three separate
models, t
are in the
t hand sid
timuli_In
n layer d
PFC and
d with th
al reward
imensions. Three separate locations of these features are provided
s input to the network.
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ing of a trial but not during it, and constantly throughout
ach trial. Furthermore, we will explore the presentation of
given task in a more surface valid manner, where after

raining on a set of basic cognitive operations, a given task
s then “described” to the model in terms of the combina-
ion of these operations, instead of having it simply mem-
rize the meaning of a distinctive task label. We have also

ncluded a sub-category of instruction inputs in the form of
he store/ignore/recall (SIR) layer, which can be used to
rovide explicit working memory update signals that are
ncoded in a variety of different ways in different tasks,
nd may also be present via implicit timing signals via the
erebellum (Mauk and Buonomano, 2004; Ivry, 1996). The
utputs include both verbal and non-verbal responses, the

atter including button presses and pointing to locations.
The task instruction and SIR input each have a sepa-

ate hidden layer associated with them, which enables the
etwork to develop a more systematic internal represen-

ation of the task demands. These TaskHidden and
IRHidden layers, along with the perceptual inputs, all

eed into one large common hidden layer (representing
osterior association cortex), which in turn projects to the

wo output layers. The PFC is bidirectionally connected to
ll relevant high-level processing layers (sensory input,

ask hidden, central hidden, and output), and its associated
G layers receive from all of these layers as well to provide
ontrol over the learning and execution of the dynamic
ating signals. Note that the shown PFC/BG system has

our stripes, with each stripe representing a selectively
pdatable component of working memory. More stripes

acilitate faster learning, but result in a larger, more compu-
ationally costly model, so the exact number of stripes is a
atter of pragmatic optimization in the model (in the brain, we
stimate that many thousands of stripes are present).

When sensory inputs are presented, activation flows
hroughout the network in a bidirectional manner, so that
nternal posterior cortical “hidden” layers are affected by
oth these bottom-input and maintained top-down activa-

ions in the PFC. In the Leabra algorithm that we use,
ndividual units are modeled as point neurons, with simu-
ated ion channels contributing to a membrane potential,
hich is in turn passed through a thresholded nonlinear
ctivation function to obtain a continuous instantaneous
pike rate output that is communicated to other units. The

nhibitory conductances are efficiently computed according
o a k-winners-take-all algorithm (kwta), which ensures that
o more than some percentage (typically between 15 and
5%) of units within a layer is active at a time.

Outside of the BG system, learning occurs as a result
f both Hebbian and error-driven mechanisms, with the
rror-driven learning computed in a biologically-plausible

ashion based on the GeneRec learning algorithm
O’Reilly, 1996). The learning mechanisms for the BG
omponents (PVLV algorithm) were described earlier.

The model can be systematically lesioned in a wide
ariety of ways and its performance tested on each of the
ehavioral paradigms. In some cases, there are clear pa-

ient data that the model will be expected to simulate.

owever, much of the time, these lesions will not clearly c
ap onto any existing piece of empirical data, and will
herefore stand as important testable predictions of the
odel. In addition to the standard techniques of damaging
nits and connections, we can also manipulate the dopa-
inergic and other pathways in the BG and their projec-

ions to the PFC to simulate conditions such as Parkin-
on’s, ADHD, and schizophrenia.

urrent progress and future directions

he model is currently able to perform a set of core tasks,
ncluding the Stroop, AX-CPT, 1-2-AX, and WCST, in ad-
ition to a set of more primitive component tasks (e.g.
aming, matching, and comparing stimulus features, di-
ensions, and locations) that also involve basic working
emory capacities. The network has replicated basic fea-

ures of these tasks as highlighted in Table 1 (e.g. the
ifferential slowing of the color-naming conflict condition in
he Stroop task), but more extensive detailed testing has
et to be performed, awaiting further training of the model
n more tasks, and all of the tasks integrated together.
hus, although we are optimistic that the network will
ucceed in simulating all of these tasks, considerable work
emains to be done.

As mentioned earlier, a single instantiation of our com-
rehensive MT model will provide important opportunities
or exploring a wide range of issues in cognitive develop-
ent and human intelligence generally. Perhaps the great-
st mystery in cognitive processing is where all the
smarts” come from to control the system in a task-appro-
riate manner. Specifically, a fundamental question we
ace is, How is it that people quickly adapt to performing
ovel cognitive tasks, when it takes monkeys months of
ighly-focused training to learn a single new task? We
ypothesize that people develop an extensive repertoire of
asic cognitive operations throughout the long develop-
ental period into adulthood, and then, are able to rapidly
nd flexibly combine these basic “building block” opera-
ions to solve novel tasks. This may sound like common
ense, but demonstrating even rudimentary capabilities in
his regard in a mechanistically explicit computational
odel remains an important challenge.

To explore these issues, we are planning to train the
T model on a large corpus of primitive task-oriented
xperiences (e.g. object naming, color naming, etc.) so as
o establish a basic set of capabilities underlying the more
omplex task paradigms targeted above. A critical issue
ill be how much specific training on each task will still be

equired, in comparison to prior training on more basic
ognitive operations that may be combinatorially applied to
ach task. One extreme of this dimension is represented
y studies conducted on monkeys, where many months of
ighly specific training are required to achieve task perfor-
ance. In contrast, adult human participants typically re-
uire a simple set of verbal instructions, followed by a
mall number of practice trials, to achieve high levels of
erformance. In the past, neural network models have
een much closer to the monkey end of this spectrum (or
orse), requiring extensive task-specific training. Other

ognitive models (e.g. production systems) typically rely on
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he intelligence of the modeler to program in all the nec-
ssary task components by hand, while non-computational
heories often invoke constructs that amount to homunculi,
or example the “central executive” of Baddeley (1986). A
ajor goal of our overall research program is to move our
odels closer to the human end of the spectrum. A key
ypothesis to be tested is that our model will learn complex
asks significantly faster after being pre-trained on simpler,
elevant ones. If we are successful in achieving this goal, it
ould represent a critical qualitative step forward in the
odeling of human-like intelligence.

Some preliminary work using an earlier version of our
asic model provides reason to be optimistic regarding this
verall approach. In simulations of a task paradigm we
alled cross-task generalization (XT; Rougier et al., 2005),
e explored the ability of training on one set of tasks to
eneralize (transfer) to other, related tasks. In general, the
ey to generalization in a neural network is the formation of
bstract (e.g. categorical) representations (O’Reilly and
unakata, 2000; Munakata and O’Reilly, 2003). For ex-
mple, the abstract representation of the category “dog”
which must be abstracted over experiences with specific
ogs) can enable one to surmise that poodles eat dog food
ased on seeing a German shepherd eating dog food,
ven though this might not be obvious given the raw per-
eptual differences among members of the dog category
e.g. you might otherwise be tempted to feed a poodle cat
ood).

In the Rougier et al. (2005) model, we trained a PFC
odel using a simple form of dynamic gating mechanism
n a varying number of related tasks operating on simple
isual stimuli (e.g. name a “feature” of the stimulus along a
iven “dimension” such as its color, shape, or size; match

wo stimuli along one of these dimensions; compare the
elative size of two stimuli). To test for generalization, we
nly trained a given task on a small percentage (e.g. 30%)
f all the stimuli, and then tested that task on stimuli that
ere trained in other tasks. We found that only the model
ith an intact PFC and dynamic gating mechanism was
apable of significant levels of generalization. Further-
ore, this model developed discrete rule-like representa-

ions in the PFC that clearly and uniquely encoded the
ask-relevant stimulus dimensions, and the generalization
erformance and formation of these rule-like representa-
ions were strongly correlated throughout all the models.

We think this pattern of results reflects a general prin-
iple for why the PFC should develop more abstract rep-
esentations than PC, and thus facilitate flexible generali-
ation to novel environments: abstraction derives from the
aintenance of stable representations over time, interact-

ng with learning mechanisms that extract commonalities
ver varying inputs. Supporting this view are data showing

hat damage to PFC impairs abstraction abilities (e.g.,
ominey and Georgieff, 1997), and that PFC in monkeys
evelops more abstract category representations than
hose in PC (Wallis et al., 2001; Freedman et al., 2002;
ieder et al., 2002).

As a preliminary test of our overall approach, we have

uccessfully implemented the core findings of the cross- l
ask generalization model (Rouger et al., in press) in a
ersion of the MT model described here to validate that the

atter can replicate the core results generated by that
odel. Specifically, we have been able to easily demon-

trate that the latest PBWM mechanisms, using the input
ramework and training environment of the Rougier et al.
2005) model, could quickly learn the core tasks (name
eature, match feature, compare feature) and could also
uccessfully learn to generalize across tasks just as in the
riginal.

uture developmental directions for the model

he question of how the PFC is functionally organized is
lso prominent in the literature, and remains largely unre-
olved. We think this path of research can shed consider-
ble light on this issue as well. Previously, we have pro-
osed that the anterior-posterior (and perhaps dorsal–
entral) axis of the PFC might be organized along a
radient from abstract to concrete, respectively (O’Reilly et
l., 2002; O’Reilly and Munakata, 2000). However, the
BWM model currently has no mechanism for encourag-

ng such a gradient (or any other kind of gradient) to
evelop in the stripes of the PFC (all stripes are equipotent

n their access to information). Therefore, an additional
venue of research we plan to explore is to look at various
ays of biasing the model to develop a gradient of orga-
ization along its PFC stripes, and see what types of
radients actually develop in response to the battery of
raining provided, while assessing any behavioral implica-
ions this organization might have (e.g. does the organiza-
ional principle actually facilitate processing, and if so,
ow?). One particular organizational bias suggested by the
iology is to have only the more posterior areas of PFC
onnected (bidirectionally) with posterior cortical areas,
hile more anterior PFC areas connect only with these
osterior PFC areas. Thus, anterior PFC areas might be
ble to serve as more abstract biasing inputs to more
osterior PFC areas, which in turn bias more specific
rocessing in PC.

Understanding the human capacity for generativity
ay be one of the greatest challenges facing the field of

higher-level” cognitive function. We think that the mecha-
isms of the PBWM model, and in particular its ability to
xhibit limited variable-binding functionality, may be critical
teps along the way to such an understanding. It may be
hat, over the 20 or so years it takes to fully develop a
unctional PFC, people have developed a systematic and
exible set of representation that supports dynamic recon-
guration of input/output mappings according to main-
ained PFC representations. Thus, these PFC “variables”
an be activated by task instructions, and support novel
ask performance without extensive training. This and
any other important problems remain to be addressed in

uture research.
Finally, while our model addresses the computational

ole of BG DA in working memory, we are only beginning to
xplore DA effects in PFC. In brief, we think that phasic DA
ffects are critical for learning in the BG, whereas longer
asting DA effects in PFC support robust maintenance of
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orking memory representations (Durstewicz et al., 2000;
eamans and Yang, 2004; Tanaka, 2002). In the model
escribed here, these dopaminergic effects in PFC were
bstracted and subsumed by a simple intracellular main-
enance current—but these currents are known to depend
n a healthy level of tonic DA.

CONCLUSION

lthough many theoretical models have been developed
urporting to explain aspects of working memory and ex-
cutive function, the mechanistic basis underlying them
as remained inadequately described, often amounting to
homunculus. In this paper, we have reviewed some of

he progress made by our colleagues and others in at-
empting to deconstruct this implicit homunculus by eluci-
ating the precise computational and neural mechanisms
nderlying them, particularly the role of the PFC. These

deas can be specified at multiple levels. At a more ab-
tract level, we outlined six key functional demands that we
ee underlying working memory, which need to be satis-
ed by the neural system. We also described a detailed
mplementation of these functional demands in the PBWM
PFC BG working memory) computational model. This
odel attempts to incorporate detailed biological con-

traints in addition to the more abstract functional de-
ands, and is capable of learning complex working mem-
ry tasks strictly as a function of experience (without task-
pecific knowledge having to be built in by the modeler).

We are currently applying this computational model to
range of different working memory tasks, which should

trongly test the cognitive neuroscience validity of the
odel. For example, the model can be used to explore

oles of the individual neural systems involved by perturb-
ng parameters to simulate development, aging, pharma-
ological manipulations, and neurological dysfunction, and

t promises to be extensible to a broad array of other
elevant manifestations of working memory and executive
unction. Furthermore, we hope to use this platform to
xplore fundamental questions regarding the neural basis
nd origins of our uniquely flexible human intelligence and
apacity for cognitive control.
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